The 4 -rank of the tame kernel versus the 4 -rank of the narrow class group in quadratic number fields

by
Qin Yue (Shanghai and Jiangsu) and Keqin Feng (Beijing)

1. Introduction. In the paper, we mainly investigate the relation between the 4 -rank of the tame kernel of a quadratic number field $F=\mathbb{Q}(\sqrt{d})$ and the 4 -rank of the narrow class group of a quadratic number field $E=$ $\mathbb{Q}(\sqrt{-d})$.

Let O_{F} be the ring of integers of a number field F. For a finite Abelian group A, we shall denote by A_{2} its 2 -Sylow subgroup, by ${ }_{2} A$ its subgroup consisting of elements of order at most 2 , by $r_{2}(A)$ its 2 -rank, and by $r_{4}(A)$ its 4 -rank.

A large number of papers have contributed to determining the structure of the 2-Sylow subgroup of $K_{2} O_{F}$. By $[2,4,9]$ we have known 2-ranks and 4 -ranks of $K_{2} O_{F}$ for general number fields F. Specifically, for quadratic fields F, J. Browkin and A. Schinzel [2] have given 2-rank formulas of $K_{2} O_{F}$, and H. Qin $[10,11]$ has got a method to calculate 4 -ranks of $K_{2} O_{F}$. Recently, J. Hurrelbrink and M. Kolster [8] have generalized and improved the results of $[10,11]$ and have presented an effective way of computing 4-ranks of $K_{2} O_{F}$ for these relative quadratic extensions via the F_{2}-ranks of certain matrices (the analog of the Rédei matrices) of the local Hilbert symbol.

The aim of this paper is to show two formulas: for a real quadratic field $F=\mathbb{Q}(\sqrt{d})$ and an imaginary quadratic field $E=\mathbb{Q}(\sqrt{-d})$,

$$
r_{4}\left(K_{2} O_{F}\right)=a(F)+r_{4}(C(E)),
$$

where $C(E)$ is the narrow class group of E and $a(F)=-1,0$, or 1 is determined by F;

$$
r_{4}\left(K_{2} O_{E}\right)=a(E)+r_{4}(C(F)),
$$

where $C(F)$ is the narrow class group of F and $a(E)=-1,0$, or 1 is determined by E.

[^0]We directly use the Rédei matrices to get the values of $a(F)$ and $a(E)$. On the other hand, for some imaginary quadratic fields, we give their Tate kernels.
2. Rédei's criteria. Let $F=\mathbb{Q}(\sqrt{d})$ be a quadratic field and D the discriminant of F. We shall denote the narrow class group of F by $C(F)$ and $N_{F / \mathbb{Q}}\left(F^{*}\right)$ by $N F$. Then

$$
r_{4}(C(F))=r_{2}\left({ }_{2} C(F) \cap C(F)^{2}\right)
$$

L. Rédei [12] gave a criterion for $r_{4}(C(F))$. Let $D(F)$ be the set of all squarefree positive integers $q \mid D$. Then $D(F)$ is an elementary Abelian 2group with multiplication $q_{1} \cdot q_{2}=q_{1} q_{2} /\left(q_{1}, q_{2}\right)^{2}$. For $n(\neq 0) \in \mathbb{Z}$, we denote by $[n]$ the squarefree rational integer satisfying the relation $n=[n] a^{2}$ for some $a \in \mathbb{Z}$. Let $q \in D(F)$ and $q^{\prime}=[q D]$. We call q a D-norm divisor if $q \in$ $N F$. Then q is a D-norm divisor if and only if the equation $q x^{2}-q^{\prime} y^{2}-z^{2}=0$ has a non-trivial solution $x, y, z \in \mathbb{Z}$ if and only if $\left(\frac{q}{p}\right)=1$ for every odd prime $p \mid q^{\prime}$, and $\left(\frac{-q^{\prime}}{p}\right)=1$ for every odd prime $p \mid q$.

Let $D(N F)$ be the subgroup of $D(F)$ consisting of all D-norm divisors. For $q \in D(F)$, let Q be the ideal of F such that $(q)=Q^{2}$ and $\operatorname{cl}(Q) \in{ }_{2} C(F)$ be the narrow ideal class containing Q. Rédei proved that $\operatorname{cl}(Q) \in C(F)^{2}$ if and only if $q \in D(N F)$ by the Gauss theorem and that the map

$$
\alpha: D(N F) \rightarrow{ }_{2} C(F) \cap C(F)^{2}, \quad q \mapsto \operatorname{cl}(Q)
$$

is a surjective homomorphism with $|\operatorname{ker} \alpha|=2$. Hence

$$
r_{4}(C(F))=r_{2}(D(N F))-1
$$

In particular, if $D<0$, then $\operatorname{ker} \alpha=\{1,[-D]\}$, and we have $q \in D(N F)$ if and only if $-q^{\prime} \in D(N F)$.

