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1. Introduction. The idea that the Fermat equation over totally real
fields can be studied using modularity and level lowering (thereby extending
the approach of Wiles [13] for the Fermat equation over Q) appears first in
the papers of Jarvis [7] and Jarvis and Meekin [8]. In particular, Jarvis and
Meekin show that the Fermat equation xn + yn = zn has no non-trivial
solutions with x, y, z ∈ Q(

√
2) and n ≥ 4. This work is extended to other

totally real fields in more recent papers of Freitas and Siksek [2], [3].

Let K be a totally real number field and let OK be its ring of integers.
In [2], Freitas and Siksek study the Fermat equation ap + bp + cp = 0 with
a, b, c ∈ OK and p prime. For now let S be the set of primes of OK above 2
and let OS be the ring of S-integers and O∗S be the group of S-units. Freitas
and Siksek give a criterion for the non-existence of solutions a, b, c ∈ OK
with abc 6= 0 for p sufficiently large in terms of the solutions to the S-unit
equation λ+µ = 1. The proof uses modularity and level lowering arguments
over totally real fields. It is natural to seek an extension of the work of Freitas
and Siksek to generalized Fermat equations Aap +Bbp +Ccp = 0, for given
non-zero coefficients A,B,C ∈ OK . In this paper we show that the results of
Freitas and Siksek can indeed be extended to any choice of odd coefficients
A, B, C, provided the set S is enlarged to contain the primes dividing ABC
as well as the primes dividing 2.

We now state our results precisely. As in [2], our results will sometimes
be conditional on the following standard conjecture.

Conjecture 1.1 (“Eichler–Shimura”). Let K be a totally real field. Let
f be a Hilbert newform of level N and parallel weight 2, and write Qf for the
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field generated by its eigenvalues. Suppose that Qf = Q. Then there is an
elliptic curve Ef/K with conductor N having the same L-function as f.

Let A, B, C be non-zero elements of OK , and let p be a prime. Consider
the equation

(1.1) Aap +Bbp + Ccp = 0, a, b, c ∈ OK ;

we shall refer to this as the generalized Fermat equation over K with coeffi-
cients A, B, C and exponent p. A solution (a, b, c) is called trivial if abc = 0,
otherwise non-trivial. The following notation shall be fixed throughout the
paper:

(1.2)

R = Rad(ABC) =
∏

q|ABC
q prime inK

q,

S = {P : P is a prime of OK such that P | 2R},
T = {P : P is a prime of OK above 2},
U = {P ∈ T : f(P/2) = 1}, V = {P ∈ T : 3 - υP(2)}.

Here f(P/2) denotes the residual degree of P. As in [2], we need an assump-
tion which we refer to throughout the paper as (ES):

(ES)


either [K : Q] is odd;

or U 6= ∅;
or Conjecture 1.1 holds for K.

Theorem 1.2. Let K be a totally real field satisfying (ES). Let A,B,C
∈ OK , and suppose that A, B, C are odd, in the sense that if P | 2 is a
prime of OK then P - ABC. Write O∗S for the set of S-units of K. Suppose
that for every solution (λ, µ) to the S-unit equation

(1.3) λ+ µ = 1, λ, µ ∈ O∗S ,
there is either

(A) some P ∈ U that satisfies max{|υP(λ)|, |υP(µ)|} ≤ 4 υP(2), or
(B) some P ∈ V that satisfies both max{|υP(λ)|, |υP(µ)|} ≤ 4 υP(2) and

υP(λµ) ≡ υP(2) (mod 3).

Then there is some constant B = B(K,A,B,C) such that the generalized
Fermat equation (1.1) with exponent p and coefficients A, B, C does not
have non-trivial solutions with p > B.

Theorem 1.2 gives a bound on the exponent of non-trivial solutions to
the generalized Fermat equation (1.1) provided certain hypotheses are satis-
fied. There are practical algorithms for determining the solutions to S-unit
equations (e.g. [12]), so these hypotheses can always be checked for specific
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K, A, B, C. The following theorem is an example where the S-unit equation
can still be solved, even though the coefficients are not completely fixed.

