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1. Introduction. In 1964, LeVeque [21] applied a theorem of Siegel [28]
to show that if f(x) ∈ Z[x] is a polynomial of degree k ≥ 2 with at least
two simple roots, and n ≥ max{2, 5− k} is an integer, then the superelliptic
equation

(1) f(x) = zn

has at most finitely many solutions in integers x and z. This result was ex-
tended by Schinzel and Tijdeman [27], through application of lower bounds
for linear forms in logarithms, to show that equation (1) has in fact at most
finitely many solutions in integers x, z and variable n ≥ max{2, 5−k} (where
we count the solutions with zn = ±1, 0 once).

While this latter result is effective (in the sense that the finite set of
triples (x, z, n) is effectively computable), in practice such a determination
has infrequently been achieved, due to the extraordinary size of the bounds
for x, z and n arising from the proof. The few cases that have been treated in
the literature have been restricted to polynomials with very few monomials,
or with multiple linear factors over Q.

One class of polynomials that has proved, in certain cases at least,
amenable to such an approach is that arising from sum of consecutive kth
powers. Let us define

Sk(x) = 1k + 2k + · · ·+ xk,

where x and k are non-negative integers. Equations of the shape

(2) Sk(x)− Sk(y) = zn
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have been considered by a number of authors, under the hypotheses that
y = 0 (see e.g. [10], [18], [19], [23], [24], [26], [34], [35]), that y = [x/2]
([37]) and that y = x − 3 ([13], [37]). In the first two of these situations,
the resulting polynomials on the left hand side of equation (2) have at least
two distinct linear factors over Q, which allows the problem to be reduced
to one of binomial Thue equations.

Regarding the last of these cases, Cassels [13] solved the Diophantine
equation (x− 1)3 + x3 + (x+ 1)3 = z2 in integers x and z, showing that the
only solutions satisfy x = 0, 1, 2 and 24; the same equation in a slightly dis-
guised form is treated by Uchiyama [33]. Zhongfeng Zhang [37] subsequently
considered the more general equation

(3) (x− 1)k + xk + (x+ 1)k = zn, x, z, k, n ∈ Z, k, n ≥ 2.

Associating solutions to a Frey–Hellegouarch curve and applying standard
level lowering arguments, he proved that the only solutions with k ∈ {2, 3, 4}
are (x, z, k, n) = (1,±3, 3, 2), (2,±6, 3, 2), (24,±204, 3, 2), (±4,±6, 3, 3) and
(0, 0, 3, n).

In this paper, we extend Zhang’s result, completely solving equation
(3) in the cases k = 5 and k = 6. It should be emphasized that these
results cannot apparently be obtained from the arguments of [37], using
Frey–Hellegouarch curves over Q. Indeed, the purpose of this paper is two-
fold. On the one hand, we will use the case k = 5 to advertise the utility of
the more powerful multi-Frey–Hellegouarch approach, pioneered in [12] (see
also e.g. [2], [3], [4] and [11]). Our result here is as follows:

Theorem 1. The only solutions to the equation

(x− 1)5 + x5 + (x+ 1)5 = zn, x, z, n ∈ Z, n ≥ 2,

satisfy x = z = 0.

The other main purpose of this paper is to introduce a new compu-
tational approach to handle Diophantine problems where the problem of
extracting information about associated forms arising from modularity is at
the limit of current computational power. The method of Frey–Hellegouarch
curves and Galois representations generally requires the explicit computa-
tion of weight 2 newforms of certain levels and also the computation of some
of their Hecke eigenvalues. This computation can be completely impractical
if the level is large. This turns out to be the case for equation (3) with k = 6,
where required newforms have level 33 · 3391 and the newform space has di-
mension 4520. We develop a version of the standard ‘method for bounding
exponents’ [29, Section 9] that does not require the computations of the
newforms, but merely a few (computationally much less expensive) Hecke
polynomials. This allows us to prove the following theorem.
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Theorem 2. The equation

(x− 1)6 + x6 + (x+ 1)6 = zn, x, z, n ∈ Z, n ≥ 2,

has no solution.

In a forthcoming paper we treat the equation (x− 1)k + xk = zn.

2. The case k = 5 and two Fermat equations of signature (p, p, 2).
The equation (x− 1)5 + x5 + (x+ 1)5 = zn can be rewritten as

(4) x(3x4 + 20x2 + 10) = zn.

It suffices to deal with the case n = p where p is a prime. We write α =
gcd(x, 10), whereby

(5) x = αp−1zp1 and 3x4 + 20x2 + 10 = αzp2 .

