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1. Introduction. The idea of infrastructure of real quadratic fields of
Shanks [11] was modified and extended by Lenstra [5], Schoof [9] and Buch-
mann and Williams [2] to certain number fields. Finally, it was general-
ized to arbitrary number fields by Buchmann [1]. In 2008, Schoof [10] gave
the first description of infrastructure in terms of reduced Arakelov divisors
and the Arakelov class group Pic0F of a general number field F . Reduced
Arakelov divisors can be used for computing Pic0F . They form a finite and
regularly distributed set in this topological group [10, Proposition 7.2, Theo-

rems 7.4 and 7.7]. Computing Pic0F is of interest because knowing this group
is equivalent to knowing the class group and the unit group of F (see [6]
and [10]).

Schoof proposed two algorithms which run in time polynomial in log |∆F |
with ∆F the discriminant of F [10, Algorithm 10.3]: the testing algorithm
to check whether a given Arakelov divisor D is reduced, and the reduction
algorithm to compute a reduced Arakelov divisor that is close to a given divi-
sor D in Pic0F . However, the reduction algorithm requires finding a shortest
vector of the lattice associated to the Arakelov divisor, while finding a rea-
sonably short vector using the LLL algorithm is much faster and easier than
finding a shortest vector. This leads to modifications and generalizations of
the definition of reduced Arakelov divisors.

One of the generalizations, which we call C-reduced Arakelov divisors,
comes from the reduction algorithm of Schoof [10, Algorithm 10.3]. With
this definition, C-reduced Arakelov divisors are reduced in the usual sense
when C = 1, and Arakelov divisors that are reduced in the usual sense are
C-reduced with C =

√
n (see [10]). The C-reduced divisors still form a finite

and regularly distributed set in Pic0F , just like the reduced divisors.
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This modification, however, has a drawback, since for general number
fields it is not known how to test whether a given divisor is C-reduced. Cur-
rently, we have a testing algorithm to do this only for real quadratic fields,
in time polynomial in log |∆F |. It is the main result of this paper, presented
in Section 4.

In Section 2, we discuss C-reduced Arakelov divisors in an arbitrary
number field. Section 3 is devoted to the properties of C-reduced fractional
ideals of real quadratic fields. An example of a real cubic field in which the
testing algorithm is no longer efficient is given in Section 5.

2. C-reduced Arakelov divisors. In this section, we introduce C-
reduced Arakelov divisors of number fields.

Let F be a number field of degree n, and r1, r2 the numbers of real and
complex infinite primes (or infinite places) of F , respectively. Let

FR := F ⊗Q R '
∏
σ real

R×
∏

σ complex

C.

Here σ’s are the infinite primes of F . Then FR is an étale R-algebra with
the canonical Euclidean structure given by the scalar product

〈u, v〉 := Tr(uv) for u = (uσ)σ, v = (vσ)σ ∈ FR.

In particular, in terms of coordinates, we have

‖u‖2 = Tr(uu) =
∑
σ real

|uσ|2 + 2
∑

σ complex

|uσ|2 for any u = (uσ)σ ∈ FR.

The norm of an element u = (uσ)σ of FR is defined by

N(u) :=
∏
σ real

uσ ·
∏

σ complex

|uσ|2.

Definition 2.1. An Arakelov divisor is a formal finite sum

D =
∑
p

npp +
∑
σ

xσσ

where p runs over the nonzero prime ideals in OF and σ runs over the infinite
primes of F , with np ∈ Z but xσ ∈ R.

To each divisor D we associate the Hermitian line bundle (I, u) where
I =

∏
p p−np is a fractional ideal in F and u = (e−xσ)σ is a vector in∏

σ R>0 ⊂ FR.
There is a natural way to associate an ideal lattice to D. Indeed, I is

embedded into FR by the infinite primes σ. Each element g of I is mapped
to the vector (σ(g))σ in FR. Since ug := (uσσ(g))σ ∈ FR, we can de-
fine

‖g‖D := ‖ug‖.
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In terms of coordinates, we have

‖g‖2D =
∑
σ real

u2σ|σ(g)|2 + 2
∑

σ complex

|uσ|2|σ(g)|2.

With this metric, I becomes an ideal lattice in FR. We call I the ideal lattice
associated to D. The vector u has the role of a metric for I. So we make the
following definition.

Definition 2.2. Let I be a fractional ideal in F and let u be in F ∗R.
The length of an element g of I with respect to the metric u is defined by
‖g‖u := ‖ug‖.

Definition 2.3. Let I be a fractional ideal. Then 1 is called primitive
in I if 1 belongs to I and is not divisible by any integer ≥ 2.

Definition 2.4. Let C ≥ 1. A fractional ideal I is called C-reduced if:

• 1 is primitive in I.
• There exists a metric u ∈

∏
σ R>0 such that ‖1‖u ≤ C‖g‖u for all

g ∈ I \ {0}.

Remark 2.5. The second condition of Definition 2.4 is equivalent to
saying that there exists a metric u such that with respect to this metric, the
vector 1 scaled by C is a shortest vector in the lattice I.

Definition 2.6. Let I be a fractional ideal in F . The Arakelov divisor
d(I) is defined to be associated with the Hermitian line bundle (I, u) where
u = (uσ)σ with uσ = N(I)−1/n for all σ.