Rédei also related a criterion for $r_{4}(C(F))$ to the rank of a certain matrix with coefficients in $\mathbb{Z} / 2 \mathbb{Z}$. Suppose that a positive integer n is prime to D; we shall write $a=\left(\frac{D}{n}\right)^{\prime}$ if the Jacobi symbol $\left(\frac{D}{n}\right)=(-1)^{a}$ with $a \in \mathbb{Z} / 2 \mathbb{Z}$. The discriminants $p^{*}=(-1)^{(p-1) / 2} p$ (p odd prime), $-4,8,-8(p=2)$ are called prime discriminants. Let $D=p_{1}^{*} \ldots p_{t}^{*}$ be the unique decomposition of D into a product of prime discriminants. In the case $2 \mid D$, put $p_{t}=2$. We define a $t \times t$ square matrix $A_{F}=\left(a_{i j}\right)$ with coefficients in $\mathbb{Z} / 2 \mathbb{Z}$ by

$$
a_{i j}= \begin{cases}\left(\frac{p_{i}^{*}}{p_{j}}\right)^{\prime} & \text { if } i \neq j \tag{2.1}\\ \left(\frac{D / p_{i}^{*}}{p_{i}}\right)^{\prime} & \text { if } i=j\end{cases}
$$

Note that the sum of all rows of A_{F} is 0 .

Let A_{F}^{\prime} be the $(t-1) \times t$ matrix obtained from A_{F} by deleting the t th row. Then rank $A_{F}^{\prime}=\operatorname{rank} A_{F}$. By the reciprocity law, we have

$$
\begin{align*}
A_{F}^{\prime} & =\left(\begin{array}{ccccc}
\left(\frac{D / p_{1}^{*}}{p_{1}}\right)^{\prime} & \left(\frac{p_{1}^{*}}{p_{2}}\right)^{\prime} & \ldots & \left(\frac{p_{1}^{*}}{p_{t-1}}\right)^{\prime} & \left(\frac{p_{1}^{*}}{p_{t}^{*}}\right)^{\prime} \\
\cdots & \cdots & \ldots & \because & \ldots \\
\left(\frac{p_{t-1}^{*}}{p_{1}}\right)^{\prime} & \left(\frac{p_{t-1}^{*}}{p_{2}}\right)^{\prime} & \ldots & \left(\frac{D / p_{t-1}^{*}}{p_{t-1}}\right)^{\prime} & \left(\frac{p_{t-1}^{*}}{p_{t}}\right)^{\prime}
\end{array}\right) \tag{2.2}\\
& =\left(\begin{array}{ccccc}
\left(\frac{D / p_{1}^{*}}{p_{1}}\right)^{\prime} & \left(\frac{p_{2}}{p_{1}}\right)^{\prime} & \ldots & \left(\frac{p_{t-1}}{p_{1}}\right)^{\prime} & \left(\frac{p_{t}}{p_{1}}\right)^{\prime} \\
\cdots & \cdots & \ldots & \ldots & \cdots \\
\left(\frac{p_{1}}{p_{t-1}}\right)^{\prime} & \left(\frac{p_{2}}{p_{t-1}}\right)^{\prime} & \ldots & \left(\frac{D / p_{t-1}^{*}}{p_{t-1}}\right)^{\prime} & \left(\frac{p_{t}}{p_{t-1}}\right)^{\prime}
\end{array}\right) .
\end{align*}
$$

For $q \in D(F)$, we define $X_{q}={ }^{t}\left(x_{1}, \ldots, x_{t}\right) \in(\mathbb{Z} / 2 \mathbb{Z})^{t}$ by

$$
x_{i}=\left\{\begin{array}{ll}
1 & \left(p_{i} \mid q\right) \\
0 & \left(p_{i} \nmid q\right)
\end{array} \quad(i=1, \ldots, t) .\right.
$$

Then we have $A_{F}^{\prime} X_{q}=0$ if and only if $A_{F} X_{q}=0$ if and only if

$$
\begin{cases}\left(\frac{q}{p}\right)=1 & \text { for every odd prime } p \mid q^{\prime} \\ \left(\frac{(q / p)\left(D / p^{*}\right)}{p}\right)=1 & \text { for every odd prime } p \mid q\end{cases}
$$

if and only if $\left(\frac{q}{p}\right)=1$ for every odd prime $p \mid q^{\prime}$, and $\left(\frac{-q^{\prime}}{p}\right)=1$ for every odd prime $p \mid q$, if and only if the equation $q x^{2}-q^{\prime} y^{2}-z^{2}=0$ has a non-trivial solution $x, y, z \in \mathbb{Z}$. Hence, the map

$$
\theta: D(N F) \rightarrow\left\{y \in(\mathbb{Z} / 2 \mathbb{Z})^{t} \mid A_{F} X_{q}=0\right\}, \quad q \mapsto X_{q}
$$

is an isomorphism, and we have

$$
r_{4}(C(F))=r_{2}(D(N F))-1=t-1-\operatorname{rank} A_{F}
$$

3. Real quadratic fields. In the section, let $F=\mathbb{Q}(\sqrt{d})$ be a real quadratic field, and $d>2$ a squarefree integer. J. Browkin and A. Schinzel [2] have given all elements of order 2 of $K_{2} O_{F}$.