We shall use this factorization to construct two associated Fermat equations
with signature (p, p, 2). We make use of the identity

7x4 + (3x4 + 20x2 + 10) = 10(x2 + 1)2.

Substituting from (5) and dividing by α we obtain

(6) 7α4p−5z4p1 + zp2 = (10/α)(x2 + 1)2.

The reader will observe that this is a generalized Fermat equation with
signature (p, p, 2) where the three terms are coprime.

We also make use of the identity

3(3x4 + 20x2 + 10) + 70 = (3x2 + 10)2.

Again substituting from (5) and dividing by α we obtain

(7) 3zp2 +
70

α
= α

(
3x2 + 10

α

)2

.

Once again, the three terms in this equation are integral and coprime. We
interpret this as a generalized Fermat equation with signature (p, p, 2) by
treating the term 70/α as (70/α) · 1p.

We will associate a Frey–Hellegouarch curve to each of the Fermat equa-
tions (6) and (7), and use the information derived simultaneously from both
Frey–Hellegouarch curves to prove Theorem 1 for n = p ≥ 7. We need to
treat exponents p = 2, 3 and 5 separately; we do this in the next sections.

3. The case k = 5: small values of p

Lemma 3.1. The only solution to (4) with n = p = 2 is x = z = 0.

Proof. Write X = 3αx2 and Y = 3αxz2. From (5), it follows that (X,Y )
is an integral point on the elliptic curve

Eα : Y 2 = X(X2 + 20αX + 30α2).
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Using the computer algebra package Magma [8], we determine the integral
points on Eα. For this computation, Magma applies the standard linear forms
in elliptic logarithms method [32, Chapter XIII]. The integral points on these
curves are

(−6,±18), (−5,±15), (0, 0) and (1080,±35820)

for α = 1; the points (−54,±306) and (0, 0) for α = 5; and just the point
(0, 0) for α = 2 or 10. The lemma follows immediately.

Lemma 3.2. The only solution to (4) with n = p = 3 is x = z = 0.

Proof. Let X = 3αz2 and Y = 3α(3x2 + 10). From (7), we see that
(X,Y ) is an integral point on the elliptic curve

Eα : Y 2 = X3 + 630α2.

Again using Magma, we determine the integral points on these four elliptic
curves. The curve E1 has no integral points. The integral points on E5 are
(−5,±125) and (99,±993), while those on E2 are (−6,±48), (9,±57) and
(46,±316). Finally, the integral points on E10 are given by

(1,±251), (30,±300), (81,±771) and (330,±6000).

The lemma follows.

Lemma 3.3. The only solution to (4) with n = p = 5 is x = z = 0.

Proof. From (5) we have

x = α4z51 , (3x2 + 10 +
√

70)(3x2 + 10−
√

70) = 3αz52 .

Let K = Q(
√

70). This field has ring of integers OK = Z[
√

70] and funda-
mental unit ε = 251 + 31

√
70. We consider the following prime ideals:

p2 = (2,
√

70), p3 = (3, 1 +
√

70), p′3 = (3, 1−
√

70),

p5 = (25 + 3
√

70)OK and p7 = (7,
√

70).

These satisfy

p22 = 2OK , p25 = 5OK , p27 = 7OK and p3p
′
3 = 3OK .

The field K has class number 2, with p2, p3, p
′
3 and p7 all representing the

non-trivial ideal class. Observe that

ordp3(10 +
√

70) = 1 and ordp3(10−
√

70) = 0.

Moreover,

ordp2(10 +
√

70) = ordp5(10 +
√

70) = 1.

Let a = ord2(α) and b = ord5(α), so that a, b ∈ {0, 1}. We deduce that

(3x2 + 10 +
√

70)OK = a · b5, where a = pa2 · pb5 · p3
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and b is an ideal of OK . Observe that b is principal if and only if a is
principal. Let

q =

{
1 · OK if a is principal,

p7 if a is non-principal.