Theorem 1.3. Let d ≥ 13 be squarefree, satisfying d ≡ 5 (mod 8),
and let q ≥ 29 be a prime such that q ≡ 5 (mod 8) and

(
d
q

)
= −1. Let

K = Q(
√
d) and assume Conjecture 1.1 holds for K. Then there is an

effectively computable constant BK,q such that for all primes p > BK,q, the
Fermat equation

xp + yp + qrzp = 0

has no non-trivial solutions with exponent p.

2. Preliminaries. We shall need the theoretical machinary of modu-
larity, irreducibility of Galois representations and level lowering. These tools
and the way we use them is practically identical to [2] which we refer the
reader to for more details.

2.1. The Frey curve and its modularity. We shall need the following
recently proved theorem [1].

Theorem 2.1 (Freitas, Le Hung and Siksek). Let K be a totally real
field. Up to isomorphism over K, there are at most finitely many non-
modular elliptic curves E over K. Moreover, if K is real quadratic, then
all elliptic curves over K are modular.

We shall associate to a solution (a, b, c) of (1.1) the following Frey elliptic
curve:

(2.1) E : Y 2 = X(X −Aap)(X +Bbp).

Before applying Theorem 2.1 to the Frey curve associated to our generalized
Fermat equation (1.1) we shall need the following lemma.

Lemma 2.2. Let A,B,C ∈ OK be odd, and suppose that every solution
(λ, µ) to the S-unit equation (1.3) satisfies either condition (A) or (B) of
Theorem 1.2. Then (±1,±1,±1) is not a solution to equation (1.1).

Proof. Suppose (±1,±1,±1) is a solution to (1.1). By changing signs
of A, B, C, we may suppose that (1, 1, 1) is a solution, and therefore that
A+ B + C = 0. Let λ = A/C and µ = B/C. Clearly (λ, µ) is a solution to
the S-unit equation (1.3).

Suppose first that (A) is satisfied. Then U 6= ∅, so there is some P | 2 with
residue field F2. AsA,B, C are odd, we have P - ABC. Reducing the relation
A+B+C = 0 modulo P we obtain 1+1+1 = 0 in F2, giving a contradiction.

Suppose now that (B) holds. By (B) there is some P ∈ V such that
υP(λµ) ≡ υP(2) (mod 3). However, as A, B, C are odd, υP(λµ) = 0.
Moreover, 3 - υP(2) by definition of V . This gives a contradiction.
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Corollary 2.3. Let A,B,C ∈ OK be odd, and suppose that every solu-
tion (λ, µ) to the S-unit equation (1.3) satisfies either condition (A) or (B)
of Theorem 1.2. There is some (ineffective) constant A = A(K,A,B,C)
such that for any non-trivial solution (a, b, c) of (1.1) with prime exponent
p > A, the Frey curve E given by (2.1) is modular.

Proof. By Theorem 2.1, there are at most finitely many possible K-
isomorphism classes of elliptic curves over K that are non-modular. Let
j1, . . . , jn ∈ K be the j-invariants of these classes. Write λ = −Bbp/Aap.
The j-invariant of Ea,b,c is

j(λ) = 28 · (λ2 − λ+ 1)3 · λ−2(λ− 1)−2.

Each equation j(λ) = ji has at most six solutions λ ∈ K. Thus there are
values λ1, . . . , λm ∈ K such that if λ 6= λk for all k then E is modular. If
λ = λk then

(−b/a)p = Aλk/B, (c/a)p = A(λk − 1)/C.

This pair of equations results in a bound for p unless −b/a and c/a are
both roots of unity. But as K is real, the only roots of unity are ±1. If
−b/a = ±1 and c/a = ±1 then (1.1) has a solution of the form (±1,±1,±1),
contradicting Lemma 2.2. This completes the proof.

2.2. Irreducibility of mod p representations of elliptic curves.
To use a generalized version of level lowering, we need the mod p Galois
representation associated to the Frey elliptic curve to be irreducible. The
following theorem of Freitas and Siksek [4, Theorem 2], building on earlier
work of David, Momose and Merel, is sufficient for our purpose.

Theorem 2.4. Let K be a totally real field. There is an effective constant
CK , depending only on K, such that the following holds. If p > CK is a
rational prime, and E is an elliptic curve over K which is semistable at
some q | p, then ρE,p is irreducible.

In [4] the theorem is stated for Galois totally real fields K, but the version
stated here follows immediately on replacing K by its Galois closure.