LEmma 3.1. Let $F=\mathbb{Q}(\sqrt{d})$, $d>2$ a squarefree integer, and p a fixed odd prime divisor of d. Then all elements of order at most 2 of $K_{2} O_{F}$ are of the form

$$
\left\{-1, m \gamma_{j}\right\}
$$

where m is an odd divisor of d positive and negative but $p \nmid m, \gamma_{1}=1$, and $\gamma_{j}=u_{j}+\sqrt{d}, u_{j}^{2}-j w_{j}^{2}=d, u_{j}, w_{j} \in \mathbb{N}, j \in\{-1, \pm 2\} \cap N F$.

In [10], H. Qin has given conditions for $K_{2} O_{F}$ to have elements of order 4.
Lemma 3.2. Let $F=\mathbb{Q}(\sqrt{d})$, $d>2$ a squarefree integer, and m an odd positive divisor of d.
(1) There is a $\beta \in K_{2} O_{F}$ such that $\beta^{2}=\{-1, m\}$ if and only if there is an $\varepsilon \in\{ \pm 1, \pm 2\}$ such that

$$
\begin{align*}
\left(\frac{\varepsilon d m^{-1}}{p}\right) & =1 \\
\left(\frac{\varepsilon m}{p}\right) & =1 \tag{3.1}
\end{align*} \quad \text { for every overy odd prime } p \mid m,
$$

(2) If $2 \in N F, d=u^{2}-2 w^{2}, u, w \in \mathbb{N}$, then there is a $\beta \in K_{2} O_{F}$ such that $\beta^{2}=\{-1, m(u+\sqrt{d})\}$ if and only if there is an $\varepsilon \in\{ \pm 1\}$ such that

$$
\begin{align*}
\left(\frac{\varepsilon d m^{-1}(u+w)}{p}\right) & =1 & & \text { for every odd prime } p \mid m \tag{3.2}\\
\left(\frac{\varepsilon m(u+w)}{p}\right) & =1 & & \text { for every odd prime } p \mid d m^{-1}
\end{align*}
$$

In what follows, we shall investigate the conditions (3.1) and (3.2) to set up the relation between the 4-rank of $\mathrm{K}_{2} \mathrm{O}_{F}$ of the real quadratic field $F=\mathbb{Q}(\sqrt{d})$ and the 4-rank of the narrow class group $C(E)$ of the imaginary field $E=\mathbb{Q}(\sqrt{-d})$.

Definition 3.1. Let $F=\mathbb{Q}(\sqrt{d}), d>2$ a squarefree integer. We define
$S_{0}=\{m \mid m$ is an odd positive divisor of $d\}$,
$S_{1}=\left\{\varepsilon m \mid m \in S_{0}\right.$ and $\varepsilon \in\{1,2\}$ satisfy (3.1) $\}$,
$S_{2}=\left\{|\varepsilon| m \mid m \in S_{0}\right.$ and $\varepsilon \in\{-1,-2\}$ satisfy (3.1), but $\left.m, 2 m \notin S_{1}\right\}$.
If $2 \in N F, d=u^{2}-2 w^{2}, u, w \in \mathbb{N}$, we define

$$
\begin{aligned}
S_{1}^{\prime} & =\left\{m(u+\sqrt{d}) \mid m \in S_{0} \text { and } \varepsilon=1 \text { satisfy }(3.2)\right\} \\
S_{2}^{\prime} & =\left\{m(u+\sqrt{d}) \mid m \in S_{0} \text { and } \varepsilon=-1 \text { satisfy }(3.2), \text { but } m \notin S_{1}^{\prime}\right\}
\end{aligned}
$$

In fact, if -1 or -2 is in $N F$, then $S_{2}=S_{2}^{\prime}=\emptyset$. Similarly to $D(F)$, we define $\bar{S}_{1}=S_{1}$, which is an elementary Abelian 2 -group, and $\bar{S}_{2}=$ $\left(S_{2} \cup S_{1}\right)$ is the group generated by the set $S_{2} \cup S_{1}$ with multiplication $m_{1} \cdot m_{2}=m_{1} m_{2} /\left(m_{1}, m_{2}\right)^{2}$. If $2 \in N F, u^{2}-2 w^{2}=d, u, w \in \mathbb{N}$, we define $\bar{S}_{1}^{\prime}=\left(S_{1}^{\prime} \cup S_{1}\right)$ to be the group generated by the set $S_{1}^{\prime} \cup S_{1}$ and $\bar{S}_{2}^{\prime}=$ $\left(S_{2}^{\prime} \cup S_{1}\right)$ to be the group generated by the set $S_{2}^{\prime} \cup S_{1}$ with multiplication $\left(m_{1}(u+\sqrt{d})\right) \cdot m_{2}=\left(m_{1} \cdot m_{2}\right)(u+\sqrt{d}),\left(m_{1}(u+\sqrt{d})\right) \cdot\left(m_{2}(u+\sqrt{d})\right)=m_{1} \cdot m_{2}$.