Definition 2.7. An Arakelov divisor D is called C-reduced if it has the
form d(I) for some C-reduced fractional ideal I.

Now we prove the following lemma.

Lemma 2.8. Let I be a fractional ideal. If I is C-reduced then the inverse
I−1 of I is an integral ideal and its norm is at most Cn∂F where ∂F =
(2/π)r2

√
|∆F |.

Proof. Since 1 ∈ I, we have I−1 ⊂ OF . Then L = N(I)−1/nI is a lattice
of covolume

√
|∆F | [10, Section 4]. Consider the symmetric, convex and

bounded subset of FR,

S = {(xσ)σ : |xσ| < ∂
1/n
F for all σ}.

For real σ, the segment |xσ| < ∂
1/n
F in R has length 2∂

1/n
F . For complex σ,

the disc |xσ| < ∂
1/n
F in C has area 2π(∂

1/n
F )2. Thus,

vol(S) = (2∂
1/n
F )r1 · (2π(∂

1/n
F )2)r2 = 2r1(2π)r2∂F = 2n covol(L).
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By Minkowski’s theorem, there is a nonzero element f ∈ I such that

N(I)−1/n|σ(f)| ≤ ∂1/nF for all σ.

Since I is C-reduced, there exists a metric u such that ‖1‖u ≤ C‖f‖u.

This implies that ‖u‖ ≤ C‖u‖maxσ |σ(f)| ≤ C‖u‖∂1/nF N(I)1/n. So, we have
N(I−1) ≤ Cn∂F .

Remark 2.9. In this paper, given a fractional ideal I, we assume that
it is represented by a matrix with rational entries as in [7, Section 4] and [6,
Section 2]. Without loss of generality, we can also assume that the length of
the input is polynomial in log |∆F |.

By Lemma 2.8, to test whether I is C-reduced, first we can check that
N(I)−1 ≤ Cn∂F . We have the following.

Lemma 2.10. Testing N(I)−1 ≤ Cn∂F can be done in time polynomial
in log |∆F |.

Proof. Let M be the matrix representation of I. Since we know that
N(I)−1 =

√
|∆F |/covol(I), it is sufficient to check that

|det(M)| = covol(I) > (π/2)r2Cn.

Recall that the determinant of the matrix M can be computed in time
polynomial [8, Section 1]. This and Remark 2.9 imply that testing N(I)−1 ≤
Cn∂F can be done in time polynomial in log |∆F |.

Regarding the primitiveness of 1 in I, we have the result below.

Lemma 2.11. Let C ≥ 1 and let I be a fractional ideal containing 1 with
N(I)−1 ≤ Cn∂F . Then testing whether or not 1 is primitive can be done in
time polynomial in log |∆F |.

Proof. Let {c1, . . . , cn} be an LLL-reduced Z-basis ofOF and {b1, . . . , bn}
be an LLL-reduced Z-basis of I−1. Since 1 ∈ I, we get I−1 ⊂ OF and so
bi ∈ OF for all i. Then for each i = 1, . . . , n, there exist integers kij with
j = 1, . . . , n for which bi =

∑
i kijcj . Thus, there is an integer d such that

1/d ∈ I if and only if I−1 ⊂ dOF . This is equivalent to d | kij for all i, j. In
other words, d | gcd(kij , 1 ≤ i, j ≤ n). In conclusion, 1 is primitive in I if
and only if gcd(kij , 1 ≤ i, j ≤ n) = 1.

Since N(I)−1 ≤ Cn∂F , an LLL-reduced Z-basis of I, the coefficients kij
and gcd(kij , 1 ≤ i, j ≤ n) can be computed in time polynomial in log |∆F |.
In other words, testing the primitiveness of 1 can be done in time polynomial
in log |∆F |.
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By Lemma 2.11, we know how to test the first condition of Definition 2.4.
From now on, we only consider the second condition.

Remark 2.12. Note that if u ∈
∏
σ R>0 satisfies the second condition

of Definition 2.4, then u′ = (uσ/N(u)1/n)σ ∈
∏
σ R>0 still satisfies that

condition and N(u′) = 1. Therefore, we can always assume that N(u) = 1
from now on.

Proposition 2.13. Let I be a fractional ideal and u be a vector satis-
fying the second condition of Definition 2.4 with N(u) = 1. Then

‖u‖ ≤ C
√
n(2/π)r2/n covol(I)1/n.

Proof. Let L = uI := {uf = (uσ · σ(f))σ : f ∈ I} ⊂ FR. Then L
is a lattice with metric inherited from FR (see [10]). Since N(u) = 1, the
lattice L has covolume equal to covol(I). Consider the symmetric, convex
and bounded subset S of FR,

S = {(xσ) : |xσ| < (2/π)r2/n covol(I)1/n for all σ}.

We have

vol(S) = 2r1(2π)r2(2/π)r2 covol(I) = 2n covol(L).

By Minkowski’s theorem, there is a nonzero element f ∈ I such that

uσ|σ(f)| ≤ (2/π)r2/n covol(I)1/n for all σ.

So

‖uf‖ ≤
√
n(2/π)r2/n covol(I)1/n.

Because u satisfies the second condition of Definition 2.4, we have ‖u‖ ≤
C‖uf‖. So, the proposition is proved.

3. C-reduced Arakelov divisors of real quadratic fields. In this
part, fix C ≥ 1 and a real quadratic field F with discriminant ∆F . We
will describe what C-reduced ideals look like, and we will investigate their
properties.

