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1. Introduction. Let G be an abelian group, and let A and B be finite
subsets of G such that 2 ≤ |A|, |B|. The Cauchy–Davenport Theorem [1, 3]
states that |A + B| ≥ min(|G|, |A| + |B| − 1) if |G| is a prime. Vosper’s
Theorem [24] states that |A+B| ≥ min(|G| − 1, |A|+ |B|) if |G| is a prime
and if B is not an arithmetic progression. Mann’s Theorem [19] states that
|A+B| < min(|G|, |A|+|B|−1) only if there is a finite subgroup H such that
|H+B| < min(|G|, |H|+|B|−1). Kneser’s Theorem [15] states that |A+B| ≥
|A|+ |B|−1 if A+B is non-periodic (i.e. for all x 6= 0, A+B+x 6= A+B).
J. H. B. Kempermann [14] proposed a recursive procedure which transforms
a pair (A,B) such that A+B is non-periodic with |A+B| = |A|+|B|−1 into
a pair (A′, B′) such that |A′+B′| = |A′|+|B′|−1, and |A′|+|B′| < |A|+|B|.
Unfortunately A′ +B′ could be periodic.

The classical applications of addition theorems include the representation
of elements of a finite field as sums of kth powers. A. L. Cauchy proved that
every element of Z/pZ is the sum of k kth powers. A nice application of
Vosper’s Theorem due to S. Chowla, H. B. Mann and E. G. Straus [2] shows
that for k 6= (p − 1)/2, every element of Z/pZ is the sum of [k/2] + 1 kth
powers. This last result was generalized by A. Tietäväinen [23] to finite fields
with odd characteristic as an application of Kempermann’s theory.

Let Γ = (V,E) be a reflexive relation. The connectivity of Γ is κ(Γ ) =
min{|Γ (A) \ A| | |A| ≥ 1 and |Γ (A)| ≤ |V | − 1}. A set A attaining the
above minimum is called a fragment. A fragment with minimal cardinality is
called an atom. Some properties of the connectivity and atoms are proved in
[6, 7, 8], for relations with a transitive group. In 1986, we observed that these
results generalize known addition theorems including Mann’s Theorem. In
[9], we obtained a generalization of Vosper’s Theorem to abelian groups. As
an application, we generalized Chowla–Mann–Straus Theorem to arbitrary
finite fields. In [11], we generalized several addition theorems to non-abelian
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groups and to a more general abstract setting (relations having a transitive
group of automorphisms).

The notion of connectivity cannot be used to prove additive inequalities
of the form |A+B| ≥ |A|+ |B|+ c, for c > 0. For this reason we introduced
in [10] the k-isoperimetric number, which may be defined by replacing 1 by
k in the above definition of connectivity. Similarly we defined k-fragments
and k-atoms.

In this paper, we investigate conditions of validity of the inequality
|A+B| ≥ min(|G|−1, |A|+ |B|+1). The tools developed here allow us to re-
cover easily some of our previous results. We shall formulate these results in
order to make this paper self-contained. We shall illustrate our critical pair
theory by only one application to the Diophantine Frobenius problem, in or-
der to limit the size of the present paper. We plan to give more applications
in the future.

Let A ⊂ N∗ be a finite subset such that gcd(A) = 1, m = max(A), and
n = |A|. Recall that the Frobenius number of A, denoted by G(A), is the
maximal integer that cannot be expressed as a sum of elements of A. The
determination of sets A with maximal Frobenius number was undertaken
by several authors (cf. the references of [12]). The arithmetic progression
{m,m − 1, . . . ,m − n + 1} has a big Frobenius number. But one can do
better if m ≡ 0 or 1 mod (n− 1). Assume first m ≡ 0 mod (n− 1). One can
see easily that

G

(
m

n− 1
, 2

m

n− 1
, . . . ,m,m− 1

)
> G(m,m− 1, . . . ,m− n+ 1).

Assume now m ≡ 1 mod (n− 1). One can see easily that

G

(
m− 1
n− 1

, 2
m− 1
n− 1

, . . . ,m− 1,m
)
> G(m,m− 1, . . . ,m− n+ 1).

It was conjectured by M. Lewin [18] that for sufficiently large m,

G(A) ≤
[

(m− 2)(m− n+ 1)
n− 1

]
− 1.

Put m+ i− 1 = ki(n+ i− 1)− ri, where 1 ≤ ri ≤ n+ i− 1. J. Dixmier [4]
proved that G(A) ≤ (k0 − 1)(m − r0 − 1) − 1. As observed by J. Dixmier,
this bound coincides with Lewin’s conjectured bound if m ≡ 0 or 1 or 2. An
alternative proof of Dixmier’s Theorem is obtained by V. Lev [17].

As an application of our generalization of Vosper’s Theorem, we proved in
[12] that either A has a very special structure or G(A) ≤ (k1−1)(m−r1)−1.
Notice that this result for m ≤ 3n is proved by V. Lev in [16], using the
(3k− 3)-Theorem of Freiman [5]. The maximal possible values for G(A) are
obtained by J. Dixmier if m ≡ 0 or 1 or 2. Our bound is used in [12], to
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prove the uniqueness of sets attaining the bound in this case. The proof
given in [12] depends on a tedious density theorem.

In this paper we shall use a new method to prove bounds on the Frobenius
number which avoids the density argument. We shall use this method to
obtain a simple proof for Dixmier’s Theorem, using Mann’s Theorem. Notice
that the existing proofs require the more difficult Kneser’s Theorem. This
method combined with Theorem 6.4 allows substantial simplifications of our
previous proof.

Put m = k(n− 1) + r, where 0 ≤ r ≤ n− 2. Let A have gcd(A) = 1 and
max(A) = m. Recall that for r ∈ {0, 1, 2}, Dixmier’s Theorem 10.1 implies
that G(A) ≤ [(m− 2)(m− n+ 1)/(n− 1)] − 1. Assume now r ≥ 3, n 6= 5
and m ≥ n3 − 1. Our Corollary 12.4 implies that

G(A) ≤
[
m− 2
n− 1

]
(m− n+ 1)− 1 <

[
(m− 2)(m− n+ 1)

n− 1

]
− 1.

Hence Lewin’s conjecture holds. Moreover the inequality is strict for r ≥ 3.
Notice that our critical pair theory describes the structure of the sets having
a maximal Frobenius number. These sets cannot be described using Kneser’s
Theorem.

The organization of the paper is the following. Section 3 contains some
properties of the intersection of two k-atoms. In Section 4, we use the results
of Section 3 to show that one of the 1-atoms of a finite abelian Cayley rela-
tion is a subgroup. We apply this result to prove some addition theorems in
Section 4. In Section 5, we study the intersection of three 2-atoms. We show
that it is empty under some conditions. In Section 6, we use the results of
Section 5 to show that under some conditions, a 2-atom of a finite abelian
Cayley relation is a subgroup. We apply this result in Section 7 to prove
some addition theorems. In Section 8, we obtain conditions for the validity of
|A+B| ≥ |A|+ |B|+ 1. In Section 9, we introduce the Frobenius problem.
Section 10 contains our new approach to the Frobenius number. Section 11
describes a special family with large Frobenius number in terms of congru-
ences. In Section 12, we give a new proof for our bound on the Frobenius
number [12] and some applications.

2. Terminology. We denote the set of integers by Z. The set of non-
negative integers is denoted by N. We shall write N∗ = N \ 0. The set of
integers modulo m will be denoted by Zm. Let G be an abelian group. A
subgroup H is called proper if H 6= {0} and H 6= G. Let A1, . . . , Aj ⊂ G. As
usual we write A1+. . .+Aj = {x1+. . .+xj | xi ∈ Ai}. If A1 = . . . = Aj = A,
we write jA = A1 + . . .+ Aj . Recall the convention 0A = {0}.

The following easy lemma is the simplest addition theorem. It is due to
L. Lagrange when A and B are the set of squares of a prime field.
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Lemma 2.1 (folklore). Let G be a finite group, and let A,B ⊂ G. If
|A+B| > |G| then A+B = G.