Then we can write

(3x2 + 10 +
√

70)OK = (aq−5) · (bq)5,

where both aq−5 and bq are principal; the former is a fractional ideal, while
the latter is an integral ideal. Write

aq−5 =
r + s

√
70

d
OK

where r, s, d ∈ Z, with d ≥ 1 as small as possible. Now

3x2 + 10 +
√

70 =
1

d
(r + s

√
70) · εc · (u+ v

√
70)5, −2 ≤ c ≤ 2,

with u, v in Z. Comparing coefficients of 1,
√

70, and recalling that x = α4z51
we have

(8) f(u, v) = d(3α8z101 + 10) and g(u, v) = d,

where f, g ∈ Z[u, v] are homogeneous of degree 5. Observe that d is deter-
mined by α, while f and g are determined by α and c. For each possibility
for α and c we checked the system (8) for solubility modulo 26, 33, 53, 73 and
all primes 11 ≤ q < 100. This allowed us to eliminate all possibilities except
for (α, c) = (2, 2) and (α, c) = (10, 0). For both these possibilities d = 1. The
second equation in (8) is in fact a Thue equation. We used Magma to solve
both Thue equations; for the theory behind Magma’s Thue equation solver
see [32, Chapter VII].

For (α, c) = (2, 2) this Thue equation is

5521u5 + 230960u4v + 3864700u3v2

+ 32334400u2v3 + 135264500uv4 + 226340800v5 = 1,

and we found that it has no solutions. For (α, c) = (10, 0) the corresponding
Thue equation is

u5 + 50u4v + 700u3v2 + 7000u2v3 + 24500uv4 + 49000v5 = 1.

The only solution is (u, v) = (1, 0). Since the first equation in (8) is, in this
case,

10u5 + 350u4v + 7000u3v2 + 49000u2v3 + 245000uv4 + 343000v5

= 3 · 108 · z101 + 10,

it follows that z1 = 0, and hence x = 0 as required.
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4. The case k = 5: first Frey–Hellegouarch curve. Henceforth we
suppose that p ≥ 7 and that x 6= 0. We apply the recipes of the first author
and Skinner [7, Section 2] to equation (6) (see also [29]; this latter reference
is a comprehensive tutorial on the modular approach). The recipes lead us
to attach to (6) a Frey–Hellegouarch curve Ex,α which depends on α as well
as on x. The possible values for α are 1, 5, 2 and 10. The corresponding
Frey–Hellegouarch elliptic curves are

Ex,1 : Y 2 = X3 + 20(x2 + 1)X2 + 10(3x4 + 20x2 + 10)X,(9)

Ex,5 : Y 2 = X3 + 4(x2 + 1)X2 +
2(3x4 + 20x2 + 10)

5
X,(10)

Ex,2 : Y 2 +XY = X3 +
5x2 + 4

4
X2 +

35x4

128
X,(11)

Ex,10 : Y 2 +XY = X3 +
x2

4
X2 +

7x4

640
X.(12)

For a non-zero integer u and a set S of primes, we define RadS(u) to be the
product of the distinct prime divisors of u that do not belong to S. For an
elliptic curve E/Q, we denote its minimal discriminant and conductor by
∆(E) and N(E).

Lemma 4.1. The elliptic curves Ex,α have non-trivial 2-torsion over Q.
Their discriminants and conductors are

∆(Ex,1) = 29 · 53 · 7 · z4p1 · z
2p
2 ,

∆(Ex,5) = 29 · 54p−5 · 7 · z4p1 · z
2p
2 ,

∆(Ex,2) = 28p−22 · 53 · 72 · z8p1 · z
p
2 ,

∆(Ex,10) = 28p−22 · 58p−10 · 72 · z8p1 · z
p
2 ,

N(Ex,1) = 28 · 52 · 7 · Rad{2,5,7}(z1z2),

N(Ex,5) = 28 · 5 · 7 · Rad{2,5,7}(z1z2),

N(Ex,2) = 2 · 52 · 7 · Rad{2,5,7}(z1z2),

N(Ex,10) = 2 · 5 · 7 · Rad{2,5,7}(z1z2).

Proof. This follows from [7, Lemma 2.1].

We note in passing that we have already used the assumption x 6= 0. If
x = 0, then z1 = 0 and the curves Ex,α are not elliptic curves but merely
singular Weierstrass equations (i.e. with discriminant ∆(Ex,α) = 0). We
maintain the assumption x 6= 0 throughout.

For an elliptic curve E/Q, we write ρE,p for the modulo p representation

giving the action of GQ = Gal(Q/Q) on the p-torsion E[p]:

ρE,p : GQ → Aut(E[p]) ∼= GL2(Fp).
If ρE,p arises from a newform f , then we write E ∼p f .
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Lemma 4.2. Let Ex,α be one of the Frey–Hellegouarch curves in (9)–(12).
Then Ex,α ∼p f where f is a newform of weight 2 and level Lα:

L1 = 28 · 52 · 7, L5 = 28 · 5 · 7, L2 = 2 · 52 · 7 and L10 = 2 · 5 · 7.
Proof. This is immediate from [7, Lemma 3.2], which in turn relies on

modularity of elliptic curves over Q due to Wiles, Breuil, Conrad, Diamond
and Taylor [36], [9], on Ribet’s level lowering theorem [25] and also on ir-
reducibility theorems for modulo p representations of elliptic curves due to
Mazur [22]. It is here that the assumption p ≥ 7 is used to ensure the
irreducibility of the representation ρEx,α,p.