Here and in the rest of the paper, we often identify an element g of a
fractional ideal with its image (σ(g))σ ∈ FR. Thus, elements of fractional
ideals of real quadratic fields have the form g = (g1, g2) ∈ FR ∼= R2.

Remark 3.1. Let F be an imaginary quadratic field and let I be a
fractional ideal of F . Then g ∈ I can be identified with its image g ∈ FR ∼= C.
The second condition of Definition 2.4 is equivalent to: there exists u ∈ R>0

such that |u| ≤ C|ug| for all g ∈ I \ {0}. Since u is a positive real number,
this is equivalent to 1/C ≤ |g| for all g ∈ I \ {0}. In other words, the
shortest vectors of I have length at least 1/C. In addition, the first vector
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in an LLL reduced basis of I is also its shortest vector; finding this vector
can also be done in polynomial time. This together with Lemma 2.11 shows
that whether a given ideal of an imaginary quadratic field is C-reduced can
be tested easily and in polynomial time. Therefore, in this section, we only
consider C-reduced ideals of real quadratic fields.

3.1. A geometrical view on reduced ideals in real quadratic
cases. We have FR ∼= R2. Let I be a fractional ideal of F and S1 be the
square centered at the origin of FR which has a vertex (1/C, 1/C). We have
the following result.

Proposition 3.2. The second condition in Definition 2.4 can be restated
as follows. There exists an ellipse E4, centered at the origin and passing
through the vertices of S1, whose interior does not contain any nonzero
points of the lattice I.

Proof. This is easy to see by writing down the condition ‖u‖ ≤ C‖uf‖
in terms of the coordinates of u and f .

Proposition 3.3. If I has some nonzero element in the square S1 then
the ellipse E4 described in Proposition 3.2 does not exist. On the other hand,
E4 exists when the shortest vectors of I have length at least

√
2/C.

Proof. For the first case, we assume that there is a nonzero element g
of I in the square S1. Since S1 is inside E4, so is g (see Figure 1). In the

1 � C

b2

b1

S1

E1

Fig. 1. The shortest vectors of I are in-
side the square S1.

1 � C b2

b1

S1

E1

Fig. 2. The shortest vectors of I are out-
side the circle E1.

second case, we can take for E4 the circle E1 centered at the origin and
of radius

√
2/C. Because the shortest vectors of I are outside E1, all the

nonzero elements of I are outside E4 (see Figure 2).

Remark 3.4. Proposition 3.3 does not show whether the ellipse E4 ex-
ists or not in case the shortest vectors of I are inside the circle E1, and I
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has no nonzero element in the square S1 (see Figure 3). We will discuss this
case in the next sections.

1 � C
b2

b1

S1

E1

Fig. 3. The shortest vectors of I are inside E1 and I has no nonzero element in S1.

3.2. Some properties of C-reduced ideals in real quadratic fields.
In this section, as mentioned in Remark 3.4, we assume that I satisfies

(?)



• 1 is primitive in I.

• I has no nonzero element in the square

S1 = {(x1, x2) ∈ R2 : |x1| ≤ 1/C and |x2| ≤ 1/C

and x21 + x22 < 2/C2}.
• Each shortest vector f of I has length 1/C < ‖f‖ <

√
2/C.

Moreover, by Remark 2.12, we can assume that the vector u in Defini-
tion 2.4 has the form u = (α−1, α) ∈ (R>0)

2 ⊂ FR for some α ∈ R>0.

Let {b1 = (b1,1, b1,2), b2 = (b2,1, b2,2)} be an LLL-basis of I. Then ‖b1‖ =
‖f‖ <

√
2/C. We denote by {b∗1, b∗2} the Gram–Schmidt orthogonalization

of the basis {b1, b2}.
Let

G =

{
g ∈ I :

(
g21 −

1

C2

)(
g22 −

1

C2

)
< 0 and ‖g‖ < 4

π
C covol(I)

}
.

We also set

G1 = {g ∈ G : g21 − 1/C2 < 0} and G2 = {g ∈ G : g22 − 1/C2 < 0}.
So, we get G = G1 ∪G2. For each g ∈ G, we define

B(g) :=

(
−C

2g21 − 1

C2g22 − 1

)1/4

.
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Then denote

Bmin =


1

2
√
C

if G1 = ∅,

max{B(g) : g ∈ G1} if G1 6= ∅,
(3.1)

Bmax =

{
2
√
C if G2 = ∅,

min{B(g) : g ∈ G2} if G2 6= ∅.
(3.2)

Let G′ = {g ∈ G : B(g) = Bmax or B(g) = Bmin}. Then because of assump-
tion (?), the vector b1 is in G. Thus, G′ is nonempty.

The most important result in this paper is the following proposition.

Proposition 3.5. The ideal I is C-reduced if and only if Bmin ≤ Bmax.

We prove this proposition after proving some results below. First, we
establish a property of the ellipses E4 described in Section 3.1.

