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A global field is an algebraic number field or an algebraic function field in
one variable over a finite constant field. We will assume throughout that all
fields have characteristic not 2. The Hasse domains of global fields include
the rings of algebraic integers and their analogues in function fields. (A more
precise definition will be given below.) Here is the situation with which we
will be concerned: F is a global field, o is a Hasse domain of that field, V is
a regular quadratic space of dimension n over F, and L is an o-lattice on V.
(That is, L is a finitely generated o-module spanning V.)

Must L have a nontrivial orthogonal decomposition if n is sufficiently
large? If the space V is definite the answer is a resounding “no.” For example,
for every positive integer n the root lattice An is an indecomposable positive
definite Z-lattice of rank n. Similarly, the root lattice Dn is indecomposable
for each n ≥ 3. (See [C–S, Chapter 4] or [M–H, Appendix 5] for a description
of these and other families of lattices.) Kitaoka [K] has shown that whenever
an indecomposable definite Z-lattice is extended (via tensor product) to a
lattice over the ring of integers of a totally real algebraic number field, the
result is again indecomposable. So there are indecomposable lattices of every
rank in the definite case over number fields.

The notions of definiteness and indefiniteness extend to the arbitrary
global context: Given a Hasse domain o of a global field F, a quadratic F -
space V and the o-lattices on it are said to be definite if Vp is anisotropic for
every “infinite” spot (place) p on F ; that is, for every spot not corresponding
to a prime ideal of o. The space V and its lattices are indefinite otherwise.
O’Meara [O’M2, Theorem 3.1] showed that indecomposable o-lattices exist
on any definite quadratic space over a global field. In particular, if o is a
Hasse domain of a function field, then there exist indecomposable o-lattices
of every rank n ≤ 4.
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What about the indefinite case? Watson [W, Chapter 7, §4] showed that
every indefinite Z-lattice of rank ≥ 12 has an orthogonal splitting, and in a
subsequent unpublished note he showed 12 to be best possible; that is, there
exists an indecomposable indefinite Z-lattice of rank 11. In [G1] I extended
Watson’s result to arbitrary Hasse domains, showing that for every Hasse
domain o there is a positive integer no such that every indefinite o-lattice
of rank ≥ no splits. I went on to show that there is no no that works
simultaneously for all Hasse domains; specifically, for the rings of algebraic
integers of all algebraic number fields. However, in the same paper I showed
that no = 7 always works in the global function field setting, and further
that an orthogonal splitting will occur (again, in the function field case)
whenever n ≥ 5 if any of the following three conditions hold:

(i) −1 is a square in F ;
(ii) o is a principal ideal domain;
(iii) there is an infinite spot q at which −1 is not a square.

In [G3] I showed (via a scaling argument) that n ≥ 5 forces splitting
whenever the class number of o is odd, a weakening of condition (ii) above.

It is natural to ask whether the “universal splitting number” 7 for global
function fields is the best possible, and in this paper we answer this question
in the affirmative by giving a construction for an indecomposable lattice of
rank 6 over an appropriate Hasse domain of any rational function field in
which −1 is not a square.

The classification up to isometry of lattices on quadratic spaces over
global fields is understood only in very special cases. For instance, if L is a
unimodular k[x]-lattice on a quadratic space over the rational function field
k(x), then it can be shown that L has an orthogonal basis; and from this
it follows that the classification of unimodular k[x]-lattices reduces to the
classification of quadratic spaces over k (see [G2, Theorem 3.1], [L, §VI.3], or
[S, §6.3]); but the problem of classifying nonunimodular k[x]-lattices is still
wide open. And even the unimodular case remains to be settled over other
Hasse domains. Achieving an understanding of orthogonal decomposition
may turn out to be fruitful in advancing the classification theory, and this
is an underlying motivation of this work.

Definition. Let F be a global field. A Hasse domain of F is a Dedekind
domain obtained by intersecting the valuation rings associated with almost
all the discrete spots on F . That is, if S is such a set of spots, the associated
Hasse domain is the ring

o = o(S) = {α ∈ F | ordp α ≥ 0 for all p ∈ S}.
Examples. (i) The ring of integers of an algebraic number field F is the

Hasse domain associated with the set S consisting of all the discrete spots
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on F . (ii) If F is a global function field, with k its finite field of constants,
then every Hasse domain of F can be realized as the integral closure in F
of the polynomial ring k[x] for a suitable choice of x ∈ F. (See Rosen [R,
Prop. 7]; in fact Rosen does not require that the constant field k be finite.)