Let V be a set. By a relation we mean an ordered pair Γ = (V,E), where
E ⊂ V × V. The relation Γ is said to be reflexive if {(x, x) | x ∈ V } ⊂ E.
We write

Γ (A) = {y ∈ V | there is x ∈ A such that (x, y) ∈ E}.
The reverse relation of Γ is by definition Γ− = {(x, y) | (y, x) ∈ E}. We
put A∗ = V \ Γ (A). We write

d(Γ ) = min{|Γ (x)| | x ∈ V }
if V 6= ∅. We set d(Γ ) = 0 if V = ∅.

Let Γ = (V,E) and Γ ′ = (V ′, E′) be two relations, and let f : V → V ′

be a bijection. The mapping f is called an isomorphism from Γ onto Γ ′

if for every x ∈ V , f(Γ (x)) = Γ ′(f(x)). An isomorphism from Γ onto Γ
is an automorphism of Γ . The relation Γ is called point-transitive if for all
x, y ∈ V , there is an automorphism f of Γ such that f(x) = y. The relation
Γ is self-reverse if Γ is isomorphic to Γ−.

We shall use the following obvious and well known lemma without ex-
plicit mention.

Lemma 2.2 (folklore). Let Γ = (V,E) be a point transitive relation. Then
d(Γ ) = |Γ (x)| for any x ∈ V . If V is finite, then d(Γ ) = d(Γ−).

Our applications in this paper require only Cayley relations on abelian
groups defined below.

Example. Let G be an abelian group, and let B be a subset of G.
Set E = {(x, y) | y − x ∈ B}. The Cayley relation defined by B on G is
Λ(G,B) = (G,E).

Notice that Λ(G,B) is reflexive if and only if 0 ∈ B. One may check
easily that

(Λ(G,B))− = Λ(G,−B).(1)

Let a ∈ G. The a-translation is the map γa : G→ G defined by γa(x) =
a+ x.

Lemma 2.3. Let G be an abelian group, and let B ⊂ G. Put Γ =
Λ(G,B). For every A ⊂ G, Γ (A) = A+ B. For every a, γa is an automor-
phism of Γ . In particular Γ is a point-transitive relation. The map x 7→ −x
is an isomorphism from Λ(G,B) onto Λ(G,−B). In particular Λ(G,B) is
self-reverse.

The proof is easy.

A reflexive relation Γ = (V,E) is called k-separable if there exists X ⊂ V
such that |X| ≥ k and |V \Γ (X)| ≥ k. Assume Γ reflexive and k-separable.
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The k-isoperimetric number of Γ is by definition

κk(Γ ) = min{|Γ (X)| − |X| | |X| ≥ k and |X∗| ≥ k}.
In the case where Γ is not k-separable, we write κk(Γ ) = |V |. Note that
κ1(Γ ) is the connectivity of the relation Γ , considered in [6, 7, 8].

A subset X ⊂ V is called a k-fragment if |X| ≥ k, |X∗| ≥ k, and
|Γ (X)| = |X|+ κk(Γ ). A k-fragment with minimal cardinality is a k-atom.
The cardinality of a k-atom of Γ is denoted by αk(Γ ).

The following isoperimetric inequality follows easily from the definition.
Let X ⊂ V be such that |X| ≥ k. Then

|Γ (X)| ≥ min(|V | − k + 1, |X|+ κk(Γ )).(2)

We shall use often the following obvious lemma:

Lemma 2.4. Let Γ and Γ ′ be reflexive relations, and let f be an isomor-
phism from Γ onto Γ ′. Then κk(Γ ) = κk(Γ ′). Moreover f maps a k-fragment
(resp. k-atom) onto a k-fragment (resp. k-atom).

3. Topology of finite relations. We need an easy lemma proved in
[6] for k = 1, and in [10] for arbitrary k.

Lemma 3.1 (see [10]). Let Γ be a k-separable finite reflexive relation, and
let F be a k-fragment of Γ . Then Γ− is k-separable, and F ∗ is a k-fragment
of Γ−. Moreover

κk(Γ ) = κk(Γ−),(3)

Γ−(F ∗) = V \ F.(4)

P r o o f. The proof is given in [10].

Lemma 3.2. Let Γ be a 2-separable finite reflexive point-transitive rela-
tion such that κ2(Γ ) ≤ d(Γ )−2. Let F be a 1-fragment of Γ . Then |F | ≥ 2.
In particular κ2(Γ ) = κ1(Γ ). Moreover a subset X is a 2-fragment of Γ if
and only if X is 1-fragment of Γ .

P r o o f. We have |F | ≥ 2, since otherwise κ2(Γ ) ≥ κ1(Γ ) = |Γ (F )| −
|F | = d(Γ ) − 1, a contradiction. By (3), κ2(Γ−) = κ2(Γ ) ≤ d(Γ ) − 2 =
d(Γ−) − 2. By Lemma 3.1, F ∗ is a 1-fragment. It follows that |F ∗| ≥ 2.
Hence κ2(Γ ) ≤ |Γ (F )| − |F | = κ1(Γ ). Therefore κ2(Γ ) = κ1(Γ ). It follows
easily now that F is a 2-fragment of Γ if and only if F is a 1-fragment of Γ .

Notice that Lemma 3.2 may be generalized to non-point-transitive rela-
tions. Let us formulate another easy lemma.

Lemma 3.3. Let Γ be a finite k-separable reflexive relation. Let F1 and
F2 be two k-fragments such that |F1 ∩F2| ≥ k. Put ε = 1 if F1 is a k-atom
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not contained in F2, and ε = 0 otherwise. Then

|F1 \ F2| ≥ |Γ (F1) \ Γ (F2)|+ ε.(5)

P r o o f. We have the following table:

V \ Γ (F1) R31 R32 R33

Γ (F1) \ F1 R21 R22 R23

F1 R11 R12 R13

F2 Γ (F2) \ F2 V \ Γ (F2)

By the definition of a k-fragment we have

|R21|+ |R22|+ |R23| = κk(Γ ).

The following inclusion follows by an easy verification:

Γ (F1 ∩ F2) \ (F1 ∩ F2) ⊂ R12 ∪R22 ∪R21.

Since |V \Γ (F1 ∩F2)| ≥ |V \Γ (F1)| ≥ k, we have |Γ (F1 ∩F2) \ (F1 ∩F2)| ≥
κk(Γ ). Hence

|Γ (F1 ∩ F2) \ (F1 ∩ F2)| ≥ κk(Γ ) + ε,

since otherwise F1∩F2 would be a k-fragment strictly contained in a k-atom.
It follows that

|R21|+ |R22|+ |R23| = κk(Γ )

≤ |Γ (F1 ∩ F2) \ (F1 ∩ F2)| − ε
≤ |R12|+ |R22|+ |R21| − ε.

Therefore |R12| ≥ |R23|+ ε. Now

|F1 \ F2| = |R13|+ |R12| ≥ |R13|+ |R23|+ ε

= |(V \ (Γ (F2))) \ (V \ (Γ (F1)))|+ ε

= |Γ (F1) \ Γ (F2)|+ ε.

This proves (5).

The above lemma allows us to get a simple proof for the basic intersection
property of the k-atoms.

Proposition 3.4 (see [10]). Let Γ be finite k-separable reflexive relation
such that αk(Γ ) ≤ αk(Γ−). Let A be a k-atom, and let F be a k-fragment
of Γ such that |A∩F | ≥ k. Then A ⊂ F . In particular two distinct k-atoms
intersect in at most k − 1 elements.

P r o o f. Put ε = 1 if A 6⊂ F , and ε = 0 otherwise. By Lemma 3.1, F ∗

is a k-fragment of Γ−. Therefore |A| ≤ αk(Γ−) ≤ |F ∗|. By (4), we have
Γ (A) \ Γ (F ) = F ∗ \ A∗.

By (5),
|A \ F | ≥ |Γ (A) \ Γ (F )|+ ε = |F ∗ \ A∗|+ ε.
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Therefore

|A∗ ∩ F ∗| = |F ∗| − |F ∗ \A∗| ≥ |A| − |A \ F | = |A ∩ F | ≥ k.
Now we apply (5) to the fragments A∗ and F ∗ of Γ−. It follows that

|F ∗ \ A∗| ≥ |Γ−(F ∗) \ Γ−(A∗)|. By (4), we have Γ−(F ∗) = V \ F and
Γ−(A∗) = V \A. It follows that

|F ∗ \ A∗| ≥ |Γ−(F ∗) \ Γ−(A∗)| = |(V \ F ) \ (V \A)| = |A \ F |.
Therefore ε = 0. In particular A ⊂ F .