Proposition 3.6. Assume that E4 : X2
1/a

2
1 + X2

2/a
2
2 = 1 with a1 > 0

and a2 > 0 is an ellipse satisfying the conclusion of Proposition 3.2. In other
words, E4 has its center at the origin, passes through the vertices of S1 and
its interior contains no nonzero points of the lattice I. Then:

(i) The coefficients a1 and a2 are bounded by (4/π)C covol(I).
(ii) E4 is inside the circle E5 of radius (4/π)C covol(I) centered at the

origin.

b2

b1
S1

1 � C

E1

E5

E4

Fig. 4. The circle E5 and an ellipse E4

Proof. Since E4 passes through the vertex (1/C, 1/C) of S1, its coeffi-
cients satisfy a1 > 1/C and a2 > 1/C . We also know that vol(E4) = πa1a2.
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Hence

a1 =
vol(E4)

πa2
<

1

π
C vol(E4).

In addition, the ellipse E4 is a symmetric, convex and bounded set whose
interior contains no nonzero points of the lattice I, hence it must have
volume less than 22 covol(I) by Minkowski’s theorem. Therefore

a1 <
4

π
C covol(I).

By symmetry, we also have this bound for a2. Therefore, the first statement
of the proposition is obtained. The second one follows from the first.

We have another equivalent condition to Definition 2.4:

Proposition 3.7. The second condition of Definition 2.4 is equivalent
to the following: there exists a metric u ∈ (R>0)

2 such that for all g ∈ G,
we have ‖1‖u ≤ C‖g‖u.

Proof. Let g= (g1, g2) be a nonzero element of I. If ‖g‖≥ (4/π)C covol(I)
then g is outside the circle E5. By Proposition 3.6, g is also outside any
ellipse E4 (see Figure 4). Using this and the equivalent condition of Pro-
position 3.2, we obtain: a vector u satisfies Definition 2.4 if and only if
‖u‖ ≤ C‖ug‖ for all g ∈ I \ {0} with ‖g‖ < (4/π)C covol(I).

On the other hand, if |g1| ≥ 1/C and |g2| ≥ 1/C, then ‖u‖ ≤ C‖ug‖ for
any u ∈ (R>0)

2. Therefore, it is sufficient to consider the elements g such
that |g1| < 1/C or |g2| < 1/C to show the existence of u.

Moreover, I contains no nonzero elements of S1, so g /∈ {(x1, x2) ∈ R2 :
|x1| ≤ 1/C and |x2| ≤ 1/C and x21 + x22 < 2/C2}.

Combining these conditions, we obtain the conclusion.

The ideal I with properties (?) mentioned at the beginning of this section
has bounded covolume. Explicitly:

Proposition 3.8. The covolume of I is bounded by 2/C.

Proof. Since 1 is in I, there exist integers m1 and m2 such that 1 =
m1b1 + m2b2. If m2 = 0 then 1 = m1b1 so 1/m1 = b1 ∈ I. Because 1 is
primitive in I, we must have m1 = ±1. So ‖b1‖ = ‖1‖ =

√
2 ≥

√
2/C for

any C ≥ 1. This contradicts the fact that the length of the shortest vectors
of I is strictly less than

√
2/C. So m2 6= 0.

We have ‖b∗2‖ ≤ 1
|m2|‖1‖ ≤

√
2. Thus,

covol(I) = ‖b1‖ ‖b∗2‖ <
√

2

C
×
√

2 =
2

C
.

By this proposition and Proposition 3.6, we obtain:
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Corollary 3.9. The coefficients a1 and a2 and the radius of the circle
E5 in Proposition 3.6 are bounded by 8/π. In addition, the set G is contained
in the finite set {g ∈ I : (g21 − 1/C2)(g22 − 1/C2) < 0 and ‖g‖ < 8/π}.

For a real quadratic field, Proposition 2.13 can be restated as follows:

Proposition 3.10. Assume that u = (α−1, α) ∈ (R>0)
2 satisfies the

second condition of Definition 2.4. Then ‖u‖ ≤ 2
√
C, and so

1

2
√
C
< α < 2

√
C.

Proof. By Proposition 2.13, ‖u‖ ≤ C
√

2 covol(I)1/2. By Proposition 3.8,
covol(I) < 2/C, so ‖u‖ ≤ 2

√
C. Since α−1 < ‖u‖ and α < ‖u‖, the conclu-

sion follows.

Proof of Proposition 3.5. Let u = (α−1, α) ∈ (R>0)
2. Then from ‖1‖u ≤

C‖g‖u, we get

α4(C2g22 − 1) ≥ −(C2g21 − 1).

Thus α ≥ B(g) if g ∈ G1, and α ≤ B(g) if g ∈ G2. As 1 is primitive in
I, by Proposition 3.7 the ideal I is C-reduced if and only if it satisfies the
following equivalent conditions:

there exists u ∈ (R>0)
2 such that ‖1‖u ≤ C‖g‖u for all g ∈ G

⇔ there exist α ∈ R>0 such that

{
α ≥ B(g) for all g ∈ G1

α ≤ B(g) for all g ∈ G2

⇔ there exists α ∈ R>0 such that

{
α ≥ Bmin

α ≤ Bmax

⇔ Bmax ≥ Bmin.

The second equivalence comes from Proposition 3.10 and the definition of
Bmin and Bmax.

Propositions 3.5 and 3.7 motivate further investigation of properties of
the sets G and G′. We first establish a special property of the elements in G.

Proposition 3.11. If g = s1b1 + s2b2 ∈ G then |s2| ≤ 1.