Using Magma, we computed the weight 2 newforms of levels Lα. The re-
sults of this computation are summarized in Table 1. For the computation we
used Magma’s highly optimized Hilbert modular forms package (the classical
newforms we are computing can be regarded as Hilbert newforms over Q).
The theory and algorithms behind this package are described in [15].

Table 1. Information for weight 2 newforms of level Lα, where Lα is given by Lemma 4.2

α dimSnew
2 (Lα) Number of conjugacy (d,number of newforms of degree d)

classes of forms

1 912 196 (1, 52), (2, 32), (3, 12), (4, 22),

(5, 8), (6, 28), (8, 12), (9, 8),

(12, 16), (16, 2), (18, 4)

5 192 64 (1, 20), (2, 12), (3, 12), (4, 4), (6, 16)

2 10 8 (1, 6), (2, 2)

10 1 1 (1, 1)

5. The case k = 5: second Frey–Hellegouarch curve. Applying
the recipes of Bennett and Skinner [7, Section 2] to equation (7) leads us to
associate to this the Frey–Hellegouarch elliptic curve

(13) Fx,α : Y 2 = X3 + 2(3x2 + 10)X2 + 70X.

Although this equation is independent of α, the discriminant and conductor
do depend on α.

Lemma 5.1. The elliptic curve Fx,α has non-trivial 2-torsion over Q. Its
discriminant and conductor are given by

∆(Fx,1) = 28 · 3 · 52 · 72 · zp2 , N(Fx,1) = 27 · 3 · 5 · 7 · Rad{2,3,5,7}(z2),

∆(Fx,5) = 28 · 3 · 53 · 72 · zp2 , N(Fx,5) = 27 · 3 · 52 · 7 · Rad{2,3,5,7}(z2),

∆(Fx,2) = 29 · 3 · 52 · 72 · zp2 , N(Fx,2) = 28 · 3 · 5 · 7 · Rad{2,3,5,7}(z2),

∆(Fx,10) = 29 · 3 · 53 · 72 · zp2 , N(Fx,10) = 28 · 3 · 52 · 7 · Rad{2,3,5,7}(z2).
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Proof. Again this follows from [7, Lemma 2.1].

Lemma 5.2. Let Fx,α be the Frey–Hellegouarch curve in (13). Then
Fx,α ∼p g where g is a newform of weight 2 and level Mα, where

M1 = 27 ·3 ·5 ·7, M5 = 27 ·3 ·52 ·7, M2 = 28 ·3 ·5 ·7, M10 = 28 ·3 ·52 ·7.
Proof. This is immediate from [7, Lemma 3.2].

Table 2 gives information about the spaces of newforms of weight 2 and
level Mα.

Table 2. Information for weight 2 newforms of level Mα, where Mα is given by Lemma 5.2

α dimSnew
2 (Mα) Number of conjugacy (d,number of newforms of degree d)

classes of forms

1 192 112 (1, 64), (2, 28), (3, 12), (4, 4), (5, 4)

5 912 356 (1, 176), (2, 64), (3, 12), (4, 36),

(5, 28), (6, 8), (7, 24), (9, 8)

2 384 128 (1, 48), (2, 16), (3, 16), (4, 28),

(6, 8), (8, 12)

10 1824 396 (1, 124), (2, 60), (3, 20), (4, 52),

(5, 8), (6, 40), (8, 28)

6. Proof of Theorem 1. The following standard lemma [29, Proposi-
tion 5.1] will be helpful in exploiting Lemmata 4.2 and 5.2.

Lemma 6.1. Let E/Q be an elliptic curve of conductor N , and f = q +∑
i≥2 ciq

i be a newform of weight 2 and level N ′ |N . Write K = Q(c1, c2, . . . )
for the totally real number field generated by the Fourier coefficients of f .
Suppose E ∼p f for some prime p. Then there is some prime ideal p | p of K
such that, for all primes `:

• if ` - pNN ′ then a`(E) ≡ c` (mod p),
• if ` - pN ′ and ` ‖N then ±(`+ 1) ≡ c` (mod p).