4. Some applications. Let G be a finite abelian group, and let B be
a subset of G such that 0 ∈ B. We denote κk(Λ(G,B)) by κk(G,B). When
B generates G, we write κk(B) instead κk(G,B). We begin by the following
easy lemma.

Lemma 4.1. Let G be a finite abelian group, and let B be a generating
subset of G such that 0 ∈ B. For all k ≥ 1, κk(B) ≥ 1.

P r o o f. Suppose the contrary. There is A 6= ∅ such that |G| > |A+B| =
|A|. Since 0 ∈ B, we have A = A+B. It follows that

A+ 2B = (A+B) +B = A+B = A.

Similarly for all j ≥ 1, A + jB = A. It follows that A +
⋃
j≥1 jB = A.

Since B generates the finite group G, we have G =
⋃
j≥1 jB. It follows that

A = G, a contradiction.

The next result describes the 1-atoms in finite abelian groups.

Proposition 4.2 (see [8]). Let G be a finite abelian group, and let B be
a generating subset of G such that 0 ∈ B. Let A be a 1-atom of Λ(G,B)
such that 0 ∈ A. Then A is a subgroup.

P r o o f. Since G is finite, it is enough to show that x+A = A for every
x ∈ A. Put Γ = Λ(G,B). By Lemma 2.3, x+A is 1-atom of Γ . By Lemma
2.3, α1(Γ ) = α1(Γ−). Since x ∈ A ∩ (x + A), by Proposition 3.4 we have
x+ A = A.

Corollary 4.3 (Mann Theorem [19]). Let B be a generating subset of
a finite abelian group G such that 0 ∈ B. Let A be a subset of G such that
|A+B| ≤ min(|G|−1, |A|+ |B|−2). Then there is a subgroup H of G such
that |H +B| ≤ min(|G| − 1, |H|+ |B| − 2).

P r o o f. Clearly B is 1-separable and κ1(B) ≤ |B|−2. Let H be a 1-atom
of Λ(G,B) containing 0. By Proposition 4.2, H is a subgroup. Now we have
|H + B| = |H| + κ1(B) ≤ |H| + |B| − 2. By the definition of an atom,
|H +B| < |G|.
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Corollary 4.4. Let B be a generating subset of a finite abelian group G
such that 0 ∈ B. Then κ1(G,B) ≥ |B|/2. In particular for every non-empty
subset A,

|A+B| ≥ min(|G|, |A|+ |B|/2).(6)

P r o o f. Set Γ = Λ(G,B). The result holds trivially if G = B. Assume
G 6= B. Since {0} + B 6= G, Γ is 1-separable. Let H be a 1-atom of Γ
containing 0. By Proposition 4.2, H is a subgroup. Since H 6= G, and B
generates G, we have |H +B| ≥ 2|H|. Hence |H| ≤ |H +B| − |H| = κ1(Γ ).
It follows that

|B|/2 ≤ |H +B|/2 = |H +B| − |H +B|/2 ≤ |H +B| − |H| = κ1(B).

Using (2), we obtain (6).

A generalization of (6) to non-abelian groups and point-transitive rela-
tions is proved in [7]. The validity of (6) for not necessarily abelian groups
was obtained independently by Olson [20].

5. Abstract critical pair theory. We need the following lemma par-
tially contained in [10].

Lemma 5.1. Let Γ = (V,E) be a 2-separable reflexive relation on a finite
set V such that α2(Γ ) ≤ α2(Γ−). Let M be a 2-atom of Γ. Let F be a
2-fragment of Γ such that M 6⊂ F and M ∩ F 6= ∅. Then

|M ∩ F | = 1,(7)

|M | − 1 ≤ |F ∗ \M∗|,(8)

|Γ (M) ∩ Γ (F )| ≤ 1 + κ2(Γ ).(9)

If |F | < |M∗| and κ2(Γ ) ≤ d(Γ )− 1 then F ∪M is a 2-fragment of Γ .

P r o o f. (7) follows by Proposition 3.4. By Lemma 3.1, F ∗ and M∗ are
2-fragments of Γ−. Hence

|F ∗| ≥ α2(Γ−) ≥ α2(Γ ) = |M |.
Let us prove (8). Assume first |F ∗ ∩M∗| ≤ 1. We have clearly

|F ∗ \M∗| ≥ |F ∗| − 1 ≥ α2(Γ−)− 1 ≥ α2(Γ )− 1 = |M | − 1.

So we may assume |F ∗ ∩M∗| ≥ 2. By (5) applied to Γ−,

|F ∗ \M∗| ≥ |Γ−(F ∗) \ Γ−(M∗)|.
By (4), Γ−(F ∗)\Γ−(M∗) = (V \F )\ (V \M) = M \F . By (7), |F ∗ \M∗| ≥
|M \ F | = |M | − 1. This proves (8).

Now we have Γ (F )∩Γ (M) = Γ (M) \ (F ∗ \M∗). Notice that F ∗ \M∗ ⊂
Γ (M). Therefore

|Γ (F ) ∩ Γ (M)| = |Γ (M)| − |F ∗ \M∗| ≤ |Γ (M)| − |M |+ 1 = κ2(Γ ) + 1.
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Assume now |F | < |M∗| and κ2(Γ ) ≤ d(Γ )−1. We have clearly |F | < |M ∗| =
|V |−κ2(Γ )−|M |. Hence |M | < |V |−κ2(Γ )−|F | = |F ∗|. It follows from (8)
that |(F ∪M)∗| ≥ |F ∗ ∩M∗| = |F ∗| − |F ∗ \M∗| ≥ |M |+ 1− (|M | − 1) = 2.
Therefore

|(F ∪M)∗| ≥ 2.(10)

Choose v ∈ F ∩M . We have Γ (v) ⊂ Γ (M) ∩ Γ (F ). Now we have clearly

|Γ (F ∪M)| = |Γ (F )|+ |Γ (M)| − |Γ (F ) ∩ Γ (M)|
≤ |F |+ |M |+ 2κ2(Γ )− d(Γ ).

It follows that |Γ (F ∪M)| ≤ |F ∪M |+ κ2(Γ ). The definition of κ2, (7) and
(10) show that F ∪M is 2-fragment.

Lemma 5.2. Let Γ = (V,E) be a reflexive relation on a finite set V .
Suppose Γ is point-transitive and self-reverse. For all v, w ∈ V , there is an
isomorphism ν from Γ onto Γ− such that ν(v) = w.

P r o o f. Let φ be an isomorphism from Γ onto Γ−. Put φ(v) = v′ and
choose an automorphism g of Γ such that g(v′) = w. We may take ν = g◦φ.

Proposition 5.3. Let Γ = (V,E) be a 2-separable reflexive relation on a
finite set V . Suppose Γ is point-transitive and self-reverse. Let X1, X2, X3
be three distinct 2-atoms of Γ , and let v ∈ X1∩X2∩X3. Assume |X1| ≥ 3.
Then there are 1 ≤ i < j ≤ 3 such that

|Γ (Xi) ∩ Γ (Xj)| ≥ α2(Γ )− 2 + d(Γ ).(11)

In particular
d(Γ ) + α2(Γ )− 3 ≤ κ2(Γ ).(12)

P r o o f. We first prove (11). We have X∗1 6= X∗2 , since otherwise we would
have X1 = X2, by (4). Since |X∗1 | = |X∗2 |, we may choose w ∈ X∗1 \X∗2 . By
Lemma 5.2, there is an isomorphism ν from Γ onto Γ− such that ν(v) = w.
Put Ki = ν(Xi), 1 ≤ i ≤ 3. Clearly K1,K2,K3 are distinct 2-atoms of Γ−

containing w. By Proposition 3.4 applied to Γ−, for all 1 ≤ s < t ≤ 3,

Ks ∩Kt = {w}.(13)

Suppose that for some 1 ≤ s < t ≤ 3, Ks ∪Kt ⊂ X∗1 . By Lemma 3.1, X∗2
is a 2-fragment of Γ−. Recall that w ∈ (Ki ∩Kj) \X∗2 . By Proposition 3.4
applied to Γ−, |Ks∩X∗2 | ≤ 1 and |Kt∩X∗2 | ≤ 1. It follows that |(Ks ∪Kt)∩
(X∗1 \X∗2 )| ≥ |Ks ∪Kt| − 2 = 2|K1| − 3 ≥ |X1|, contradicting (8).