2.3. Level lowering. As before, K is a totally real field. Let E/K be
an elliptic curve of conductor N , and p a rational prime. For a prime ideal
q of K denote by ∆q the discriminant of a local minimal model for E at q.
Let

(2.2) Mp :=
∏
q‖N

p|υq(∆q)

q, Np := N/Mp.

The idealMp is precisely the product of the primes where we want to lower
the level. For a Hilbert eigenform f over K, denote the field generated by its



Generalized Fermat equation 229

eigenvalues by Qf. The following level-lowering recipe is derived by Freitas
and Siksek [2] from the works of Fujiwara [5], Jarvis [6] and Rajaei [9].

Theorem 2.5. With the above notation, suppose that:

(i) p ≥ 5 and p is unramified in K,
(ii) E is modular,
(iii) ρE,p is irreducible,
(iv) E is semistable at all q | p,
(v) p | υq(∆q) for all q | p.

Then there is a Hilbert eigenform f of parallel weight 2 that is new at level Np,
and some prime $ of Qf such that $ | p and ρE,p ∼ ρf,$.

3. Conductor of the Frey curve. Let (a, b, c) be a non-trivial solution
to the Fermat equation (1.1). Write

(3.1) Ga,b,c = aOK + bOK + cOK ,
which we naturally think of as the greatest common divisor of a, b, c. Over Q,
or over a number field of class number 1, it is natural to scale the solution
(a, b, c) so that Ga,b,c = 1 · OK , but this is not possible in general. The
primes that divide all of a, b, c can be additive primes for the Frey curve,
and additive primes are not removed by the level lowering recipe given above.
To control the final level we need to control Ga,b,c. Following [2], we fix a set

H = {m1, . . . ,mh}
of prime ideals mi - 2R, which is a set of representatives for the ideal classes
of OK . For a non-zero ideal a of OK , we denote by [a] the class of a in the
class group. We denote [Ga,b,c] by [a, b, c]. The following is Lemma 3.2 of [2],
and states that we can always scale our solution (a, b, c) so that the gcd
belongs to H.

Lemma 3.1. Let (a, b, c) be a non-trivial solution to (1.1). There is a
non-trivial integral solution (a′, b′, c′) to (1.1) such that the following hold.

(i) For some ξ ∈ K∗,
a′ = ξa, b′ = ξb, c′ = ξc.

(ii) Ga′,b′,c′ = m ∈ H.
(iii) [a′, b′, c′] = [a, b, c].

Lemma 3.2. Let (a, b, c) be a non-trivial solution to the Fermat equation
(1.1) with odd prime exponent p, and scaled as in Lemma 3.1 so that Ga,b,c =
m ∈ H. Write E = Ea,b,c for the Frey curve in (2.1), and let ∆ be its
discriminant. For a prime q we write ∆q for the minimal discriminant at q.
Then at all q /∈ S ∪ {m}, the model E is minimal, semistable, and satisfies
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p | υq(∆q). Let N be the conductor of E, and let Np be as defined in (2.2).
Then

(3.2) N = msm ·
∏
P∈S

PrP ·
∏
q | abc

q/∈S∪{m}

q, Np = ms′m ·
∏
P∈S

Pr′P ,

where 0 ≤ r′P ≤ rP ≤ 2 + 6 υP(2) for P | 2, and 0 ≤ r′P ≤ rP ≤ 2 for P |R,

and 0 ≤ s′m ≤ sm ≤ 2.

Proof. The discriminant of the model given by E is 16(ABC)2(abc)2p,
thus the primes appearing in N will be either primes dividing 2R or dividing
abc. For P | 2 we have rP = υP(N ) ≤ 2 + 6 υP(2) by [11, Theorem IV.10.4];
this proves the correctness of the bounds for the exponents in N and Np
at even primes, and we will restrict our attention to odd primes. As E has
full 2-torsion over K, the wild part of the conductor of E/K vanishes [11,
p. 380] at all odd q, and so υq(Np) ≤ υq(N ) ≤ 2. This proves the correctness
of the bounds for the exponents in N and Np at q that divide R and for
q = m.

It remains to consider q | abc satisfying q 6∈ S ∪ {m}. It is easily checked
that the model (2.1) is minimal and has multiplicative reduction at such q,
and it is therefore clear that p | υq(∆) = υq(∆q). It follows that υq(N ) = 1,
and from the recipe for Np in (2.2) that υq(Np) = 0.