Proof of Theorem 1. Fix a possible value for α ∈ {1, 2, 5, 10}. For con-
venience, we write Ex and Fx for the curves Ex,α and Fx,α. Note that the
levels Lα and Mα in Lemmata 4.2 and 5.2 depend only on α. Now fix a
weight 2 newform f = q +

∑
ciq

i of level Lα and another g = q +
∑
diq

i

of level Mα. Suppose Ex ∼p f and Fx ∼p g. Write K1 = Q(c1, c2, . . . )
and K2 = Q(d1, d2, . . . ), and let ` > 7 be a prime. We would like to apply
Lemma 6.1 to obtain information about p. Suppose for now that ` 6= p. The
Frey–Hellegouarch curves Ex and Fx depend on the unknown x. However,
their traces modulo ` depend only on x modulo `.
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Let 0 ≤ a ≤ `− 1 and suppose x ≡ a (mod `). We shall write ∆1(x) for
the discriminant of the Weierstrass model Ex and ∆2(x) for the discriminant
of the Weierstrass model Fx (these are polynomials in x). Let

(14) R`(f, a) =

{
NormK1/Q((`+ 1)2 − c2` ) if ` |∆1(a),

NormK1/Q(a`(Ea)− c`) if ` -∆1(a).

It follows from Lemmata 6.1 and 4.2 that p |R`(f, a). Let

S`(g, a) =

{
NormK2/Q((`+ 1)2 − d2` ) if ` |∆2(a),

NormK2/Q(a`(Fa)− d`) if ` -∆2(a).

It further follows from Lemmata 6.1 and 5.2 that p |S`(g, a). Now let

T`(f, g, a) = gcd(R`(f, a), S`(g, a)).

Then p |T`(f, g, a). Observe that while a is unknown, as it is the residue of
x modulo `, we may suppose that 0 ≤ a ≤ `− 1. Let

T`(f, g) = `
∏

0≤a≤`−1
T`(f, g, a).

Then p |T`(f, g). We had assumed above that ` 6= p. However as ` is a factor
in the product defining T`(f, g), the conclusion p |T`(f, g) is true even if
` = p. Finally we let

U(f, g) = gcd
11≤`<100

T`(f, g)

where the gcd is taken over all primes ` in the range 11 ≤ ` < 100. It follows
that p |U(f, g). To complete the proof of Theorem 1, we employ a simple
Magma script that computes for each pair (f, g) the quantity U(f, g) and
verifies that it is not divisible by primes ≥ 7. The computation took roughly
four days on a 2500 MHz AMD Opteron, dominated by the computation of
the newforms.

Remark. It is appropriate to comment at this stage as to whether the
single Frey–Hellegouarch approach (using either of the Frey–Hellegouarch
curves Ex,α or Fx,α on its own) would have allowed us to establish The-
orem 1. The above argument is a multi-Frey–Hellegouarch version of the
standard single Frey–Hellegouarch method for bounding exponents (see [29,
Section 9]). With notation as above, let

B`(f) = `
∏

0≤a≤`−1
R`(f, a)

for ` 6= 2, 5, 7 (note that 3 does not divide the possible levels of f). Under
the assumption Ex ∼ f , the single Frey–Hellegouarch method for bounding
exponents asserts that p |B`(f) and succeeds in bounding p if we can find a
prime ` 6= 2, 5, 7 such that B`(f) 6= 0. Likewise, let
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C`(g) = `
∏

0≤a≤`−1
S`(g, a)

for ` 6= 2, 3, 5, 7. Under the assumption Fx ∼ g, we have p |C`(g). We first
note that the solution (x, z, n) = (0, 0, p) of equation (4) leads to an el-
liptic curve F0,10 (i.e. a non-singular Weierstrass equation) with Cremona
reference 134400BG1. Let g be the eigenform (of level M10 = 134400) cor-
responding to F0,10. Then a`(F0,10) = d` where g = q +

∑
diq

i. Hence
S`(g, 0) = 0 and so C`(g) = 0 for all possible `. Thus the single Frey–
Hellegouarch method with the second Frey–Hellegouarch curve Fx,α fails to
bound the exponent p.

The single Frey–Hellegouarch approach succeeds with the first Frey–
Hellegouarch curve Ex,α in the sense that for all possible eigenforms f , we
are able to find some prime ` 6= 2, 5, 7 such that B`(f) 6= 0. For any `, the
bound B`(f) can be very large (especially if the field of coefficients of f has
large degree). However, we consider instead

B(f) = gcd
`∈{3,11,13,...,97}

B`(f).