Hence at most one of the 2-atoms K1,K2,K3 is contained in X∗1 . Then
we may choose 1 ≤ i < j ≤ 3 such that Ki 6⊂ X∗1 , and Kj 6⊂ X∗1 . Let us show
that X1 6⊂ V \Γ−(Ki). Assume the contrary. By (4) applied to Γ− we have
Γ (X1) ⊂ Γ (V \ Γ−(Ki)) = V \Ki. Now (4) yields X∗1 = V \ (Γ (X1)) ⊃ Ki,
a contradiction. Similarly X1 6⊂ V \ Γ−(Kj). By Lemma 3.1, V \ Γ−(Kr)
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is a 2-fragment of Γ for all 1 ≤ r ≤ 3. By Proposition 3.4 applied twice,
|X1 ∩ (V \ (Γ−(Ki))) ∪ (V \ (Γ−(Kj)))| ≤ 2.

SetW0 = X1∩Γ−(Ki)∩Γ−(Kj). We have seen that |W0| ≥ |X1|−2. Since
Γ−(w) ⊂ Γ−(X∗1 ), by (4) we have W0∩(Γ−(w)) = ∅. Clearly W0∪Γ−(w) ⊂
Γ−(Ki)∩ Γ−(Kj). Therefore |X1| − 2 + d(Γ−) ≤ |Γ−(Ki)∩ Γ−(Kj)|. Since
Γ is self-reverse, we have d(Γ−) = d(Γ ). It follows that

|X1| − 2 + d(Γ ) ≤ |ν−(Γ−(Ki) ∩ Γ−(Kj))| = |Γ (Xi) ∩ Γ (Xj)|.
This proves (11). It follows by (9) that d(Γ ) + |X1| − 2 ≤ 1 + κ2(Γ ). This
shows (12).

6. The structure of 2-atoms. Let G be an abelian group, and let P0
be a subset of G with cardinality ≤ 1. For any d ∈ G, we shall consider
P0 as an arithmetic progression with difference d. Let B be a subset of G.
A subgroup H is called a period of B if B + H = B. A subset with a
non-zero period is called periodic. A subgroup H is an almost-period of B if
there is b ∈ B such that H is a period of B \ b. A subset with a non-zero
almost-period is called almost-periodic. Recall the following easy lemma.

Lemma 6.1. Let B ⊂ G be such that |{0, d} + B| = |B| + j, and let
K be the subgroup generated by d. There is a set T (possibly empty) and
non-empty arithmetic progressions P1, . . . , Pj with difference d such that B
is a disjoint union of the sets T +K,P1, . . . , Pj.

We are now ready to prove a structure theorem for the 2-atoms in a
Cayley relation on a finite abelian group.

Theorem 6.2. Let B be a subset of a finite abelian group such that
0 ∈ B. Put Γ = Λ(G,B). Let A be a 2-atom of Γ such that 0 ∈ A. If
|A| ≥ κ2(Γ )− |B|+ 4, then A is a subgroup.

P r o o f. Assume first |A| = 2. It follows that κ2(B) ≤ |B|−2. By Lemma
3.2, A is a 1-atom. By Proposition 4.2, A is a subgroup. So we may assume
|A| ≥ 3. Set Q = {x | x + A = A}. We show that A = Q. Assume the
contrary. Choose a ∈ A \Q. Since A+Q = A, we have a+Q ⊂ A∩ (a+A).
Since a 6∈ Q, we have A+ a 6= A. By Proposition 3.4, |Q| = 1. Choose now
two distinct elements b, c ∈ A \ 0. Since |Q| = 1, the 2-atoms A,A− b,A− c
are distinct. Since 0 ∈ A ∩ (A− b) ∩ (A− c), we have |A| ≤ κ2(Γ )− |B|+ 3
by (12), contradicting the hypothesis. Therefore A = Q. But Q is clearly a
subgroup.

Corollary 6.3. Let B be a subset of a finite abelian group such that
0 ∈ B. Put Γ = Λ(G,B). Let A be a 2-atom of Γ such that 0 ∈ A. If
κ2(Γ ) = |B|− 1, then either A is a subgroup or |A| = 2. If κ2(Γ ) ≤ |B|− 2,
then A is a subgroup.
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P r o o f. The first part is an immediate consequence of Theorem 6.2. The
second one follows from Lemma 3.2 and Proposition 4.2.

The following result will be applied to the Frobenius number.

Theorem 6.4. Let B be a generating subset of Zm such that 0 ∈ B,
and κ2(B) = |B| − 1. Also assume that B is not almost-periodic. Let H be
a 2-atom of Λ(G,B) such that 0 ∈ H and |H| ≥ 3. If F is a 2-fragment
then F + H = F . In particular for all X ⊂ Zm such that |X| ≥ 2 and
X +H 6= X, |X +B| ≥ min(m− 1, |X|+ |B|).

P r o o f. By Corollary 6.3, H is a subgroup. Let us prove that for all
x ∈ B,

|(x+H) ∩B| ≥ 2.(14)

Assume the contrary and put C = B \ x. We have |C| = |B| − 1 = κ2(B) =
|B + H| − |H| = |C + H|. It follows that C is H-periodic, and hence B is
almost-periodic, contradicting the assumption that B is not almost-periodic.
Suppose F + H 6= F and take a counterexample for which |F | is maxi-
mal. There is a ∈ F such that a + H 6⊂ F . By replacing F by F − a,
we may reduce to the case a = 0. So assume a = 0. By Proposition 3.4,
H ∩ F = {0}.

Assume first |F ∗| = |H|. Choose b ∈ F ∗. By Lemma 2.3, F ∗ − b is a
2-atom of Λ(G,−B). By Corollary 6.3, F ∗ − b is a subgroup. Since Zm has
no distinct subgroups with the same order, we have H = F ∗ − b. By (4),
F = Zm \ (H + b−B). It follows that F +H = F , a contradiction.

Assume now |F ∗| > |H|. By Lemma 5.1, H ∪ F is a 2-fragment. By
the maximality of |F |, (F ∪H) + H = F ∪H. Hence F ′ + H = F ′, where
F ′ = F \ 0. We have H ∩ (F ′+B) 6= ∅, since otherwise |H ∩B| ≥ 2 by (14).
Hence

|F +B| = |F ′ +B|+ |H ∩B| ≥ |F ′ +B|+ 2 ≥ |F |+ κ2(B) + 1,

a contradiction. Since (F ′ +B) +H = F ′ +B, we have H ⊂ F ′ +B.

Case 1: B ⊂ F ′ + B. It follows that F + B = (F ′ + B) ∪ B = F ′ + B.
Therefore |F ′ + B| = |F + B| = |F ′| + κ2(B) + 1. By a well known fact
from elementary group theory, |Y +H| is a multiple of |H| for every Y . In
particular κ2(B) = |H +B| − |H|, |F ′| and |F ′ +B| are multiples of |H|. It
follows that 1 is a multiple of |H|, a contradiction.

Case 2: B 6⊂ F ′ + B. There is x ∈ B such that x 6∈ F ′ + B. Since
(F ′ + B) + H = F ′ + B, we have (x + H) ∩ (F ′ + B) = ∅. By (14), we
have |F +B| ≥ |F ′ +B|+ |(x+H) ∩B| ≥ |F ′ +B|+ 2. It follows from (2)
that |F + B| ≥ |F ′|+ κ2(B) + 2 = |F |+ κ2(B) + 1, a contradiction. Hence
F +H = F .



108 Y. O. Hamidoune

Assume now X + H 6= X and |X| ≥ 2. It follows that X is not a 2-
fragment. By the definition of a 2-fragment, we have |X +B| ≥ min(m− 1,
|X|+ |B|).