Lemma 3.3. Notations as above.
(1) If $2 \notin N F$, then $r_{4}\left(K_{2} O_{F}\right)=r_{2}\left(S_{1}\right)+s-1$, where

$$
s= \begin{cases}1 & \text { if } S_{2} \neq \emptyset \\ 0 & \text { if } S_{2}=\emptyset\end{cases}
$$

(2) If $2 \in N F$, then $r_{4}\left(K_{2} O_{F}\right)=r_{2}\left(S_{1}\right)+s^{\prime}-2$, where

$$
s^{\prime}= \begin{cases}2 & \text { if } S_{2}, S_{1}, S_{2}^{\prime} \text { are all non-empty } \\ 1 & \text { if only one of } S_{2}, S_{1}^{\prime}, S_{2}^{\prime} \text { is non-empty } \\ 0 & \text { if } S_{2}=S_{1}^{\prime}=S_{2}^{\prime}=\emptyset\end{cases}
$$

Proof. (1) Let $2 \notin N F$. Suppose $S_{2} \neq \emptyset$, so take $m \in S_{2}$. Then $m S_{1}=$ $\left\{m \cdot m_{1} \mid m_{1} \in S_{1}\right\}=S_{2}$ and $m S_{2}=\left\{m \cdot m_{2} \mid m_{2} \in S_{2}\right\}=S_{1}$. Hence $S=\bar{S}_{1} \bar{S}_{2}=(m) \times S_{1}$. By Lemmas 3.1 and 3.2 , the map $\gamma: S \rightarrow{ }_{2} K_{2} O_{F} \cap$ $\left(K_{2} O_{F}\right)^{2}, a \mapsto\{-1, a\}$, is a surjective homomorphism of two groups, and $\operatorname{ker} \gamma=(d) \subset S_{1}$. Therefore $r_{4}\left(K_{2} O_{F}\right)=r_{2}\left({ }_{2} K_{2} O_{F} \cap\left(K_{2} O_{F}\right)^{2}\right)=r_{2}(S)-1$ $=r_{2}\left(S_{1}\right)-1+s$, where $s=0$ if $S_{2}^{\prime}=\emptyset$ or $s=1$ if $S_{2}^{\prime} \neq \emptyset$.
(2) Let $2 \in N F$. Similarly, if $S_{i}^{\prime} \neq \emptyset$, then $\bar{S}_{i}^{\prime}=(m(u+\sqrt{d})) \times S_{1}$, where $m(u+\sqrt{d}) \in S_{i}^{\prime}, i=1,2$; if two of $S_{2}, S_{1}^{\prime}, S_{2}^{\prime}$ are non-empty, then the third is non-empty; if $S_{2}, S_{1}^{\prime}, S_{2}^{\prime}$ are all non-empty, then $S=\bar{S}_{1} \bar{S}_{2} \bar{S}_{1}^{\prime} \bar{S}_{2}^{\prime}=$ $(m) \times\left(m_{1}(u+\sqrt{d})\right) \times S_{1}$, where $m \in S_{2}$ and $m_{1}(u+\sqrt{d}) \in S_{1}^{\prime}$. On the other hand, the map $\gamma^{\prime}: S \rightarrow{ }_{2} K_{2} O_{F} \cap\left(K_{2} O_{F}\right)^{2}, a \mapsto\{-1, a\}$, is a surjective homomorphism and ker $\gamma^{\prime}=(2) \times(d) \subset S_{1}$. Hence $r_{4}\left(K_{2} O_{F}\right)=r_{2}\left({ }_{2} K_{2} O_{F} \cap\right.$ $\left.\left(K_{2} O_{F}\right)^{2}\right)=r_{2}(S)-2=r_{2}\left(S_{1}\right)+s^{\prime}-2$, where $s^{\prime}=0$ if $S_{2}=S_{1}^{\prime}=S_{2}^{\prime}=\emptyset$, or $s^{\prime}=1$ if only one of $S_{2}, S_{1}^{\prime}, S_{2}^{\prime}$ is non-empty, or $s^{\prime}=2$ if $S_{2}, S_{1}^{\prime}, S_{2}^{\prime}$ are all non-empty.

Lemma 3.4. Notations as above. Suppose $d \equiv-1 \bmod 8$. Then $S_{2}=\emptyset$ and $S_{2}^{\prime}=\emptyset$ if $2 \in N F$.

Proof. Suppose odd $m \in S_{2}$. Then $\left(\frac{d m^{-1}}{p}\right)=\left(\frac{-1}{p}\right)$ for every odd prime $p \mid m$, and $\left(\frac{m}{p}\right)=\left(\frac{-1}{p}\right)$ for every odd prime $p \mid d m^{-1}$. By $d \equiv-1 \bmod 8$ and the quadratic reciprocity law, $\left(\frac{d m^{-1}}{m}\right)=\left(\frac{m}{d m^{-1}}\right)$, so $\left(\frac{-1}{m}\right)=\left(\frac{-1}{d m^{-1}}\right)$, which is contradictory. Similarly, we can prove that there is no even $2 m \in S_{2}$.