Our notation and terminology will generally be that of [O’M1]. From
now on F will denote a global function field with finite constant field k;
thus k is algebraically closed in F , and F is a finite extension of k(x) for
some element x transcendental over k. We use Ω = ΩF for the set of non-
trivial spots on F. And for each p ∈ Ω we use | |p for the normalized
valuation on F at p (or on the completion Fp of F at p); thus if α 6= 0
then

|α|p =
(

1
Np

)ordp α

where Np is the cardinality of the residue class field at p. Every completion
Fp is a nondyadic local field. For each discrete p ∈ Ω the residue class field
F (p) (or Fp(p)) is a finite extension of k. By the degree of p, denoted deg p,

we mean the degree [F (p) : k]. Finally, if K is a field, then K̇ denotes its
multiplicative group of nonzero elements, and K̇2 its subgroup of nonzero
squares.

We remark that in the literature the Hasse domain o(S) is sometimes
referred to as the ring of S-integers. Some authors use S for what is here
the complementary set Ω − S.

Lemma (Local Square Theorem). If |α|p < 1 then 1 + α ∈ Ḟ 2
p .

P r o o f. See [O’M1, Theorem 63:1].

Theorem. Let k be a finite field in which −1 is not a square, and let
F = k(x). Let q = x2 +1, let q be the q-adic spot on F, and let S = Ω−{q}.
Then there exists an indecomposable o(S)-lattice of rank 6 on a suitable
quadratic F -space.

P r o o f. We first claim that there exist spots p1, p2 ∈ S of odd degree
such that x2 + 1 ∈ Ḟ 2

p1
and x2 + 1 6∈ Ḟ 2

p2
. In fact we can take p1 to be the

x-adic spot, for then since x is prime at p1 the statement x2 + 1 ∈ Ḟ 2
p1

is
immediate from the local square theorem. Now suppose β ∈ k, and let p be
the (x + β)-adic spot on F. Then Fp(p) = k, and hence an element of k is
square in Fp if and only if it is square in k; from this observation and the
equation

x2 + 1 = (β2 + 1)
(

1 +
x− β
β2 + 1

(x+ β)
)
,
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the local square theorem gives

x2 + 1

{
∈ Ḟ 2

p if β2 + 1 ∈ k̇2,

6∈ Ḟ 2
p if β2 + 1 6∈ k̇2.

As in [O’M1, 62:1] we now argue that since the sets k̇2 and k̇2 + 1 have
the same cardinality, and 1 is in the former but not the latter, there is an
element β ∈ k̇ such that β2 + 1 6∈ k̇2; and β2 + 1 6= 0 by hypothesis. With β
such an element of k, let p2 be the (x+ β)-adic spot on F .

Having fixed p1 and p2, let p3 be any other spot in S of odd degree. At
each of these spots pi fix a prime element πi. Let Uq be a 6-dimensional
quadratic Fq-space with dUq = 1 and SqUq = −1. There is a 6-dimensional
quadratic F -space V satisfying

Vp
∼=





〈πi, . . . , πi〉 if p = pi, i = 1, 2, 3,
〈1, . . . , 1〉 if p ∈ S − {p1, p2, p3},
Uq if p = q.

Such an F -space V exists by Theorem 72:1 of [O’M1]—a theorem that holds
over arbitrary global fields, though it is stated only for number fields.

There is an o(S)-lattice L on V satisfying

Lp
∼=
{ 〈πi, π3

i , π
5
i , π

7
i , π

9
i , π

11
i 〉 when p = pi, i = 1, 2, 3,

〈1, . . . , 1〉 for all p ∈ S − {p1, p2, p3}.
To see this, first note that each local space Vp supports an op-lattice J(p)
with the given local structure. Any given lattice K on V is unimodular at
almost all p and hence satisfies Kp

∼= J(p) at almost all p. Then it follows
from [O’M1, 81:14] that there is a lattice L on V with the stated local
structure at all p ∈ S. We claim that L is indecomposable.

The argument will be in three stages, and crucial to everything is the
classification of lattices over the ring of integers of a nondyadic local field:
such a lattice is an orthogonal sum of modular components—the Jordan
components. The ranks and discriminants of those components constitute a
complete set of invariants for the lattice up to isometry. (See [O’M1, The-
orem 92:2] for the details.) The Jordan components for the three localized
lattices Lpi in our present situation are of the form 〈πji 〉, with j odd.