We conclude this section by a description of 2-atoms which will be our
main tool in the study of the Frobenius number. This description is implicit
in [9].

Proposition 6.5. Let B be a generating subset of a finite abelian group
G such that 0 ∈ B. Assume κ2(B) = |B| − 1 and let H be a 2-atom con-
taining 0. Then one of the following conditions holds:

(i) |H| > 2, and H is a subgroup.
(ii) B is an arithmetic progression.

(iii) B is almost-periodic.
(iv) |B| > |G|/2, and there is a proper subgroup K such that |B| ≥

|G| − |K|+ 1.

P r o o f. Assume first |H| > 2. By Theorem 6.2, H is a subgroup. Hence
(i) holds. Assume now |H| = 2 and put H = {0, d}. Let K be the subgroup
generated by d. Now we have |{0, d}+ B| = 1 + |B|. By Lemma 6.1, there
is T ⊂ G and an arithmetic progression P 6= ∅ with difference d such that
B = (T +K) ∪ P . If T = ∅, then (ii) holds. Assume T 6= ∅. If B +K = G,
then (iv) holds. Assume now B + K 6= G. Since d 6= 0, we have |K| ≥ 2.
Also G \ (B +K) is a union of K-cosets. Therefore

|T +K|+ |P | − 1 = κ2(B) ≤ |B +K| − |K| ≤ |T +K|.
It follows that |P | = 1. Hence (iii) holds.

Theorem 6.6. Let B be a generating subset of a finite abelian group G
such that 0 ∈ B and |B| ≤ |G|/2. Then one of the following conditions
holds:

(i) For all |A| ≥ 2, |A+B| ≥ min(|G| − 1, |A|+ |B|).
(ii) B is an arithmetic progression.

(iii) There is a subgroup H such that |H+B| < min(|G|−1, |H|+|B|−1).

P r o o f. Suppose (i) not satisfied. It follows that B is 2-separable, and
that κ2(B) ≤ |B| − 1. Let H be a 2-atom of Λ(G,B) such that 0 ∈ H.

Case 1: κ2(B) ≤ |B| − 2 or |H| ≥ 3. By Corollary 6.3, H is a subgroup.
By the definition we have

|H +B| < |G| and |B| − 1 ≥ κ2(B) = |H +B| − |H|.
This proves (iii).

Case 2: κ2(B) = |B| − 1 and |H| = 2. By Proposition 6.5, either (ii) is
satisfied or B is almost-periodic. Let K be an almost-period of B. We have
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|K+B| = |K|+ |B|−1. We have K+B 6= G, since |B| ≤ |G|/2. This proves
(iii), where K replaces H.

7. Higher critical pair theory

Theorem 7.1. Let B be a subset of a finite abelian group such that
0 ∈ B, and |B| ≤ |G| − 7. Put Γ = Λ(G,B). Let H be a 2-atom of Γ such
that 0 ∈ H. If κ2(B) = |B|, then either H is a subgroup or |H| = 2.

P r o o f. Assume the contrary. By Theorem 6.2, |H| = 3. Let us show
that |H + H| ≥ 6. First observe that H + x 6= H for all x 6= 0. Assume
the contrary and let K be the subgroup generated by x. Since H is not a
subgroup it follows that H is the union of at least two distinct K-cosets.
Therefore |H| ≥ 2|K| ≥ 4, a contradiction. Put H = {a0, a1, a2}, where
a0 = 0. By Proposition 3.4, |(H + ai)∩ (H + aj)| ≤ 1 for all i 6= j. It follows
that |H +H| = |(H + a0) ∪ (H + a1) ∪ (H + a2)| ≥ 3|H| − 3 = 6.

We now show that there is a 2-atom A containing 0 and u ∈ A \ 0 such
that

|A+ A| ≥ 6 and |(A+ u+B) ∩ (A+B)| ≥ |B|+ 1.(15)

Put Xi = H − ai, 0 ≤ i ≤ 2. Since H is not a subgroup, X0,X1,X2 are
distinct 2-atoms containing 0. By (11), there is i < j such that |(Xi +B) ∩
(Xj +B)| ≥ |B|+ 1. Clearly (15) holds if i = 0. So we may assume without
loss of generality i = 1 and j = 2. In this case we put A = H − a1 + a2 and
u = a2−a1. PutA = {0, u, v}. Let us first show thatA+B = {0, u}+B. Since
{0, u} is not a 2-fragment, we have |A+B| ≥ |{0, u}+B| ≥ 3+|B| = |A+B|.
It follows that A+B = {0, u}+B. By (15), we have

|A+B + {0, u}| = |A+B|+ |A+B + u| − |(A+B) ∩ (A+B + u)|
≤ 2|A|+ 2|B| − (|B|+ 1) = |B|+ 5.

Hence

|A+ A+B| = |A+B + {0, u}| ≤ |B|+ 5 < |A+ A|+ κ2(B).

By the definition of κ2, we have |A + A + B| ≥ |G| − 1. It follows that
|B| ≥ |G| − 6, a contradiction.

8. The Frobenius problem. Let A ⊂ N∗ be such that max(A) = m.
We write

Φ(A) =
⋃

0≤j
jA, Φk(A) = Φ(A) ∩ [(k − 1)m+ 1, km].

Assume gcd(A) = 1. The Frobenius number of A is by definition

G(A) = max(Z \ Φ(A)).
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We write G(a1, . . . , an) instead of G({a1, . . . , an}), and Φ (resp. Φk) for Φ(A)
(resp. Φk(A)) when the context is clear.

Let m,d ∈ N∗ be such that gcd(m,d) = 1. Sylvester [22] proved that

G(m,m− d) = (m− 1)(m− d− 1)− 1.(16)

Roberts [21] showed that

G(m,m− d, . . . ,m− (n− 1)d) = (m− (n− 1)d)
[
m− 2
n− 1

]
− d.(17)

We have clearly

Φk(A) + A ⊂ Φk+1(A) ∪ (Φk+1(A)−m).

Reducing modulo m, we get

Φk(A) + A ⊂ Φk+1(A).(18)

By iterating we obtain
kA ⊂ Φk(A).(19)

Notice that (18) and (19) are used by J. Dixmier in [4]. We need the following
well known lemma used by J. Dixmier [4].

Lemma 8.1 (folklore). Let A ⊂ N∗ be such that |A| > max(A)/2. Then

G(A) ≤ 2 max(A)− 2|A| − 1.(20)

9. H-decompositions. A subset A of N will be called saturated if for
all x, y ∈ A, either x+ y ∈ A or x+ y > max(A). Let F be the set of all the
saturated subsets A of N∗ such that A ∪ {0} is the union of two arithmetic
progressions with the same difference.

Let A ⊂ N∗. Put max(A) = m and n = |A|. Let ν be the canonical
morphism from Z onto Zm. We write x = ν(x). Let H be a proper subgroup
of Zm. Put m = q|H|. Then H = {q, 2q, . . . ,m}. We may partition A into
its traces on the cosets of qZ. A partition A = A0 ∪ A1 ∪ . . . ∪ Au will be
called an H-decomposition of A if the following conditions hold:

(i) m ∈ A0.
(ii) For every i, Ai − Ai ⊂ qZ.

(iii) For every i 6= j, Ai − Aj 6⊂ qZ.
Lemma 9.1. Let A ⊂ N∗ be such that gcd(A) = 1 and max(A) = m.

Let H be a proper subgroup of Zm such that |A+H| ≤ |H|+ |A| − 1. Put
(u+ 1)|H| = |A+H|. Also assume that 2|A| ≤ m. Then

m ≥ (2u+ 1)|H|.(21)

In particular |H| ≤ m/3.

P r o o f. We have 2((u+ 1)|H| − |H|+ 1) ≤ 2|A| ≤ m. Now (21) follows
since |H| ≥ 2 and |H| divides m. Since gcd(A) = 1, the set A generates Zm.
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Therefore A 6⊂ H, since H is a proper subgroup. It follows that u ≥ 1. In
particular |H| ≤ m/3.