4. Level lowering for the Frey curve

Theorem 4.1. Let K be a totally real field satisfying (ES). Let A,B,C ∈
OK be odd, and suppose that every solution (λ, µ) to the S-unit equation
(1.3) satisfies either condition (A) or (B) of Theorem 1.2. There is a constant
B = B(K,A,B,C) depending only on K and A, B, C such that the following
hold. Let (a, b, c) be a non-trivial solution to the generalized Fermat equation
(1.1) with prime exponent p > B, and rescale (a, b, c) as in Lemma 3.1 so
that it remains integral and satisfies Ga,b,c = m for some m ∈ H. Write
E = Ea,b,c for the Frey curve given in (2.1). Then there is an elliptic curve
E′ over K such that

(i) the conductor of E′ is divisible only by primes in S ∪ {m};
(ii) #E′(K)[2] = 4;

(iii) ρE,p ∼ ρE′,p.

Write j′ for the j-invariant of E′. Then:

(a) for P ∈ U , we have υP(j′) < 0;
(b) for P ∈ V , we have either υP(j′) < 0 or 3 - υP(j′);
(c) for q /∈ S, we have υq(j

′) ≥ 0.

In particular, E′ has potentially good reduction away from S.
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Proof. We first observe, by Lemma 3.2, that E is semistable outside
S ∪ {m}. By taking B to be sufficiently large, we see from Corollary 2.3
that E is modular, and from Theorem 2.4 that ρE,p is irreducible. Applying
Theorem 2.5 and Lemma 3.2, we see that ρE,p ∼ ρf,$ for a Hilbert newform
f of level Np and some prime $ | p of Qf. Here Qf is the field generated by
the Hecke eigenvalues of f. The remainder of the proof is identical to the
proof of [2, Theorem 9], and so we omit the details, except that we point
out that it is here that we make use of assumption (ES).

The constant B is ineffective as it depends on the ineffective constant
A in Corollary 2.3. However, if K is a real quadratic field then we do not
need that corollary as we get modularity from Theorem 2.1. In this case the
arguments of [2] produce an effective constant B.

5. Elliptic curves with full 2-torsion and solutions to the S-unit
equation. Theorem 4.1 relates non-trivial solutions of the Fermat equation
to elliptic curves with full 2-torsion having potentially good reduction out-
side S. There is a well-known correspondence between such elliptic curves
and solutions of the S-unit equation (1.3) that we now sketch.

Consider an elliptic curve over K with full 2-torsion,

(5.1) y2 = (x− a1)(x− a2)(x− a3),

where a1, a2, a3 are distinct. The cross ratio

λ =
a3 − a1
a2 − a1

belongs to P1(K)− {0, 1,∞}. Moreover, any λ ∈ P1(K)− {0, 1,∞} can be
written as a cross ratio of three distinct a1, a2, a3 in K and hence comes
from an elliptic curve with full 2-torsion. Write S3 for the symmetric group
on three letters. The action of S3 on the triple (e1, e2, e3) extends via the
cross ratio in a well-defined manner to an action on P1(K)−{0, 1,∞}. The
orbit of λ ∈ P1(K)− {0, 1,∞} under the action of S3 is

(5.2)

{
λ,

1

λ
, 1− λ, 1

1− λ
,

λ

λ− 1
,
λ− 1

λ

}
.

It follows from the theory of Legendre elliptic curves [10, pp. 53–55] that the
cross ratio in fact defines a bijection between elliptic curves over K having
full 2-torsion (up to isomorphism over K), and λ-invariants up to the action
of S3. Under this bijection, the S3-orbit of a given λ ∈ P1(K) \ {0, 1,∞} is
associated to the K-isomorphism class of the Legendre elliptic curve y2 =
x(x−1)(x−λ). We would like to understand the λ-invariants that correspond
to elliptic curves over K with full 2-torsion and potentially good reduction
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outside S. The j-invariant of the Legendre elliptic curve is given by

(5.3) j(λ) = 28 · (λ2 − λ+ 1)3

λ2(1− λ)2
.