Proof. Let g = s1b1 + s2b2 in G. As in the proof of Proposition 3.8, we
get ‖b1‖ <

√
2/C and ‖b∗2‖ ≤

√
2. By the properties of LLL-reduced bases,

‖b2‖ ≤
√

2 ‖b∗2‖ ≤ 2. Therefore,

4C covol(I)

π
=

4C‖b1‖ ‖b∗2‖
π

<
4
√

2 ‖b∗2‖
π

.

Now let g∗ be a vector of length equal to the distance from g to the 1-
dimensional vector space Rb1, i.e., ‖g∗‖ = d(g,Rb1) = |s2| ‖b∗2‖. If |s2| ≥ 2,
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then we would have the following contradiction:

‖g‖ ≥ d(g,Rb1) = ‖g∗‖ ≥ 2‖b∗2‖ >
4
√

2 ‖b∗2‖
π

>
4

π
C covol(I).

Therefore, |s2| ≤ 1.

In the next proposition, we prove that the cardinality of G is bounded
by a number that depends only on C but not on I or the number field F .

Lemma 3.12. The number of vectors in G (up to sign) is less than
17C + 3.

Proof. Let g ∈ G. Then g = s1b1 +s2b2 for some integers s1, s2. We have
‖b1‖ ≥ 1/C and ‖g‖ < 8/π (by Corollary 3.9). This implies that

|s1| ≤
√

2
3

2

‖g‖
‖b1‖

<
12
√

2C

π

[7, Section 12]. By Proposition 3.11, we get |s2| ≤ 1.
Therefore, the number of elements in G (up to sign) is at most

3 · (12
√

2C/π + 1), which is less than 17C + 3.

The proposition below gives a property of elements in G′.

Proposition 3.13. Let g = s1b1 + b2 ∈ G′. Then:

• |s1| ≤ 2 or
• s1 ∈ {t1, t2} for some integers t1 ≤ t2 in the interval (−1−2C, 1+2C).

Proof. It is easy to show that b1∈G=G1∪G2 since ‖b1‖≤ (4/π)C covol(I).
Here, we only prove the proposition for b1 ∈ G1, so 0 < b11 < 1/C and
1/C < |b12| <

√
2/C. For b1 ∈ G2, it is sufficient to switch b11 and b12. In

1 � C

1 � C

b1

g

Fig. 5. b1 is in the doubly shaded area and g is in the shaded area.
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the first case, by definition of Bmin, we get B(b1) ≤ Bmin. The element g is
in G′, and so it belongs to G1 or G2. If g is in G1 then 0 < |g1| < 1/C and
|g2| > 1/C. Since g ∈ G′ and B(b1) ≤ Bmin, we also have B(b1) ≤ B(g). If
‖g‖ >

√
2/C then B(b1) > B(g), contradicting the previous inequality. So,

‖g‖ ≤
√

2/C. With this in mind and by the properties of LLL-reduced bases
[7, Section 12], we get

|s1| ≤
√

2
3

2

‖g‖
‖b1‖

<
√

2
3

2

√
2
C
1
C

= 3, so |s1| ≤ 2.

If g is in G2 then |g1| > 1/C and |g2| < 1/C. Since g = s1b1 + b2 and

|g2| < 1/C, the value of s1 is between −1/C−b22b12
and 1/C−b22

b12
. The fact that

0 < |b12| <
√

2/C implies that the distance between these numbers,∣∣∣∣−1/C − b22
b12

− 1/C − b22
b12

∣∣∣∣ =
2

C|b12|
,

is in the interval (
√

2, 2). So, there exist two integers t1 ≤ t2 between these
numbers. Moreover, since 1/C < |b12| <

√
2/C and |b22| < ‖b2‖ ≤ 2 (see the

proof of Proposition 3.11), one can easily see that∣∣∣∣±1/C − b22
b12

∣∣∣∣ < 1 + 2C.

Thus, we get the bounds for s1 in this case, completing the proof.

4. Test algorithm for real quadratic fields. In this section, given
C ≥ 1, we explain an algorithm to test whether a given fractional ideal I is
C-reduced for a real quadratic field F in time polynomial in log |∆F | with
∆F the discriminant of F .

By Proposition 3.5, if we know Bmin and Bmax, we can show the existence
of a metric u = (α−1, α) in Definition 2.4. In this algorithm, we first find
all the possible elements of G′ = {g ∈ G : B(g) = Bmax or B(g) = Bmin}
and then compute Bmin and Bmax. Let {b1, b2} be an LLL-basis of I and
g = s1b1 + s2b2 ∈ G′. Then Proposition 3.11 says that s2 = 0 or s2 = ±1.
By symmetry, it is sufficient to consider the case s2 ∈ {0, 1}.

• If s2 = 0 then g = b1.
• If s2 = 1 then g = s1b1+b2. By Proposition 3.13, there are five possible

values for s1 in the interval [−2, 2] and two possible values t1, t2 (with

t1≤ t2) of s1 either between −1/C−b22b12
and 1/C−b22

b12
, or between −1/C−b21b11

and 1/C−b21
b11

. This proposition also shows that the coefficients s1 have
absolute values less than 1 + 2C.
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Furthermore, by Proposition 3.10, we have 1/(2
√
C) < α < 2

√
C, and so

1/(16C2) < B(g)4 < 16C2 for all g ∈ G. In other words:

(??)



If |g2| < 1/C then

|g1|2 + 16C2|g2|2 < 16 +
1

C2
and |g2|2 + 16C2|g1|2 > 16 +

1

C2
.