Lemma 9.2 (see [12]). Let A ⊂ N∗ be a saturated subset such that
max(A) = m. Let H be a proper subgroup of Zm. Let A = A0∪A1∪ . . .∪Au
denote an H-decomposition of A. Let 0 ≤ s, t ≤ u. Assume (As + At) ∩ A
= ∅. Then

|As|+ |At| ≤ |H|+ 1.(22)

P r o o f. For i ≥ 1, set mi = min(Ai). We have |Ai| ≤ (m−mi)/q+ 1. It
follows that

|As|+ |At| ≤ 2 + (2m− (ms +mt))/q.

Since ms +mt 6∈ A, we have ms +mt > m. Therefore

|As|+ |At| < 2 +m/q = 2 + |H|.
Hence |As|+ |At| ≤ |H|+ 1.

Lemma 9.3. Let A ⊂ N∗ be a saturated subset such that gcd(A) = 1,
|A| = n, and max(A) = m. Also assume that |A| ≤ m/2. Let H be a proper
subgroup of Zm such that |A + H| ≤ |H| + |A| − 2. For i ∈ {0, 1}, put
m− 1 + i = ki(n+ i− 1)− ri, where 1 ≤ ri ≤ n+ i− 1. Then

G(A) ≤ (k0 − 1)(m− r0 − 1)− 1.(23)

Moreover ,

if A 6∈ F then G(A) ≤ (k1 − 1)(m− r1)− 1.(24)

P r o o f. Let A = A0 ∪ A1 ∪ . . . ∪ Au denote an H-decomposition of A.
Put n0 = |A0| and m = q|H|. Let us first prove that u = 1. We may assume
without loss of generality that |A1| ≥ . . . ≥ |Au|. We shall prove that

(A \ Au +H) + A+H ⊂ A+H.(25)

Assume the contrary. There are 0 ≤ s ≤ u− 1 and 0 ≤ t ≤ u such that

(As + At +H) ∩ (A+H) = ∅.
We have necessarily s ≥ 1, since A0 + A ⊂ A+H. Clearly

|H| − 2 ≥ |A+H| − |A| ≥ 2|H| − (|As|+ |Au|).
Therefore

|H|+ 2 ≤ |As|+ |Au| ≤ |As|+ |At|.
It follows using (22) that

|H|+ 2 ≤ |As|+ |At| = |As|+ |At| ≤ |H|+ 1,

a contradiction. This proves (25).
By (6) and (21),

|(A \ Au +H) + A+H| ≥ min(m,u|H|+ (u+ 1)|H|/2) = (3u+ 1)|H|/2.
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It follows that (u + 1)|H| ≥ (3u + 1)|H|/2. Therefore u = 1. Let us prove
that

G(A) ≤ (q − 1)(m− 2− (n− n0 − 1)q)− 1.(26)

Put a1 = min(A1). Clearly H = {q, 2q, . . . ,m}. Take x > (q − 1)a1 − q.
We claim that there are j ∈ {0, . . . , q − 1} and s ∈ Z such that

x = ja1 + sq.

Clearly A0 ⊂ {q, 2q, . . . ,m} and A1 ⊂ a1 + {q, 2q, . . . ,m − q}. Since u = 1
and gcd(A) = 1, a1 generates Zm/H. Therefore there is 0 ≤ j ≤ q − 1 such
that x− ja0 ∈ qZ. This proves the claim.

We now show that s ≥ 0. We have

(q − 1)a1 + sq ≥ ja1 + sq = x > (q − 1)a1 − q.
Therefore sq > −q, and hence s ≥ 0. Clearly a1 ≤ m− 1− (n− n0 − 1)q. It
follows that

G(A) ≤ (q − 1)a1 − q ≤ (q − 1)(m− 1− (n− n0 − 1)q)− q
= (q − 1)(m− 2− (n− n0 − 1)q)− 1.

This proves (26).
Clearly 2|H| = |A+H| ≤ |H|+ n− 2. Therefore

(ki − 1)(n+ i− 1)− i+ 1 ≤ m = q|H| < q(n− 1).

It follows that for 0 ≤ i ≤ 1,
ki ≤ q.(27)

Put Ei = (ki−1)(m−ri+ i−1)−1−G(A). The maximal possible value
of n0 is m/q. It follows from (26) that

G(A) ≤ (q − 1)(2m− 2− (n− 1)q)− 1.

We have E0 ≥ F0(q), where

F0(q) = (k0 − 1)(m− r0 − 1)− (q − 1)(2m− 2− (n− 1)q).

By (27), we have k0 ≤ q. Assume first q = k0. Then E0 ≥ F0(k0) = 0.
Thus (23) holds in this case. Assume now q ≥ k0 + 1. It follows that F0(q)
is increasing. Therefore E0 ≥ F0(q) ≥ F0(k0 + 1). It follows that E0 ≥
(k0 − 1)(m− r0 − 1)− k0(2m− 2− (n− 1)(k0 + 1)) = 2r0 > 0. This proves
(23).

Let us prove (24). Assume that A 6∈ F . Let us show that n0 ≤ m/q − 1.
Assume the contrary. Then q ∈ A. Since A is saturated, it follows that
{q, 2q, . . . ,m} ⊂ A. Therefore we have A0 = {q, 2q, . . . ,m}. Similarly A1 =
(a1 + [0, q, . . . ,m − q]) ∩ [1,m]. Therefore A ∈ F , a contradiction. Thus
n0 ≤ m/q − 1. By (26),

G(A) ≤ (q − 1)(m− 2− (n− n0 − 1)q)− 1 ≤ (q − 1)(2m− 2− nq)− 1.
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It follows that E1 ≥ F1(q), where

F1(q) = (k1 − 1)(m− r1)− (q − 1)(2m− 2− nq).
By (27), we have k1 ≤ q. Assume first q = k1. Then E1 ≥ F1(k1) ≥ 2(k1 − 1)
≥ 0. Thus (24) holds in this case. Assume now q ≥ k1 + 1. It follows that
F1(q) is increasing. Therefore E1 ≥ F1(q) ≥ F1(k1 + 1). Hence

E1 ≥ (k1 − 1)(m− r1)− k1(2m− 2− n(k1 + 1))

= k1(n+ 2)−m+ r1 = 2r1 + 2k1 > 0.

This proves (24).

10. A theorem of J. Dixmier

Theorem 10.1 (J. Dixmier [4]). Let A ⊂ N∗ be a finite subset such that
gcd(A) = 1. Set m = max(A) and n = |A|. Put m−1 = k(n−1)− r, where
1 ≤ r ≤ n− 1. Then G(A) ≤ (k − 1)(m− r − 1)− 1.

P r o o f. As observed by J. Dixmier [4], we may assume A to be saturated,
without loss of generality. This follows since A is contained in some saturated
set X such that G(X) = G(A).

Case 1: For all j ≤ k−1, |jA| ≥ min(m, 1 + j(n−1)). By the definition
of k, one has 1 + j(n− 1) = min(m, 1 + j(n− 1)). Hence

|Φ ∩ [1, (k − 1)m]| =
∑

1≤j≤k−1

|Φj | ≥
∑

1≤j≤k−1

(1 + j(n− 1))

= (k − 1)(2 + k(n− 1))/2 = (k − 1)(m+ r + 1)/2.

Recall that A ⊂ Φ ∩ [1, (k − 1)m] ⊂ Φ(A). It follows that G(A) = G(Φ ∩
[1, (k−1)m]). By (20), G(A) = G(Φ∩ [1, (k−1)m]) ≤ (k−1)(m−r−1)−1,
and the result holds in this case.

Case 2: There exists j ≤ k − 1 such that |jA| < min(m, 1 + j(n − 1)).
We have j ≥ 2. By Lemma 2.1, 2n ≤ m. Take a maximal i ≤ j−1 such that
|iA| ≥ 1+i(n−1). Put B = iA. We have |B+A| < min(m, |B|+ |A|−1). By
Mann’s Theorem (Corollary 4.3), there is a proper subgroup H such that
|H + A| ≤ |H|+ |A| − 2. By (23), G(A) ≤ (k − 1)(m− r − 1)− 1.

11. Exceptional families

Lemma 11.1. Assume gcd(m,d) = 1. Let x, y ∈ Zm. There is at most
one arithmetic progression P with difference d and extremities x, y such that
|P | ≤ m/2.