If Ex ∼ f then p |B(f). We computed the B(f) for the possible newforms f ,
and found many of them to be divisible by 7 and 13 though not by larger
primes. It is possible to reduce the cases p = 7 and p = 13 to Thue equa-
tions as in the proof of Lemma 3.3. However the coefficients of these Thue
equations will be so unpleasant that we do not expect to be able to solve
them (uncondionally).

7. Dealing with small exponents for k = 6. We now consider the
equation

(x− 1)6 + x6 + (x+ 1)6 = zn, x, z, n ∈ Z, n ≥ 2,

which corresponds to the case k = 6 of (3). This can be rewritten as

3x6 + 30x4 + 30x2 + 2 = zn,

whence necessarily zn ≡ 2 (mod 3) and so n is odd. Moreover the polynomial
3t6 + 30t4 + 30t2 + 2 only takes values 2 and 3 as t ranges over F7. As these
values are not cubes in F7, we see that 3 -n. Thus to prove Theorem 2 for
k = 6 it is sufficient to show that the equation

(15) 3x6 + 30x4 + 30x2 + 2 = zp

has no solutions with prime exponent p ≥ 5.

Lemma 7.1. Equation (15) has no solutions with p = 5, 7, 11, 13.

Proof. Write f = 3t6 + 30t4 + 30t2 + 2. The polynomial f is irreducible
over Q. Let θ be a root of the equation f(t) = 0, write K = Q(θ) and let
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OK be the ring of integers of K. The field K has unit rank 2 with −1 as a
generator for the roots of unity, and class group ∼= (Z/2Z)3 × (Z/36Z).

Let g(t) = f(t)/(x− θ) ∈ K[t]. There are prime ideals p, q, r1, r2, r3, r4
such that

2 · OK = p6, 3 · OK = q6, 3391 · OK = r21r
2
2r3r4,

θ · OK = pq−1 and g(θ) · OK = p11q3r1r2.

From (15), we know that

(x− θ)g(x) = zp.

Now ordq(θ) = −1. As x ∈ Z, we have ordq(x − θ) = −1. Let P 6= q be a
prime ideal and suppose that ordP(x−θ) 6≡ 0 (mod p), whence ordP(g(x)) 6≡
0 (mod p). From the factorization of θ·OK we know that ordP(x−θ) > 0. It is
easy to see that P | g(θ). But ord2(z) = 0, so P = r1 or r2. Let S = {q, r1, r2}.
Hence (x− θ)K∗p belongs to the ‘p-Selmer group’

K(S, p) = {α ∈ K∗/K∗p : ordP(α) ≡ 0 (mod p) for all P /∈ S}.
This is an Fp-vector space of finite dimension and, for a given p, easy to
compute from the class group and unit group information (see [30, proof of
Proposition VIII.1.6]). Let

Sp = {α ∈ K(S, p) : Norm(α) = (1/3)Q∗p}.
Observe that Norm(x − θ) = zp/3 so that x − θ ∈ Sp. Using Magma, we
compute K(S, p) and Sp for p = 5, 7, 11, 13. In all cases, K(S, p) has Fp-
dimension equal to 5, and the set Sp has p3 elements.

It follows that x − θ = αξp for some α ∈ Sp and ξ ∈ K∗. We are now
in a position to finally obtain a contradiction. Fix an α ∈ Sp such that
x− θ = αξp. Let ` 6= 3 be a rational prime and l1, . . . , lr be the prime ideals
of K dividing it. Suppose that none of the li belong to the support of α. Let
x ≡ a (mod `) where a ∈ {0, 1, . . . , `− 1}. Then (a− θ)/α ≡ ξp (mod li) for
i = 1, . . . , r. Thus we may eliminate α if for each a ∈ {0, 1, . . . , `− 1} there
is some i such (a− θ)/α is not a pth power modulo li. For this to succeed,
#F`i = Norm(li) needs to be ≡ 1 (mod `). For p = 5, 7, 11 and 13, we have,
in each case, been able to find a set of primes `, which we denote by Tp,
allowing us to eliminate all α ∈ Sp. The sets Tp are recorded in Table 3.