If |g2| > 1/C then

|g2|2 + 16C2|g2|2 > 16 +
1

C2
and |g2|2 + 16C2|g1|2 > 16 +

1

C2
.

Using (??), we can eliminate some elements g which are not in G′ without
having to compute B(g).

Let C ≥ 1 and let I be a fractional ideal of F . Assume that an LLL-
reduced basis {b1, b2} of I is also given, and change the sign if necessary to
have the first component of b1 = (b11, b12) ∈ FR positive. In Remark 2.9, we
assume that the coordinates of b1 and b2 have at most O((log |∆F |)a) digits
for some integer a > 0.

We have the following algorithm to test whether I is C-reduced in time
polynomial in log |∆F |.

Algorithm 4.1.

1. Check if 1 ∈ I and N(I)−1 < C2
√
|∆F | or not.

2. Test whether or not 1 ∈ I is primitive.
3. Check whether there is no nonzero element of I in
S1 = {(x1, x2) ∈ R2 : |x1| ≤ 1/C and |x2| ≤ 1/C and x21+x22 < 2/C2}.

4. If ‖b1‖ ≥
√

2/C then I is C-reduced.
If not, then find all possible elements of G′.

• If 0 < b11 < 1/C and 1/C < |b12| <
√

2/C then compute the integers

t1 ≤ t2 which are between −1/C−b22b12
and 1/C−b22

b12
.

• If 1/C < b11 <
√

2/C and 0 < |b12| < 1/C then compute the integers

t1 ≤ t2 which are between −1/C−b21b11
and 1/C−b21

b11
.

Let G3 = {b1, t1b1 + b2, t2b1 + b2, s1b1 + b2 with |s1| ≤ 2}.
5. Remove from G3 all elements which do not satisfy (??).
6. Compute B(g) for all g ∈ G3, and then Bmax and Bmin.

If Bmin ≤ Bmax then I is C-reduced. If not, then I is not C-reduced.

Step 3 of Algorithm 4.1 is done in a similar way to testing the minimality
of 1 (cf. [10, Algorithm 10.3]) but here 1 is replaced by 1/C. In fact, we have
the lemma below.

Lemma 4.2. Step 3 of Algorithm 4.1 can be done by checking at most
six short vectors of the lattice I.
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Proof. If b1 is in S1 then I is not C-reduced. Otherwise, ‖b1‖ > 1/C.
Assume that g = s1b1 + s2b2 is in S1. Then ‖g‖ <

√
2/C.

Since {b1, b2} is an LLL-reduced basis of I, we have

|s1| ≤
√

2
3

2

‖g‖
‖b1‖

<
√

2
3

2

√
2
C
1
C

= 3,

|s2| ≤
√

2
‖g‖
‖b1‖

<
√

2

√
2
C
1
C

= 2

[7, Section 12]. Therefore, the elements of I which are in S1 have the form
g = s1b1 + s2b2 with |s1| ≤ 2 and |s2| ≤ 1. By symmetry, it is sufficient to
test at most six short elements of I.

Proposition 4.3. Algorithm 4.1 runs in time polynomial in log |∆F |.

Proof. The first step can be done in time polynomial in log |∆F | by
Lemma 2.10. An LLL-reduced basis of I can be computed in time polynomial
in log |∆F |, and Step 2 can be done in time polynomial in log |∆F | (see
Lemma 2.11). In Step 3, by Lemma 4.2, it is sufficient to check few short
vectors of I which have length bounded by

√
2/C. Step 4 can be done by

finding two integers t1, t2 in the interval [−1 − 2C, 1 + 2C]. In Step 6, the
bounds B(g) are between 1/(2

√
C) and 2

√
C. Overall, this algorithm runs

in time polynomial in log |∆F |.

5. A counterexample. By Lemma 2.10, 2.11 and 4.2, the first three
steps of Algorithm 4.1 can be done in time polynomial in log |∆F |. Es-
sentially, the last three steps require finding all elements of I in a certain
subset G (see Proposition 3.7 and Lemma 5.1). Therefore, the complexity
of this algorithm is proportional to the cardinality of G.

For real quadratic fields, the task can be reduced to finding all elements
of the subset G′ of G by Proposition 3.5. Since Propositions 3.11 and 3.13
say that G′ has few elements and it is easy to compute them, Algorithm 4.1
works well, i.e., it runs in time polynomial in log |∆F |.

However, for a number field of degree at least 3, the set G may have
many elements, and we currently do not know how to reduce G to a smaller
subset. Therefore, an algorithm similar to Algorithm 4.1 would be inefficient.
In other words, in bad cases, the complexity of Steps 4–6 of Algorithm 4.1
may reach |∆F |a for some a > 0. In this section, we provide an example
of a real cubic field F with large discriminant ∆F for which G has at least
|∆F |1/4 elements.

Since F is a real cubic field, we have FR ∼= R3. Let I be a fractional
ideal of F . Then we identify each element g ∈ I with its image (σ(g))σ =
(g1, g2, g3) ∈ FR ∼= R3.
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We set
δ(I, C) =

6

π
C2 covol(I)

and let

S1 =
{

(x1, x2, x3) ∈ R3 : |xi| ≤ 1/C, 1 ≤ i ≤ 3, and x21 + x22 + x22 < 3/C2
}
,

G =
{
g = (g1, g2, g3) ∈ I : ‖g‖ < δ(I, C) and

there exists i such that |gi| < 1/C
}
.