The Legendre elliptic curve (and therefore its K-isomorphism class) has
potentially good reduction outside S if and only if j(λ) belongs to OS . It
easily follows from (5.3) that this happens precisely when both λ and 1− λ
are S-units (recall that S includes all the primes above 2); in other words,
this is equivalent to (λ, µ) being a solution to the S-unit equation (1.3),
where µ = 1−λ. Let ΛS be the set of solutions to the S-unit equation (1.3):

(5.4) ΛS = {(λ, µ) : λ+ µ = 1, λ, µ ∈ O∗S}.
It is easy to see that the action of S3 on P1(K)− {0, 1,∞} induces a well-
defined action on ΛS given by

(λ, µ)σ = (λσ, 1− λσ).

We denote by S3 \ΛS the set of S3-orbits in ΛS . We deduce the following.

Lemma 5.1. Let ES be the set of all elliptic curves over K with full
2-torsion and potentially good reduction outside S. Define the equivalence
relation E1 ∼ E2 on ES to mean that E1 and E2 are isomorphic over K.
There is a well-defined bijection

Φ : ES/∼ → S3 \ ΛS
which sends the class of an elliptic curve given by (5.1) to the orbit of(

a3 − a1
a2 − a1

,
a2 − a3
a2 − a1

)
in S3\ΛS; the map Φ−1 sends the orbit of (λ, µ) to the class of the Legendre
elliptic curve y2 = x(x− 1)(x− λ).

We shall need the following for the proof of Theorem 1.2.

Lemma 5.2. Let E′ ∈ ES and suppose that its ∼-equivalence class corre-
sponds via Φ to the orbit of (λ, µ) ∈ ΛS. Let j′ be the j-invariant of E′ and
P ∈ T . Then:

(i) υP(j′) ≥ 0 if and only if max{|υP(λ)|, |υP(µ)|} ≤ 4 υP(2);
(ii) 3 | υP(j′) if and only υP(λµ) ≡ υP(2) (mod 3).

Proof. Observe that

(5.5) j′ = j(λ) = 28 · (λ2 − λ+ 1)3

λ2(λ− 1)2
= 28 · (1− λµ)3

(λµ)2
.

From this we immediately deduce (ii). Let

m = υP(λ), n = υP(µ), t = max(|m|, |n|).
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If t = 0 then υP(j′) ≥ 8υP(2) > 0, and so (i) holds. We may therefore
suppose that t > 0. Now the relation λ + µ = 1 forces either m = n = −t,
or m = 0 and n = t, or m = t and n = 0. Thus υP(λµ) = −2t < 0 or
υP(λµ) = t > 0. In either case, from (5.3),

υP(j′) = 8υP(2)− 2t.

This proves (i).

6. Proof of Theorem 1.2. Let K be a totally real field satisfying as-
sumption (ES). Let S, T , U , V be as in (1.2). Let B be as in Theorem 4.1,
and let (a, b, c) be a non-trivial solution to the Fermat equation (1.1) with
exponent p > B, scaled so that Ga,b,c = m with m ∈ H. Applying Theo-
rem 4.1 gives an elliptic curve E′/K with full 2-torsion and potentially good
reduction outside S whose j-invariant j′ satisfies:

(a) for all P ∈ U , we have υP(j′) < 0;
(b) for all P ∈ V , we have υP(j′) < 0 or 3 - υP(j′).

Let (λ, µ) be a solution to the S-unit equation (1.3), whose S3-orbit corre-
sponds to the K-isomorphism class of E′ as in Lemma 5.1. By Lemma 5.2
and (a), (b) we know that

(a′) for all P ∈ U , we have max{|υP(λ)|, |υP(µ)|} > 4 υP(2);
(b′) for all P ∈ V , we have max{|υP(λ)|, |υP(µ)|} > 4 υP(2) or υP(λµ)

6≡ υP(2) (mod 3).

These contradict assumptions (A) and (B) of Theorem 1.2, completing the
proof.

7. The S-unit equation over real quadratic fields. To prove The-
orem 1.3 we need to understand the solutions to the S-unit equation (1.3)
for real quadratic fields K. This is easier when S is small in size.

Lemma 7.1. Suppose |S| = 2. Let (λ, µ) ∈ ΛS. Then there is σ ∈ S3

such that (λ′, µ′) = (λ, µ)σ satisfies λ′, µ′ ∈ OK .