Let $2 \in N F, u^{2}-2 w^{2}=d, u, w \in \mathbb{N}$. Suppose $m(u+\sqrt{d}) \in S_{2}^{\prime}$. Then $\left(\frac{m(u+w)}{p}\right)=\left(\frac{-1}{p}\right)$ for every odd prime $p \mid d m^{-1}$ and $\left(\frac{d m^{-1}(u+w)}{p}\right)=\left(\frac{-1}{p}\right)$ for every odd prime $p \mid m$. By $d \equiv-1 \bmod 8$ and the quadratic reciprocity law, $\left(\frac{d m^{-1}}{m}\right)=\left(\frac{m}{d m^{-1}}\right)$. Also $2(u+w)^{2}=d+(u+2 w)^{2}$ and let $u+w=2^{i}(\overline{u+w})$, where $\overline{u+w}$ is odd. Then $1=\left(\frac{-d}{\overline{u+w}}\right)=\left(\frac{-m d m^{-1}}{\overline{u+w}}\right)$. Hence $\left(\frac{\overline{u+w}}{d m^{-1}}\right)=\left(\frac{\overline{u+w}}{m}\right)$ by $d \equiv-1 \bmod 8$ and the quadratic reciprocity. Therefore $\left(\frac{-1}{m}\right)=\left(\frac{-1}{d m^{-1}}\right)$, contrary to $d \equiv-1 \bmod 8$.

It is clear that S_{1} is related to the group $D(N E)$ of the quadratic field $E=\mathbb{Q}(\sqrt{-d})$, which is defined as in the second section, so we can get the following formula.

Theorem 3.1. Let $F=\mathbb{Q}(\sqrt{d}), E=\mathbb{Q}(\sqrt{-d}), d>2$ a squarefree integer, and $C(E)$ the (narrow) class group of E.
(1) If $2 \notin N F$, then $r_{4}\left(K_{2} O_{F}\right)=r_{4}(C(E))+s$, where

$$
s= \begin{cases}1 & \text { if } S_{2} \neq \emptyset, \text { or } d \equiv-1 \bmod 8 \text { and even } 2 m \in S_{1}, \\ 0 & \text { otherwise. }\end{cases}
$$

(2) If $2 \in N F$, then

$$
r_{4}\left(K_{2} O_{F}\right)= \begin{cases}r_{4}(C(E))+s^{\prime}-1 & \text { if } d \equiv \equiv-1 \bmod 8, \\ r_{4}(C(E))+s^{\prime} & \text { if } d \equiv-1 \bmod 8,\end{cases}
$$

where

$$
s^{\prime}= \begin{cases}2 & \text { if } S_{2}, S_{1}, S_{2}^{\prime} \text { are all empty, } \\ 1 & \text { if only one of } S_{2}, S_{1}^{\prime}, S_{2}^{\prime} \text { is non-empty }, \\ 0 & \text { if } S_{2}=S_{1}^{\prime}=S_{2}^{\prime}=\emptyset .\end{cases}
$$

Moreover, $r_{4}\left(K_{2} O_{F}\right)=r_{4}(C(E))+a(F)$, where $a(F)=-1,0$, or 1 is determined by F.

Proof. By Lemmas 3.3 and 3.4, it is sufficient to find the relation between $r_{2}\left(S_{1}\right)$ and $r_{4}(C(E))$.
(1) Let $2 \notin N F$. Suppose $d \not \equiv-1 \bmod 4$. Then $2 \mid D$, where D is the discriminant of $E=\mathbb{Q}(\sqrt{-d})$, so $D(N E)=S_{1}$. Hence $r_{4}(C(E))=$ $r_{2}(D(N F))-1=r_{2}\left(S_{1}\right)-1$.

Suppose $d \equiv-5 \bmod 8$. Then $2 \nmid D$. Also there is no even $2 m \in S_{1}$ by the quadratic reciprocity law (or $\left(\frac{2 d m^{-1}}{m}\right)=\left(\frac{2 m}{d m^{-1}}\right)$, which is contradictory). Hence $D(N E)=S_{1}$, so $r_{4}(C(E))=r_{2}\left(S_{1}\right)-1$.

Suppose that $d \equiv-1 \bmod 8$ and there is an even $2 m \in S_{1}$. Then $S_{1}=$ $(2 m) \times D(N E)$, so $r_{4}(C(E))=r_{2}\left(S_{1}\right)-2$.
(2) If $2 \in N F$, then $2 \in S_{1}$. Suppose $d \not \equiv-1 \bmod 4$. Then $2 \mid D$, where D is the discriminant of E, and $D(N E)=S_{1}$, so $r_{4}(C(E))=r_{2}\left(S_{1}\right)-1$. Suppose $d \equiv-1 \bmod 8$. Then $2 \nmid D(=-d)$ and $S_{1}=(2) \times D(N E)$, so $r_{4}(C(E))=r_{2}\left(S_{1}\right)-2$.

In Theorem 3.1, in order to get the value of $r_{4}\left(K_{2} O_{F}\right)$ clearly, we use the Rédei matrix to determine if $S_{2}, S_{1}^{\prime}, S_{2}^{\prime}$ are empty.