P r o o f. Let P be such an arithmetic progression. The other arithmetic
progression with difference d and extremities x and y isQ = (Zm\P )∪{x, y}.
It follows that |Q| ≥ m− |P |+ 2 > m/2.
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Let q ∈ N∗ and let x ∈ Z. We denote by ηq(x) the unique integer y such
that y ≡ x mod q and 1 ≤ y ≤ q.

Lemma 11.2. Put m = m′d− r, where 1 ≤ r ≤ d− 1 and 3 ≤ d ≤ m/2.
Let 1 ≤ u ≤ d. Let X ⊂ [1,m] be such that |X| ≤ m/2 and X is an
arithmetic progression with difference d.

(i) If u, u+ r ∈ X, then ηd(u+ r) ∈ X.
(ii) If u, u+ d− r ∈ X, then ηd(u+ d− r) ∈ X.

P r o o f. Let us prove (i). Assume u, u+ r ∈ X. It follows that 2 ≤ |X| ≤
m/2. Therefore m ≥ 4. Set

P = {u, u+ d, . . . , ηm(u+m′d− d), ηm(u+m′d)}.
Since u+ m′d ≡ u+ m+ r ≡ u+ r mod m, we have ηm(u+ m′d) = u+ r.
Clearly P is an arithmetic progression with difference d containing u and
u + r. Obviously |P | ≤ 1 + m′ ≤ 1 + (m + d − 1)/d ≤ (m + 5)/3 ≤ m/2.
Since X is an arithmetic progression with difference d and since |X| ≤ m/2,
Lemma 11.1 shows that P ⊂ X. If u + r ≤ d, then u + r = ηd(u + r) ∈ P .
Suppose u + r > d. Since u, r ≤ d, we have 1 ≤ u + r − d ≤ d. But
u + (m′ − 1)d ≡ u + r − d mod m. Then u + r − d = ηd(u + r) ∈ P . In
particular ηd(u+ r) ∈ X. This proves (i). The proof of (ii) is similar.

Lemma 11.3. Let A ⊂ N∗ be a saturated subset such that gcd(A) = 1,
and |A| ≤ max(A)/2. If A is an arithmetic progression, then A ∈ F .

P r o o f. Notice that for every saturated subset X containing 1, we have
X = [1,max(X)]. Therefore 1 6∈ A. Put m = max(A). Choose d ∈ N∗
such that d ≤ m/2, and d is the difference of the progression. Observe that
such a d exists, since we may reverse the progression. On the other hand
gcd(m,d) = 1, since d generates Zm. Hence there is 1 ≤ r ≤ d− 1 such that
m = m′d− r. It follows that r generates the integers mod d. Put

A = {−vd, . . . ,−d, 0, d, . . . , wd}.
Let us prove that

w ≤ m′ − 1.

Suppose the contrary. Then ηm(m′d) = ηm(m + r) = r. Hence r ∈ A. It
follows that 2 ≤ r ≤ d − 1 and hence d ≥ 3. We prove by induction that
ηd(jr) ∈ A for 1 ≤ j ≤ d − 1. The result holds for j = 1. Assume it holds
for j. Clearly ηd(jr) + r ≤ d + r ≤ 2d ≤ m. Since A is saturated, we have
ηd(jr) + r ∈ A. It follows from Lemma 11.2 that ηd((j + 1)r) ∈ A. Since r
generates the integers modulo d, there is j ≤ d − 1 such that ηd(jr) = 1.
Hence 1 ∈ A, a contradiction.

Let us prove that
v ≤ m′ − 2.
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Assume the contrary. Then d− r = m− (m′ − 1)d ∈ A. It follows that 2 ≤
d− r ≤ d− 1 and hence d ≥ 3. We prove by induction that ηd(j(d− r)) ∈ A
for all 1 ≤ j ≤ d − 1. The result holds for j = 1. Assume it holds for j.
Clearly ηd(j(d−r))+d−r ≤ 2d−r < 2d ≤ m. Since A is saturated, we have
ηd(j(d−r))+d−r ∈ A. It follows from Lemma 11.2 that ηd((j+1)(d−r)) ∈ A.
Since d − r generates the integers modulo d, there is j ≤ d − 1 such that
ηd(j(d− r)) = 1. Hence 1 ∈ A, a contradiction.

Now A = {m,m− d, . . . ,m− vd} ∪ {d, . . . , wd}. Hence A ∈ F .

Let K be the set of all subsets A of N such that A = {m/2,m, x, x +
m/2, 2x}, where m is even and x < m/2.

Lemma 11.4. Let A be a saturated subset such that gcd(A) = 1 and
|A| ≤ max(A)/2. Assume that A is almost-periodic. Then A ∈ K ∪ F .

P r o o f. Let H be an almost-period of A. Put m = max(A) and m =
q|H|. Let A0, . . . , Au be anH-decomposition of A. Without loss of generality,
we may assume |A1| ≥ . . . ≥ |Au|.

Let us show that |Au| = 1. Assuming the contrary, we have |A0| = 1. By
(21) we have |A+H| < m. Since A generates Zm, A+H is not a subgroup.
Hence

Ai + Aj +H 6⊂ A+H

for some i, j ∈ {0, 1, . . . , u}. Necessarily 1 ≤ i, j, since A0 + A ⊂ A+H. By
(22), 2|H| = |Ai|+ |Aj| ≤ |H|+1, a contradiction. Hence |Au| = 1. We have

Ai + Aj +H ⊂ A+H

for all 0 ≤ i, j ≤ u−1, since otherwise by (22), 2|H| = |Ai|+ |Aj | ≤ |H|+ 1,
a contradiction. Put T = A \ Au. Therefore

T + T ⊂ A+H.

Assume first that T is a subgroup. Since |T | = n−1, we have T ={m/(n− 1),
2m/(n− 1), . . . ,m}. Since |Au| = 1, we have A ∈ F .

Assume now that T is not a subgroup. It follows that

T + T = A+H.

In particular T generates Zm. By (6) and (21),

|T + T | ≥ min(m, 3u|H|/2) = 3u|H|/2.
Therefore, 3u|H|/2 ≤ |T + T | = (u + 1)|H|. Hence u ≤ 2. Clearly A ∈ F ,
if u = 1. We may assume u = 2. Since T + T = A+H, we have A2 +H =
Ai+Aj+H for some 0 ≤ i, j ≤ 1. Necessarily i = j = 1. There is clearly r <
m/|H| such that A1 = {r, r+ q, . . . , r+m− q}. Clearly A0 = {q, 2q, . . . ,m}.
Since A is saturated, necessarily A2 = {2r}. Since A is saturated and 3r 6∈ A,
we have 3m/q > 3r > m. Therefore |H| = m/q < 3. It follows that |H| = 2
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and m is even. Clearly A = {m,m/2}∪{r,m/2+r}∪{2r} for some r < m/2.
Therefore A ∈ K.

Lemma 11.5. Let A be a saturated subset of N∗ such that gcd(A) = 1.
Put m = max(A). Let H be a proper subgroup of Zm. Suppose that A is
not almost-periodic and |A + H| ≤ |H| + |A| − 1. Assume that Φk 6= Zm.
Then Φk +H 6= Φk.

P r o o f. Let A0, A1, . . . , Au be an H-decomposition of A. Suppose on the
contrary that Φk is H-periodic. Since A generates Zm, Φk +A 6= Φk. There
are x ∈ A and z ∈ Φk such that x+ z 6∈ Φk. Choose 0 ≤ i ≤ u such that
x ∈ Ai. We have necessarily, 1 ≤ i ≤ u, since A0 ⊂ H. Since A is not almost-
periodic, we have |Ai| ≥ 2. Therefore there is y such that y ≤ m−1−q, and
y ∈ Ai. Since Φk is H-periodic, there is w ∈ Φk such that w ≤ (k − 1)m+ q
and z − w ∈ H. Clearly w + y ≤ (k − 1)m + q + m − q − 1 = km − 1. It
follows that w + y ∈ Φk. Therefore w + y ∈ Φk. Thus w + y +H ⊂ Φk. We
obtain a contradiction, since w + x+H = y + z +H.

As an exercise, the reader could prove in few lines that under the hy-
pothesis of Lemma 11.5, A cannot be H-periodic.