Proof. As µ′ = 1−λ′ we need only find σ ∈ S3 such that λ′ = λσ ∈ OK .
Write S = {P1,P2}. If υPi(λ) 6= 0 for i = 1, 2, then let λ′ = λ/(λ−1), which
will have non-negative valuation at Pi and so belongs to OK . Thus without
loss of generality we may suppose that υP1(λ) = 0. Now if υP2(λ) ≥ 0 then
λ′ = λ ∈ OK , and if υP2(λ) < 0 then λ′ = 1/λ ∈ OK .

For the remainder of this section, d denotes a squarefree integer ≥ 13
that satisfies d ≡ 5 (mod 8), and q ≥ 29 a prime satisfying q ≡ 5 (mod 8)
and

(
d
q

)
= −1. Let K denote the real quadratic field Q(

√
d). It follows that

both q and 2 are inert in K. We let S = {2, q}.
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Lemma 7.2. Let K and S be as above, and let (λ, µ) ∈ ΛS. Then λ, µ ∈
Q if and only if (λ, µ) belongs to the S3-orbit {(1/2, 1/2), (2,−1), (−1, 2)}
⊆ ΛS.

Proof. Suppose λ, µ ∈ Q. By Lemma 7.1 we may suppose that λ and
µ belong to OK ∩ Q = Z, and hence λ = ±2r1qs1 and µ = ±2r2qs2 where
ri ≥ 0 and si ≥ 0. As λ+ µ = 1 we see that one of r1, r2 is 0, and likewise
one of s1, s2 is 0. Without loss of generality r2 = 0. If s2 = 0 too then we
have λ± 1 = 1, which forces (λ, µ) = (2,−1) as required. We may therefore
suppose that s1 = 0. Hence ±2r1 ± qs2 = 1. If s2 = 0 then again we obtain
(λ, µ) = (2,−1), so suppose s2 > 0.

We now easily check that r1 = 1 and r1 = 2 are both incompatible with
our hypotheses on q. Thus r1 ≥ 3 and so µ = ±qs2 ≡ 1 (mod 8). As q ≡ 5
(mod 8), we have µ = q2t for some integer t ≥ 1. Hence (qt + 1)(qt − 1) =
µ − 1 = −λ = ∓2r1 . This implies that qt + 1 = 2a and qt − 1 = 2b where
a ≥ b ≥ 1. Subtracting we have 2a − 2b = 2, and so b = 1 and q = 3, giving
a contradiction.

Following [2] we call the elements of the orbit {(1/2, 1/2), (2,−1), (−1, 2)}
irrelevant, and other elements of ΛS relevant. Next we give a parametrization
of all relevant elements of ΛS . This the analogue of [2, Lemma 6.4], and
shows that such a parametrization is possible even though our set S is larger,
containing the odd prime q.

Lemma 7.3. Up to the action of S3, every relevant (λ, µ) ∈ ΛS has the
form

(7.1)
λ =

η1 · 22r1 · q2s1 − η2 · q2s2 + 1 + v
√
d

2
,

µ =
η2 · q2s2 − η1 · 22r1 · q2s1 + 1− v

√
d

2
where

(7.2)
η1 = ±1, η2 = ±1, r1 ≥ 0,

s1, s2 ≥ 0, s1 · s2 = 0, v ∈ Z, v 6= 0,

are related by

(η1 · 22r1 · q2s1 − η2 · q2s2 + 1)2 − dv2 = η1 · 22r1+2 · q2s1 ,(7.3)

(η2 · q2s2 − η1 · 22r1 · q2s1 + 1)2 − dv2 = η2 · 22 · q2s2 .(7.4)

Proof. If η1, η2, r1, s1, s2 and v satisfy (7.2)–(7.4) and λ, µ are given by
(7.1), it is clear that (λ, µ) is a relevant element of ΛS .

Conversely, suppose (λ, µ) is a relevant element of ΛS . By Lemma 7.2,
we may suppose that λ, µ ∈ OK and λ, µ /∈ Q. As S = {2, q} we can write
λ = 2r1qs1λ′ and µ = 2r2qs2µ′ where λ′ and µ′ are units. As λ + µ = 1 we



Generalized Fermat equation 235

have r1r2 = 0 and s1s2 = 0. Swapping λ and µ if necessary, we can suppose
that r2 = 0. Let x 7→ x denote conjugation in K. Then

λλ = η1 · 22r1 · q2s1 , µµ = η2 · q2s2 , η1 = ±1, η2 = ±1.