Theorem 3.2. Let $F=\mathbb{Q}(\sqrt{d}), E=\mathbb{Q}(\sqrt{-d})$, and $d>2$ a squarefree integer.
(1) If $2 \notin N F$ and $d \equiv-1 \bmod 8$, then there is an even $2 m \in S_{1}$ if and only if the system of equations

$$
\begin{equation*}
A_{E}^{\prime} X=B^{\prime} \tag{3.3}
\end{equation*}
$$

is solvable, where $B^{\prime}={ }^{t}\left(\left(\frac{2}{p_{1}}\right)^{\prime}, \ldots,\left(\frac{2}{p_{t-1}}\right)^{\prime}\right)$ and A_{E}^{\prime} is defined as (2.2).
(2) If $-1,-2 \notin N F$, then $S_{2}=\emptyset$ if and only if the system (3.3) has no solution, where $B^{\prime}={ }^{t}\left(\left(\frac{-1}{p_{1}}\right)^{\prime}, \ldots,\left(\frac{-1}{p_{t-1}}\right)^{\prime}\right)$ if $d \not \equiv-1 \bmod 4$ and $B^{\prime}=$ ${ }^{t}\left(\left(\frac{-2}{p_{1}}\right)^{\prime}, \ldots,\left(\frac{-2}{p_{t-1}}\right)^{\prime}\right)$ if $d \equiv 3 \bmod 8$.
(3) If $2 \in N F$, then $S_{1}^{\prime}=\emptyset$ if and only if the system (3.3) has no solution, where $B^{\prime}={ }^{t}\left(\left(\frac{u+w}{p_{1}}\right)^{\prime}, \ldots,\left(\frac{u+w}{p_{t-1}}\right)^{\prime}\right)$.
(4) If $2 \in N F,-1 \notin N F$, and $d \not \equiv-1 \bmod 8$, then $S_{2}^{\prime}=\emptyset$ if and only if the system (3.3) has no solution, where $B^{\prime}={ }^{t}\left(\left(\frac{-u-w}{p_{1}}\right)^{\prime}, \ldots,\left(\frac{-u-w}{p_{t-1}}\right)^{\prime}\right)$.

Proof. (1) If $d \equiv-1 \bmod 8$ and $2 \notin N F$, then $D=-d$ is the discriminant of E and $1=\left(\frac{2}{d}\right)=\left(\frac{2}{p_{1}}\right) \ldots\left(\frac{2}{p_{t}}\right)$. For $2 m \in S_{1}$, we define $X_{m}={ }^{t}\left(x_{1}, \ldots, x_{t}\right) \in(\mathbb{Z} / 2 \mathbb{Z})^{t}$ by

$$
x_{i}= \begin{cases}1 & \text { if } p_{i} \mid m \\ 0 & \text { if } p_{i} \nmid m\end{cases}
$$

where $i=1, \ldots, t$. So we have $A_{E}^{\prime} X_{m}=B^{\prime}$, where $B^{\prime}={ }^{t}\left(\left(\frac{2}{p_{1}}\right)^{\prime}, \ldots,\left(\frac{2}{p_{t-1}}\right)^{\prime}\right)$, if and only if $A_{E} X_{m}=B$, where $B={ }^{t}\left(\left(\frac{2}{p_{1}}\right)^{\prime}, \ldots,\left(\frac{2}{p_{t}}\right)^{\prime}\right)$, if and only if

$$
\begin{cases}\left(\frac{m}{p}\right)=\left(\frac{2}{p}\right) & \text { for every prime } p \mid d m^{-1} \\ \left(\frac{d m^{-1}}{p}\right)=\left(\frac{2}{p}\right) & \text { for every prime } p \mid m\end{cases}
$$

if and only if $2 m \in S_{1}$.
(2) Suppose $d \not \equiv-1 \bmod 4$ and $-1,-2 \notin N F$. Then $D=-4 d$ is the discriminant of E and $p_{t}=2$. For $m \in S_{0}$ and $\varepsilon \in\{1,2\}$, we have $A_{E}^{\prime} X_{\varepsilon m}=$ B^{\prime}, where $X_{\varepsilon m}$ is defined as above and $B^{\prime}={ }^{t}\left(\left(\frac{-1}{p_{1}}\right)^{\prime}, \ldots,\left(\frac{-1}{p_{t-1}}\right)^{\prime}\right)$, if and only if

$$
\begin{cases}\left(\frac{\varepsilon m}{p}\right)=\left(\frac{-1}{p}\right) & \text { for every prime } p\left(\neq p_{t}\right) \mid d m^{-1} \\ \left(\frac{4 d(\varepsilon m)^{-1}}{p}\right)=\left(\frac{-1}{p}\right) & \text { for every prime } p\left(\neq p_{t}\right) \mid m\end{cases}
$$

if and only if $\varepsilon m \in S_{2}$.
Suppose $d \equiv 3 \bmod 8$ and $-1,-2 \notin N F$. Then $D=-d$ is the discriminant of E, odd $m \notin S_{2}$ by the quadratic reciprocity law, and $1=\left(\frac{-2}{d}\right)=$ $\left(\frac{-2}{p_{1}}\right) \ldots\left(\frac{-2}{p_{t}}\right)$. Similarly to (1), we can get the second part of (2).
(3) If $2 \in N F, d=u^{2}-2 w^{2}, u, w \in \mathbb{N}$, and $2(u+w)^{2}=d+(u+2 w)^{2}$, we need only consider the case of $d \equiv-1 \bmod 8$. Let $u+w=2^{i} \overline{u+w}$, where $\overline{u+w}$ is odd. Then

$$
1=\left(\frac{-d}{\overline{u+w}}\right)=\left(\frac{\overline{u+w}}{d}\right)=\left(\frac{u+w}{p_{1}}\right) \ldots\left(\frac{u+w}{p_{t}}\right)
$$

by $2 \in N F, d \equiv-1 \bmod 8$, and the quadratic reciprocity law. Similarly to (1), we can get (3).
(4) It is clear.