(I) We first show that L has no orthogonal splitting L = L1 ⊥ L2 in
which rank L1 is odd. Suppose to the contrary that there is such a splitting.
Let α = d(FL1). Then, from the uniqueness properties of Jordan splittings,
ordpiα is odd, for i = 1, 2, 3; while ordpα is even for all p ∈ S − {p1, p2, p3},
since Lp is unimodular when p ∈ S − {p1, p2, p3}. Then we have
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1 =
∏

p∈Ω
|α|p =

∏

p∈Ω

(
1
Np

)ordp α

=
∏

p∈Ω

(
1
]k

)(deg p) ordp α

=
(

1
]k

)∑
p∈Ω(deg p) ordp α

by the product formula for global fields, and therefore
∑

p∈Ω(deg p)ordpα =

0. But deg q = 2, and hence
∑3
i=1(deg pi)ordpiα ≡ 0 (mod 2), a contradic-

tion.
(II) Next we claim that L has no orthogonal splitting L = L1 ⊥ L2 in

which rank L1 = 2 and d(FL1) = 1. Suppose there is such a splitting. For
all p ∈ S−{p1, p2, p3} the lattice Lp is unimodular; so, from the triviality of
the Hilbert symbol on the units of nondyadic local fields, the Hasse symbol
equation Sp(FL1) = 1 holds at these spots. On the other hand, for i = 1, 2, 3
we have

Spi(FL1) = Spi(〈πi, πi〉) =
(
πi,−1

pi

)
= −1.

Here the final equality holds because

[F (pi) : k] ≡ 1 (mod 2)⇒ −1 6∈ ˙F (pi)
2 ⇒ −1 6∈ Ḟ 2

pi
.

Thus
∏

p∈S Sp(FL1) = −1. On the other hand, since [F (q) : k] ≡ 0 (mod 2)

it follows that −1 ∈ Ḟ 2
q ; therefore FqL1 is a hyperbolic plane, and so

Sq(FL1) = 1. This contradicts the fact that every quadratic F -space U
satisfies

∏
p∈Ω SpU = 1.

(III) Finally, we show that L has no orthogonal splitting L = L1 ⊥ L2 in
which rank L1 = 2. Suppose there is such a splitting. Let α = d(FL1). Then
ordpα ≡ 0 (mod 2) for all p ∈ S. In particular, we can suppose ordpα = 0 for
all prime polynomials p 6= q; so α = ε(x2 + 1)λ, with ε ∈ k̇ and λ ∈ {0, 1}.

From the uniqueness properties of the given Jordan splitting of Lp1 ,
it follows that d(Fp1L1) = 1. And x2 + 1 ∈ Ḟ 2

p1
from our choice of p1.

Therefore we must have ε ∈ k ∩ Ḟ 2
p1
. But deg p1 is odd, so in fact ε ∈ k̇2.

Thus α = (x2+1)λ. If λ = 1 this would contradict the fact that d(Fp2L1) = 1
(again from uniqueness properties of Jordan splittings), since x2 + 1 6∈ Ḟ 2

p2
.

Therefore we must have λ = 0, that is, d(FL1) = 1. But this contradicts
part (II).

Remarks. (1) The indecomposability of the lattice L in the above theo-
rem is a consequence of the local structure of L at all p ∈ S. Therefore every
lattice in the genus of L is indecomposable. More generally, if the genus of
any lattice K of rank n ≥ 5 over a Hasse domain contains a decomposable
lattice then so does the spinor genus of K, and hence in the indefinite case
K itself is decomposable. (See [G1, Theorem 2].) Therefore, in the function
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field setting, when n ≥ 5 every genus consists completely of indecompos-
able lattices or completely of decomposable lattices. (Indefiniteness, indeed
isotropy, is automatic over function fields when n ≥ 5.)

(2) From O’Meara’s work discussed in the introduction, we know that
there exist indecomposable lattices of rank 4 over any Hasse domain of a
function field; and our theorem gives an indecomposable lattice of rank 6
over a Hasse domain of any rational function field in which −1 is not a
square. It remains to be seen whether there exists an indecomposable of
rank 5 over a suitable function field Hasse domain.

(3) It was seen in [G3] that for a set S of primes on F with Ω − S =
{p1, . . . , ps}, the ideal class group C(S) = I(S)//P (S) of o(S) is a finite
cyclic group of order gcd(deg p1, . . . ,deg ps); and if p0 ∈ S is any prime
of degree 1 then its ideal class generates C(S). The Hasse domains in our
theorem are of the form

o(S) = o(Ω − q) =
{

f(x)
(x2 + 1)m

∣∣∣∣ f(x) ∈ k[x], deg f ≤ 2m
}

and have class number 2. Let p0 be the x-adic prime ideal in o(S); so

ordp p0 =
{

1 if p = p0,
0 if p ∈ S − {p0}.

Then p0 is not principal, and hence its ideal class generates C(S), and

p2
0 =

(
x2

x2 + 1

)
.

(4) Question: Does there exist an indecomposable lattice of rank 6 over
some Hasse domain of every global function field F in which −1 is not a
square?
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