12. An upper bound for the Frobenius number

Theorem 12.1 (see [12]). Let A ⊂ N∗ be a finite subset such that
gcd(A) = 1. Suppose A 6∈ F ∪ K. Put n = |A| and m = max(A). Set
m = kn− r, where 1 ≤ r ≤ n. Then

G(A) ≤ (k − 1)(m− r)− 1.(28)

P r o o f. (28) reduces to (20) if m < 2n. Suppose m ≥ 2n. Assume first
that A is not saturated. Then there are a, b ∈ A such that a + b < m and
a + b 6∈ A. Put A′ = A ∪ {a + b}. Clearly G(A′) = G(A). By Dixmier’s
Theorem 10.1, G(A) = G(A′) ≤ (k − 1)(m− r − 1)− 1, if r ≤ n− 1. So we
may assume r = n. By Theorem 10.1,

G(A) = G(A′) ≤ (k − 2)(m− 2)− 1 = (k − 1)(m− r)− 1− 2k + 4.

But 2n ≤ m = kn−n. Therefore k ≥ 3. Hence G(A) ≤ (k− 1)(m− r)− 1−
2k + 4. So assume A is saturated. Let ν be the canonical morphism from Z
onto Zm. We write Y = ν(Y ) for every Y ⊂ Z.

Case 1: κ2(A) ≥ n− 1. We now prove that for all j ≤ k − 1,

|Φj| ≥ jn.(29)

Assume first κ2(A) ≥ n. By (2), |jA| ≥ min(m − 1, |(j − 1)A| + n). By
iterating, we get |jA| ≥ min(m− 1, jn) = jn. By (19), we have (29). So we
may assume κ2(A) = n − 1. Let H be a 2-atom containing 0. By Lemma
11.4, A is not almost-periodic. By Lemma 11.3, A is not an arithmetic
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progression. By Proposition 6.5, H is a proper subgroup. By Lemma 11.5,
Φj−1 +H 6= Φj−1. By Theorem 6.4, |Φj−1 +A| ≥ min(m−1, |Φj−1|+n). By
(18), |Φj | ≥ min(m− 1, |Φj−1|+n). By induction, we obtain (29). Therefore

|Φ ∩ [1, (k − 1)m]| ≥
∑

1≤j≤k−1

jn = k(k − 1)n/2 = (k − 1)(m+ r)/2.

By (20),

G(A) = G(Φ∩[1, (k−1)m]) ≤ 2(k−1)m−(k−1)(m+r)−1 = (k−1)(m−r)−1.

Case 2: κ2(A) ≤ n − 2. Let H be a 2-atom containing 0. By Theorem
6.2, H is a proper subgroup. We have n− 2 ≥ κ2(A) = |H + A| − |H|. The
result now follows from (24).

Theorem 12.1 is used in [12] to get some best possible bounds for G(A)
and even the uniqueness of the examples where the bound is attained.

Corollary 12.2. Let A ⊂ N∗ have max(A) = m and |A| = n. Suppose
m ≥ n(n− 1). If A 6∈ (F ∪ K), then G(A) < G(m,m− 1, . . . ,m− n+ 1).

P r o o f. Put m−2 = s(n−1)+r, where 0 ≤ r ≤ n−2. We have s ≥ r+2,
since otherwise m ≤ (r+ 1)(n− 1) + r ≤ n(n− 1)− 1, a contradiction. Put
s − r − 2 = jn − t, where 1 ≤ t ≤ n. Notice that j ≥ 1. We also have
s ≥ 2 + n(j − 1) ≥ j + 1. We have m = (s− j)n− t.

Set D = G(m,m− 1, . . . ,m− n+ 1)−G(A). By (28) and (17), we have

D ≥ s(m− n+ 1)− (s− j − 1)(m− t)
≥ jm+ t(s− j − 1) +m− s(n− 1) > 0.

The Frobenius number for sets that are unions of two arithmetic progres-
sions with the same difference was investigated by A. Janz [13]. She showed
that for m ≥ (9n3− 30n2 + 4n− 22)/4 non-congruent to 0 or 1 mod (n− 1),
G(A) ≤ G(m,m− 1, . . . ,m− n+ 1) for all A ∈ F . As shown in [12], G(A)
may be evaluated using (16). One may use this idea to get an easy proof of
a sharper result.

Lemma 12.3. Let A ∈ F be such that gcd(A) = 1. Assume max(A) = m
and |A| = n ≥ 2. Put m = k(n − 1) + r, where 0 ≤ r ≤ n − 2. Suppose
m ≥ n3 − 1. Then for 2 ≤ r ≤ n − 2, and A 6= {m,m− 1, . . . ,m− n + 1},
G(A) < k(m− n+ 1)− 1.

P r o o f. Set E = k(m−n+ 1)− 1−G(A). Suppose on the contrary that
E ≤ 0. Set A ∪ {0} = {0, d, 2d, . . . , (n− j)d} ∪ {m− u,m− u− d, . . . ,m−
u− (j − 1)d}. We have n− j 6= 0, since otherwise A would be an arithmetic
progression with difference d > 1, and hence E > 0, by (17). By (16),

G(A) ≤ (d− 1)(m− u− (j − 1)d− 1)− 1 ≤ (d− 1)(m− 1− (j − 1)d)− 1.

Set k(j−1)+r = s(n−j)+t, 0 ≤ t ≤ n−j−1. Clearly m = (k+s)(n−j)+t.
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Since A is saturated, we must have (n − j + 1)d > m. It follows that d =
[m/(n− j)] = k + s. We have

G(A) ≤ (k + s− 1)(m− 1− (j − 1)(k + s))− 1

= (k + s− 1)(m− 1− s(n− j)− t+ r − (j − 1)s)− 1

= (k + s− 1)(m− 1− (n− 1)s+ r − t)− 1

≤ (k + s− 1)(m− 1− (n− 1)s+ r)− 1.

Notice that s ≥ 0 by the definition. Also we have k ≥ 2, since otherwise
n3 − 1 ≤ m ≤ 2n− 3, a contradiction. It follows that

E ≥ k(k(n− 1)− n+ 1 + r)− (k + s− 1)(k(n− 1) + r − 1− (n− 1)s+ r)

≥ k(k(n− 1)− 1)− (k + s− 1)(k(n− 1) + 2n− 5− (n− 1)s)

= (n− 1)s2 − (3n− 6)s+ 2k − k(n− 1) + 2n− 5

> (n− 1)(s− 3/2)2 − k(n− 1).

Therefore s < 3/2 +
√
k. On the other hand, we have

k(j − 1) < s(n− j) + t ≤ (s+ 1)(n− j)− 1.

Therefore s+ 1 > k(j − 1)/(n− j) ≥ k/(n− 2). It follows that k/(n− 2) <
5/2 +

√
k. Thus

√
k < n+ 1/2 and so k ≤ n2 + n. Hence

m = k(n− 1) + r ≤ (k + 1)(n− 1)− 1 ≤ (n− 1)(n2 + n+ 1)− 1 = n3 − 2,

a contradiction.

Corollary 12.4. Put m = k(n− 1) + r, where 0 ≤ r ≤ n− 2. Suppose
n 6= 5 and m ≥ n3−1. Also assume 2 ≤ r. Let W0 have the maximal Frobe-
nius number among n-element sets W with gcd(W ) = 1 and max(W ) = m.
Then W0 = {m,m− 1, . . . ,m− n+ 1}.

P r o o f. By (17), G(m,m − 1, . . . ,m − n + 1) = k(m − n + 1) − 1. By
Corollary 12.2, we may assume W0 ∈ F . The result follows easily from
Lemma 12.3.

Let A have gcd(A) = 1 and max(A) = m. Recall that for r ∈ {0, 1, 2},
Theorem 10.1 implies that G(A) ≤ [(m− 2)(m− n+ 1)/(n− 1)] − 1. As-
sume now 3 ≤ r. Corollary 12.4 implies that

G(A) ≤
[
m− 2
n− 1

]
(m− n+ 1)− 1 <

[
(m− 2)(m− n+ 1)

n− 1

]
− 1.

Hence Lewin’s conjecture holds. Moreover the inequality is strict for r ≥ 3.
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