Corollary 3.1. Let $F=\mathbb{Q}(\sqrt{d}), E=\mathbb{Q}(\sqrt{-d}), d>2$ a squarefree integer, -1 or $-2 \in N F$, and $C(E)$ the (narrow) class group of E.
(1) If $2 \notin N F$, then the 2 -Sylow subgroup of $K_{2} O_{F}$ is elementary Abelian if and only if $r_{4}(C(E))=0$.
(2) If $2 \in N F$, then the 2 -Sylow subgroup of $K_{2} O_{F}$ is elementary Abelian if and only if $r_{4}(C(E))=1$ and the system (3.3) is not solvable, where $B^{\prime}={ }^{t}\left(\left(\frac{u+w}{p_{1}}\right)^{\prime}, \ldots,\left(\frac{u+w}{p_{t-1}}\right)^{\prime}\right)$.

Proof. Since -1 or -2 is in $N F, d \not \equiv-1 \bmod 8$ by the quadratic reciprocity law. If $2 \notin N F$, by Theorem 3.1, we can get (1). If $2 \in N F$, then $d \equiv 1$ or $2 \bmod 8$ and $r_{4}(C(E)) \geq 1$, so we can get (2) by Theorem 3.1.
4. Imaginary quadratic field. For an imaginary quadratic field $E=$ $\mathbb{Q}(\sqrt{-d})$, by $[14]$, we have $\left[\Delta_{E}: E^{* 2}\right]=4$, where $\Delta_{E}=\left\{a \in E^{*} \mid\{-1, a\}=\right.$ $1\}$ is called the Tate kernel of E.
J. Browkin and A. Schinzel [2] have given all elements of order 2 of $K_{2} O_{E}$.

Lemma 4.1. Let $E=\mathbb{Q}(\sqrt{-d}), d>2$ a squarefree integer. Then all elements of order at most 2 of $K_{2} O_{F}$ are of the form

$$
\left\{-1, m \gamma_{j}\right\}, \quad j=1,2,
$$

where m is an odd positive divisor of $D, \gamma_{1}=1$, and $\gamma_{2}=u+\sqrt{-d},-d=$ $u^{2}-2 w^{2}, u, w \in \mathbb{N}$. Moreover there is a unique $m \gamma_{j}(\neq 1) \in \Delta_{E}$.

In [11], H. Qin has given conditions for $K_{2} O_{E}$ to have elements of order 4.
Lemma 4.2. Let $E=\mathbb{Q}(\sqrt{-d}), F=\mathbb{Q}(\sqrt{d}), d>2$ a squarefree integer, and m an odd positive divisor of d.
(1) There is a $\beta \in K_{2} O_{E}$ such that $\beta^{2}=\{-1, m\}$ if and only if there is $\varepsilon \in\{1,2\}$ such that $\varepsilon m \in N F$.
(2) If $2 \in N E,-d=u^{2}-2 w^{2}, u, w \in \mathbb{N}$, then there is a $\beta \in K_{2} O_{E}$ such that $\beta^{2}=\{-1, m(u+\sqrt{-d})\}$ if and only if $m(u+w) \in N F$.

Definition 4.1. Let $E=\mathbb{Q}(\sqrt{-d}), d>2$ a squarefree integer. We define

$$
\begin{aligned}
S_{0} & =\{m \mid m \text { is an odd positive divisor of } d\}, \\
T & =\left\{\varepsilon m \in N F \mid m \in S_{0} \text { and } \varepsilon \in\{1,2\}\right\} .
\end{aligned}
$$

If $2 \in N E,-d=u^{2}-2 w^{2}, u, w \in \mathbb{N}$, we define

$$
T^{\prime}=\left\{m(u+\sqrt{-d}) \mid m \in S_{0} \text { and } m(u+w) \in N F\right\} .
$$

Similarly, T is the group with multiplication $m_{1} \cdot m_{2}=m_{1} m_{2} /\left(m_{1}, m_{2}\right)^{2}$, and $\bar{T}^{\prime}=\left(T^{\prime} \cup T\right)$ is the group generated by the set $T^{\prime} \cup T$ with multiplication $m_{1}(u+\sqrt{-d}) \cdot m_{2}(u+\sqrt{-d})=m_{1} \cdot m_{2}, m_{1} \cdot m_{2}(u+\sqrt{-d})=\left(m_{1} \cdot m_{2}\right)$ $\cdot(u+\sqrt{-d})$. In fact, if $T^{\prime} \neq \emptyset$, then $\bar{T}^{\prime}=(m(u+\sqrt{-d})) \times T$, where
$m(u+\sqrt{-d}) \in T^{\prime}$. Note that, by [11], there is a $\delta(\neq 1,2) \in T \cup T^{\prime}$ such that $\delta \in \Delta_{E}$.