Table 3. The sets Tp appearing in the proof of Lemma 7.1

p Tp
5 {11, 191, 251, 691}
7 {11, 337, 421, 491, 547}
11 {397, 727, 859}
13 {859, 1249}
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8. Frey–Hellegouarch curve for k = 6. In this section, we construct
a Frey–Hellegouarch curve attached to equation (15). In view of the previous
section, we may suppose that the exponent p in (15) is a prime≥ 17. The first
author and Dahmen [5] attach a Frey–Hellegouarch curve to any equation
of the form F (u, v) = zp where F is a homogeneous cubic form. We now
reproduce their recipe. Let

H(u, v) = −1

4

∣∣∣∣∣Fuu Fuv

Fuv Fvv

∣∣∣∣∣ and G(u, v) =

∣∣∣∣∣Fu Fv

Hu Hv

∣∣∣∣∣ .
Associate to the solution (u, v, z) of the equation F (u, v) = zp the Frey–
Hellegouarch elliptic curve

(16) E′u,v : Y 2 = X3 − 3H(u, v)X +G(u, v).

This model has discriminant 24 · 36 ·∆F · z2p, where ∆F is the discriminant
of the binary form F . Now consider the homogeneous cubic form

F (u, v) = 3u3 + 30u2v + 30uv2 + 2v3.

We note that F (x2, 1) = 3x6 +30x4 +30x2 +2. Thus we may obtain a Frey–
Hellegouarch curve for (15) by letting (u, v) = (x2, 1) in (16). In turns out
that the model E′x2,1 has bad reduction at 2, but its quadratic twist by 2 has

good reduction at 2, and we choose this to be the Frey–Hellegouarch curve
associated to (15). A model which is minimal at 2 for this Frey–Hellegouarch
curve is

Ex : Y 2 + Y = X3 +
−945x4 − 1269x2 − 1080

2
X(17)

+
−15093x6 − 18630x4 + 26730x2 + 19061

4
.

Lemma 8.1. The model Ex is integral, minimal and has discriminant
and conductor

∆x = 39 · 3391 · z2p and N = 33 · 3391 · Rad{3,3391}(z).

Proof. It is clear from (15) that x is odd, whence one deduces that Ex
is integral. The discriminant for this model is

∆x = 39 · 3391 · (3x6 + 30x4 + 30x2 + 2)2 = 39 · 3391 · z2p,
and the usual c4-invariant is

c4 = 23 · 34 · (35x4 + 47x2 + 40).

We find that

Res(c4, ∆x) = 240 · 384 · 339112 .

Thus Ex is minimal and semistable except possibly at p ∈ {2, 3, 3391}. Since
∆x is odd, Ex in fact has good reduction at 2.
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We now show that Ex has multiplicative reduction at 3391. The solutions
to c4 ≡ 0 (mod 3391) are

x ≡ 983, 2408 (mod 3391).

Both of these are roots to 3x6 + 30x4 + 30x2 + 2 modulo 3391. However, for
a solution (x, z) to (15) we know that

3x6 + 30x4 + 30x2 + 2 ≡ 0 (mod 33912).

We checked that 983, 2408 do not lift to roots for this congruence. Hence
3391 - c4. It follows that Ex has multiplicative reduction at 3391.

Applying Tate’s algorithm [31, Chapter IV], we found that the Ex has
reduction type IV∗ at 3 with the valuation of the conductor equal to 3. The
lemma follows.

Lemma 8.2. Let (x, z, p) be a solution to (15) with p ≥ 17 prime. Let
E = Ex as in (17). Then ρE,p is irreducible.

Proof. Suppose ρE,p is reducible. As p ≥ 17, it follows from the proof of
Mazur’s famous theorem on isogenies of elliptic curves that the j-invariant of
E belongs to Z[1/2] (see [22, Corollary 4.4]). However, E has multiplicative
reduction at 3391, and so 3391 appears in the denominator of its j-invariant.
This contradiction shows that ρE,p is irreducible.

9. Proof of Theorem 2

Lemma 9.1. Let (x, z, p) be a solution to (15) with prime exponent p≥17.
Then Ex ∼p f for some newform f of weight 2 and level 33 · 3391.

Proof. This follows from Lemmata 8.1 and 8.2 together with Ribet’s
level lowering theorem [25] (the special case [29, Section 5] is enough for our
purpose).

From Cremona’s database [14], there are precisely four elliptic curves
having conductor 33 · 3391:

F1 : y2 + y = x3 + 405x+ 22673,

F2 : y2 + y = x3 + 45x− 840,

F3 : y2 + y = x3 − 42x− 104,

F4 : y2 + y = x3 − 378x+ 2801.

Lemma 9.2. Ex 6∼p Fi for i = 1, 2, 3, 4.