Now,

λ+ λ = λλ− (1− λ)(1− λ) + 1 = λλ− µµ+ 1

= η1 · 22r1 · q2s1 − η2 · q2s2 + 1.

Moreover, we can write λ− λ = v
√
d, where v ∈ Z, and as λ /∈ Q, we have

v 6= 0. The expressions for λ+λ and λ−λ give the expression for λ in (7.1),
and we deduce the expression for µ from µ = 1 − λ. Finally, (7.3) follows
from the identity

(λ+ λ)2 − (λ− λ)2 = 4λλ,

and (7.4) from the corresponding identity for µ.

Lemma 7.4. Let d ≡ 5 (mod 8) be squarefree ≥ 13, and q ≥ 29 a prime
such that q ≡ 5 (mod 8) and

(
d
q

)
= −1. Then there are no relevant elements

of ΛS.

Proof. We apply Lemma 7.3. In particular, s1s2 = 0. Suppose first that
s1 > 0. Thus s2 = 0. As

(
d
q

)
= −1, we deduce from (7.3) that qs1 | v and

qs1 | (η2 − 1). Hence η2 = 1. Now (7.3) can be rewritten as

24r1q2s1 − d(v/qs1)2 = η12
2r1+2.

Thus
(
d
q

)
=
(−η1

q

)
= 1 as q ≡ 5 (mod 8). This is a contradiction.

Thus, henceforth, s1 = 0. Next suppose that s2 = 0. We will consider
the subcases η2 = −1 and η2 = 1 separately and obtain contradictions in
both subcases showing that s2 > 0.

Suppose η2 = −1. From (7.4) we have 24r1 − dv2 = −4. If r1 = 0 or 1
then d = 5, and if r1 ≥ 2 then d ≡ 1 (mod 8), giving a contradiction.

Hence suppose η2 = 1. From (7.3), we have 24r1 − dv2 = η12
2r1+2. If

r1 = 0, 1, 2 then dv2 = 1 ± 4, dv2 = 16 ± 16, dv2 = 256 ± 64, all of
which contradict the assumptions on d or the fact that v 6= 0 (by (7.2)).
If r1 ≥ 3 then 22r1−2 − η1 = d(v/2r1+1)2, which forces d ≡ ±1 (mod 8),
a contradiction.

We are reduced to s1 = 0 and s2 > 0. From (7.4), as
(
d
q

)
= −1, we have

qs2 | v and

(7.5) qs2 | (η122r1 − 1).

The conditions q ≥ 29 and q ≡ 5 (mod 8) force r1 ≥ 5. Write v = 2tw where
2 - w. Suppose t ≤ r1 − 1. From (7.3) we have η12

2r1 − η2q2s2 + 1 = 2tw′

where 2 - w′. Thus w′2 − dw2 ≡ 0 (mod 8), contradicting d ≡ 5 (mod 8).
We may therefore suppose t ≥ r1. Hence 2r1 | (η2q2s2 − 1). Thus η2 = 1.
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Therefore 2r1 | (qs2 − 1)(qs2 + 1). Since q ≡ 5 (mod 8), we have 2 ‖ (qs2 + 1)
and so

2r1−1 | (qs2 − 1).

As q ≡ 5 (mod 8) and r1 ≥ 5, we see that s2 must be even, and that
2r1−2 | (qs2/2 − 1). We can write qs2/2 = k · 2r1−2 + 1. From (7.5),

k222r1−4 + k2r1−1 + 1 = qs2 ≤ 22r1 + 1.

Hence k = 1, 2 or 3. Moreover, as qs2/2 ≡ 1 (mod 8), we have 4 | s2. Hence

(qs2/4 − 1)(qs2/4 + 1) = k2r1−2.

Again as q ≡ 5 (mod 8) we have 2 ‖ (qs2/4 + 1) and so qs2/4 + 1 = 2 or 6,
both of which are impossible. This completes the proof.

8. Proof of Theorem 1.3. We apply Theorem 1.2. By Lemma 7.4 all
solutions to (1.3) are irrelevant, and the irrelevant solutions satisfy condition
(A) of Theorem 1.2. This completes the proof of Theorem 1.3.
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