Let E1 be the sphere centered at the origin of radius
√

3/C. As in con-
dition (?) for the quadratic case (see Remark 3.4), we assume that 1 is
primitive in I and I contains no nonzero element of S1, but the shortest
vectors of I are inside E1.

Propositions 3.2 and 3.6 for the quadratic case can be naturally gener-
alized to a real cubic field. Similar to Proposition 3.7, we have:

Lemma 5.1. The second condition of Definition 2.4 is equivalent to: there
exists a metric u ∈ (R>0)

3 such that ‖1‖u ≤ C‖g‖u for all g ∈ G.

Let {b1, b2, b3} be an LLL-basis of I. We give an example with C = 1.

5.1. An example. Let

P (X) = 10000000019X3 + 10218400019X2 − 8813199073X − 4923977196

be an irreducible polynomial with a root β and F = Q(β). Then F is a real
cubic field with discriminant

∆F = 70862499223222398531211367826392679055149 > 7 · 1040.

Denote by OF the ring of integers of F . Let I = OF + OFβ. Then the
fractional ideal I has the properties:

• 1 is primitive in I.
• I has no nonzero element in the cube S1.
• b1 is inside E1, and so is a shortest vector of I.
• The covolume of I is greater than 1.6 · |∆F |1/4.

The cardinality of G is at least 1.7 · 1010 > |∆F |1/4.

5.2. How to find the above example. We construct a real cubic field
F with a fractional ideal I satisfying the conditions of Section 5.1.

Let C ≥ 1. Assume that F = Q(β) for some β of length ‖β‖ <
√

3/C
and outside the cube S1. Let OF be the ring of integers of F . Suppose
that I = OF + OFβ. Then the shortest vectors of I have length at most
‖β‖ <

√
3/C.

Denote by P (X) = aX3 + bX2 + cX + d ∈ Z[X] with gcd(a, b, c, d) = 1
and a > 0 an irreducible polynomial that has a root β. Let

R = Z⊕ Z(aβ)⊕ Z(aβ2 + bβ).

Then R is a multiplier ring, and so it is an order of F [4, Section 12.6].
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Denote by β1 = β, β2 and β3 the roots of P (X). We can easily choose
P (X) such that OF = R. This can be done by using the lemma below.

Lemma 5.2. If the discriminant of P (X) is squarefree then OF = R.

Proof. The discriminant of P (X) is disc(P ) = a4
∏
i<j(βi − βj)

2 [3,

Proposition 3.3.5]. By computing the discriminant of R, we can easily see
that it is equal to disc(P ). The result follows since [OF : R]2 |disc(P ).

Lemma 5.3. If OF = R then N(I−1) = a.

Proof. Since OF = R = Z⊕Z(aβ)⊕Z(aβ2 + bβ) and I = OF +OFβ, it
is easy to see that I = Z⊕ Zβ ⊕ Z(aβ2). Therefore, N(I−1) = [I : OF ] = a
and the lemma is proved.

The next lemma says that a can be chosen such that 1 is primitive in I.

Lemma 5.4. If a is a prime number then 1 is primitive in I.

Proof. If there is an integer d ≥ 2 such that 1/d ∈ I, then we would have
d3 = N(d) |N(I−1) = a, impossible since a is a prime. Thus, 1 is primitive
in I.

Let {b1 = (b11, b12, b13), b2 = (b21, b22, b23), b3 = (b31, b32, b33)} ⊂ R3 ⊂ FR
and let {b∗1, b∗2, b∗3} be the Gram–Schmidt orthogonalization of this basis. We
have the following result, crucial to obtaining the example of Section 5.1.

Proposition 5.5. Let C ≥ 1. Assume that:

• 1 is primitive in I.
• I has no nonzero elements in the cube S1.
• ‖b1‖ <

√
3/C.

• covol(I) ≥ 10.

Then the cardinality of G is at least 2
3C

2 covol(I).

Proof. As I has no nonzero element in S1, there is some coordinate b1j
with 1 ≤ j ≤ 3 of b1 such that |b1j | ≥ 1/C. Let g = s1b1 +s2b2 = (g1, g2, g3).
We show that if |s2| ≤ 1

3C
2 covol(I) and if s1 is between 1

b1j
(1/C − s2b2j)

and 1
b1j

(−1/C − s2b2j), then g is in G.

We know that ‖b1‖ <
√

3/C, so |b1j | <
√

3/C. This means that for
each s2, the distance between 1

b1j
(1/C − s2b2j) and 1

b1j
(−1/C − s2b2j) is

greater than 2/
√

3 > 1. Therefore there is at least one integer s1 between
them.

The bound for s1 implies that |gj | < 1/C. To prove that g ∈ G, it is
sufficient to prove ‖g‖ < δ(I, C).