Proof. Suppose Ex ∼p Fi. As 2 is a prime of good reduction for both
elliptic curves, we have a2(Ex) ≡ a2(Fi) (mod p). From (17) and the fact
that x is odd, we find that

E/F2 : Y 2 + Y = X3 +X + 1.
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It follows that a2(Ex) = 2. Since

a2(F1) = 2, a2(F2) = −2, a2(F3) = a2(F4) = 0,

we thus have i = 1.
Next we apply the method of bounding the exponents. For a prime ` 6=

3, 3391, let

(18) R`(a) =

{
(`+ 1)2 − a`(F1)

2 if ` |∆a,

a`(Ea)− a`(F1) if ` -∆a,

and
B` = `

∏
0≤a≤`−1

R`(a).

It follows from Lemma 6.1 that p |B`. We find that B11 = 54 · 73 · 11. As
p ≥ 17, we obtain a contradiction.

The space Snew
2 (33 ·3391) has dimension 4520. Using Magma, we compute

the conjugacy classes of eigenforms belonging to this space and find that
these have degrees 1, 1, 1, 1, 554, 556, 564, 564, 565, 565, 574 and 574. The
four rational eigenforms, of course, correspond to the four elliptic curves Fi.
Unfortunately we have found it impossible to compute the coefficients of
the irrational eigenforms due to the enormous size of their fields of coeffi-
cients. For a prime ` 6= 3, 3391, write T` for the Hecke operator acting on
Snew
2 (33 · 3391), and let C` ∈ Z[t] be the characteristic polynomial of T`

(i.e. the `th Hecke polynomial); this is a polynomial of degree 4520. Using
Magma, we found it straightforward (though somewhat time-consuming) to
compute the polynomials C`(t) for ` < 100. The polynomial C` satisfies

C`(t) =
∏

(t− a`(f))

where f runs through the eigenforms of weight 2 and level 33 · 3391. Note
that t− a`(Fi) divides C`(t) for i = 1, 2, 3, 4. We let

C ′`(t) =
C`(t)∏

1≤i≤4(t− a`(Fi))
.

We now let

R`(a) =

{
C ′`(`+ 1) · C ′`(`− 1) if ` |∆a,

C ′`(a`(Ea)) if ` -∆a.

If ` 6= 2, we let

B` = ` ·
∏

0≤a≤`
R`(a)

and set B2 = C ′2(2).

Lemma 9.3. Let (x, z, p) be a solution to (15) with p ≥ 17 prime. Let
` 6= 3, 3391 be prime. Then p |B`.
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Proof. By Lemmata 9.1 and 9.2, we know that Ex ∼p f where f is an
irrational eigenform of weight 2 and level 33 ·3391. It follows from the above
that t−a`(f) is a factor of C ′`. The lemma now follows from Lemma 6.1 (for
` = 2 we are making use of the fact that Ex has good reduction at 2 and
that a2(Ex) = 2).

Proof of Theorem 2. Let (x, z, p) be a solution to (15) with p ≥ 11. Let

P = {2} ∪ {5, 7, 11, . . . , 97}
be the set of primes less than 100 and excluding 3. Using Magma, we find
that

gcd{B` : ` ∈ P} = 227 · 328 · 53 · 7.
This computation took roughly 21 hours on a 2500 MHz AMD Opteron. The
computation time was dominated by the computation of the polynomials C ′`.
The desired result then follows from Lemma 9.3.

We remark in passing that the integers B` are extremely large, which
is why we do not reproduce any of them here. By way of example, |B2| ≈
1.1 · 10569.

10. The equation (x − 1)k + xk + (x + 1)k = yp with k ≥ 7. It is
natural to wonder if it is possible to attach a Frey–Hellegouarch curve to a
solution of the equation (x− 1)k + xk + (x+ 1)k = zp for exponents k ≥ 7.
It is easy to see that

(x− 1)k + xk + (x+ 1)k =

{
fk(x

2) if k is even,

xfk(x
2) if k is odd,

where fk ∈ Z[x]. For 7 ≤ k ≤ 50, say, we find that the polynomials fk are
irreducible and all their roots are real. We are unable to prove that this is
true in general for higher values of k (and, indeed, this property is not shared
by the polynomials arising from the analogous equation (x−1)k +xk = yn).
Suppose now that fk is indeed a totally real irreducible polynomial, let θ be
a root, and let K = Q(θ). By a standard descent argument, x2 − θ = αξp

where α belongs to a finite set and ξ is an integer in K. This can be viewed
as a (p, p, 2) Fermat equation to which one can apply modularity and level-
lowering results over the totally real field K, in a similar manner to that of
several recent papers, e.g. [6], [16], [17]. We hope to pursue this approach in
a forthcoming paper.
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