We first show that ‖b2‖ ≤
√

3. Since 1 is in I, there exist integers m1,
m2 and m3 such that 1 = m1b1 + m2b2 + m3b3. If m3 = m2 = 0 then
1 = m1b1, so 1/m1 = b1 ∈ I. Since 1 is primitive, we must have m1 = ±1.
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So ‖b1‖ = ‖1‖ =
√

3 ≥
√

3/C for any C ≥ 1. This contradicts ‖b1‖ <
√

3/C.
So m3 6= 0 or m2 6= 0. If m3 6= 0 then ‖b∗3‖ ≤ 1

m3
‖1‖ ≤

√
3. By the properties

of LLL-reduced bases [7, Section 12], we have ‖b∗2‖ ≤
√

2 ‖b∗3‖ ≤
√

6. Then

covol(I) = ‖b1‖ ‖b∗2‖ ‖b∗3‖ <
√

3

C
·
√

6 ·
√

3 =
3
√

6

C
,

contrary to the assumption that covol(I) ≥ 10. Hence, m3 = 0 and m2 6= 0.
So ‖b∗2‖ ≤ 1

|m2|‖1‖ ≤
√

3.

Next, we prove that ‖b2‖ ≤
√

15/2. Indeed, denoting µ = 〈b2, b1〉/〈b1, b1〉,
by the properties of LLL-reduced bases we have |µ| ≤ 1/2 and b2 = b∗2 +µb1
[7, Section 12]. It follows that

‖b2‖2 = ‖b∗2‖2 + µ2‖b1‖2 < 3 +
1

4

3

C2
≤ 15

4
.

Now, since |b1j | ≥ 1/C and |b2j | ≤ ‖b2‖ ≤
√

15/2, the two numbers
1
b1j

(1/C − s2b2j) and 1
b1j

(−1/C − s2b2j) are in the interval[
−
(

1 +

√
15

2
|s2|
)
C,

(
1 +

√
15

2
|s2|
)
C

]
,

and so is s1. Therefore,

‖g‖2 = ‖(s1 + µs2)b1 + s2b
∗
2‖2 = (s1 + µs2)

2‖b1‖2 + |s22‖b2‖2

<

((
1 +

√
15

2
|s2|
)
C +

1

2
|s2|
)2 3

C2
+ 3s22

≤ 3

(
1 +

1 +
√

15

2
|s2|
)2

+ 3s22 < [δ(I, C)]2

since |s2| ≤ 1
3C

2 covol(I) and covol(I) ≥ 10.
We have shown that g = s1b1+s2b2 ∈ G for all (s1, s2) ∈ Z2\{(0, 0)} with

|s2| ≤ 1
3C

2 covol(I) and s1 between 1
b1j

(1/C− s2b2j) and 1
b1j

(−1/C− s2b2j).
Furthermore, if g ∈ G then −g ∈ G. Thus, G has at least [2 · 13C

2 covol(I)

= 2
3C

2 covol(I)] elements.

Corollary 5.6. With the assumptions in Proposition 5.5, the set G
contains more than γC2|∆F |1/4 elements for some constant γ depending on
the roots β1, β2, β3 of P .

Proof. By choosing P such that OF = R, we have

|∆F | = disc(R) = disc(P ) = a4
∏
i<j

(βi − βj)2.

So,

a =
1

γ
|∆F |1/4 with γ =

(∏
i<j

(βi − βj)2
)1/4

.
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Consequently,

covol(I) =

√
|∆F |

N(I−1)
=
|∆F |1/2

a
= γ|∆F |1/4,

and the result follows from Proposition 5.5.

Remark 5.7. Almost all the lattices I constructed this way have no
nonzero element in the cube S1, as we may expect. Indeed, any element
g = s1b1 + s2b2 + s3b3 ∈ I ∩S1 has length at most

√
3/C. So, we can bound

the coefficients s1, s2, s3 as follows [7, Section 12]:

|s1| ≤ 2

(
3

2

)2 ‖g‖
‖b1‖

, |s2| ≤ 2
3

2

‖g‖
‖b∗2‖

, |s3| ≤ 2
‖g‖
‖b∗3‖

.

Therefore, the cardinality of I ∩ S1 is bounded by

1

covol(I)

(√
3

C

)3

· (a constant)

[7, Section 12]. Since the covolume of I is very large, this number is very
small. So, usually we can get I without any nonzero elements in S1.

From the idea above, some examples like the one in Section 5.1 can be
produced as follows:

• First choose the discriminant |∆F | of F such that |∆F | > 104 (to make
sure that covol(I) ≥ 10).
• Choose a prime number a ≈ |∆F |1/4 (such that 1 is primitive in I).
• Choose a real vector (β1, β2, β3) outside S1 and such that

1

C2
< β21 + β22 + β23 <

3

C2
.

• Find the polynomial P (X) = aX3 + bX2 + cX + d ∈ Z[X] of the form
a(X − β1)(X − β2)(X − β3) (this can be done by using the function
round in pari-gp). Then check whether P (X) is irreducible.
• Check if disc(P ) is squarefree. If not then change βi until it is. Now
OF = R.
• Let I = OF + OFβ. Compute an LLL-reduced basis {b1, b2, b3} of I

and check if ‖b1‖ <
√

3/C.
• Test whether I does not have any nonzero element in S1.
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new definition of C-reduced divisors as well as for valuable comments, and
Hendrik W. Lenstra for helping me to find the counterexample in Section 5.
I am also immensely grateful to Wen-Ching Li and National Center for The-
oretical Sciences (NCTS) for hospitality during a part of the time when this
paper was written. I would also like to thank Duong Hoang Dung and Chloe



Reduced Arakelov divisors 315

Martindale for useful comments. Moreover, I wish to thank the reviewers for
their comments that helped improve the manuscript.

This research was supported by the Università di Roma “Tor Vergata” and
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