Lemma 4.3. Notations as above.
(1) If $2 \notin N E$, then $r_{4}\left(K_{2} O_{E}\right)=r_{2}(T)-1$.
(2) If $2 \in N E$, then $r_{4}\left(K_{2} O_{E}\right)=r_{2}(T)+s-2$, where

$$
s= \begin{cases}1 & \text { if } T^{\prime} \neq \emptyset \\ 0 & \text { if } T^{\prime}=\emptyset\end{cases}
$$

Proof. (1) If $2 \notin N E$, then $\alpha: T \rightarrow{ }_{2} K_{2} O_{E} \cap\left(K_{2} O_{E}\right)^{2}, a \mapsto\{-1, a\}$, is a surjective homomorphism and $\operatorname{ker} \alpha=\{1, \varepsilon m\}$, where $\{-1, \varepsilon m\}=1$ and $\varepsilon m \neq 1,2$. Hence $r_{4}\left(K_{2} O_{F}\right)=r_{2}(T)-1$.
(2) If $2 \in N F$, then $\alpha: \bar{T}^{\prime} \rightarrow{ }_{2}\left(K_{2} O_{E}\right) \cup\left(K_{2} O_{E}\right)^{2}, \varepsilon m \gamma_{j} \mapsto\left\{-1, \varepsilon m \gamma_{j}\right\}$, $j=1,2$, is surjective homomorphism and $\operatorname{ker} \alpha=\left\{1,2,2 m \gamma_{j}, m \gamma_{j}\right\}$, where $\left\{-1, m \gamma_{j}\right\}=1$ and $m \gamma_{j} \neq 1,2$. Hence $r_{4}\left(K_{2} O_{E}\right)=r_{2}\left(\bar{T}^{\prime}\right)-2=r_{2}(T)+s-2$, where $s=1$ if $T^{\prime} \neq \emptyset$ or $s=0$ if $T^{\prime}=\emptyset$.

Theorem 4.1. Let $F=\mathbb{Q}(\sqrt{d}), E=\mathbb{Q}(\sqrt{-d}), d>2$ a squarefree integer, and $C(F)$ the narrow class group of F.
(1) If $2 \notin N E$, then $r_{4}\left(K_{2} O_{E}\right)=r_{4}(C(F))+s$, where

$$
s= \begin{cases}1 & \text { if } d \equiv 1 \bmod 8 \text { and } 2 m \in T \\ 0 & \text { otherwise }\end{cases}
$$

(2) If $2 \in N E$, then

$$
r_{4}\left(K_{2} O_{E}\right)= \begin{cases}r_{4}(C(F))+s^{\prime} & \text { if } d \equiv 1 \bmod 8 \\ r_{4}(C(F))+s^{\prime}-1 & \text { if } d \not \equiv 1 \bmod 8\end{cases}
$$

where

$$
s^{\prime}= \begin{cases}1 & \text { if } T^{\prime} \neq \emptyset \\ 0 & \text { if } T^{\prime}=\emptyset\end{cases}
$$

Moreover, $r_{4}\left(K_{2} O_{E}\right)=r_{4}(C(F))+a(E)$, where $a(E)=-1,0$, or 1 is determined by E.

Proof. By Lemma 4.3, the relation between T and $D(N F)$, and by $r_{4}(C(F))=r_{2}(D(N F))-1$, we get the result.

Corollary 4.1. Notations as above.
(1) If $2 \notin N E$, then $r_{4}\left(K_{2} O_{E}\right)=0$ if and only if $r_{4}(C(F))=0$, and $2 m \notin T$ if $d \equiv 1 \bmod 8$.
(2) If $2 \in N E$ and $d \equiv 1 \bmod 8$, then $r_{4}\left(K_{2} O_{E}\right)=0$ if and only if $r_{4}(C(F))=0$ and $T^{\prime}=\emptyset$.
(3) If $2 \in N E$ and $d \not \equiv 1 \bmod 8$, then $r_{4}\left(K_{2} O_{F}\right)=0$ if and only if $r_{4}(C(F))=1$ and $T^{\prime}=\emptyset$, or $r_{4}(C(F))=0$ and $T^{\prime} \neq \emptyset$.

Theorem 4.2. Let $F=\mathbb{Q}(\sqrt{d}), E=\mathbb{Q}(\sqrt{-d}), d>2$ a squarefree integer, $C(F)$ the narrow class group of F, and A_{F}^{\prime} defined as in (2.2).
(1) If $2 \notin N E$ and $d \equiv 1 \bmod 8$, then there is even $2 m \in T$ if and only if the system of equations

$$
\begin{equation*}
A_{F}^{\prime} X=B^{\prime} \tag{4.1}
\end{equation*}
$$

is solvable, where A_{F}^{\prime} is defined as in (2.2) and $B^{\prime}={ }^{t}\left(\left(\frac{2}{p_{1}}\right)^{\prime}, \ldots,\left(\frac{2}{p_{t-1}}\right)^{\prime}\right)$.
(2) If $2 \in N F,-d=u^{2}-2 w^{2}, u, w \in \mathbb{N}$, then $T^{\prime} \neq \emptyset$ if and only if the system (4.1) is solvable, where $B^{\prime}={ }^{t}\left(\left(\frac{u+w}{p_{1}}\right)^{\prime}, \ldots,\left(\frac{u+w}{p_{t-1}}\right)^{\prime}\right)$.

Proof. Proceed as in the proof of Theorem 3.2.
Let $F=\mathbb{Q}(\sqrt{d})$ be a real quadratic field. By genus theory, there is a unique $q(\neq 1) \in D(N F)$ such that $Q^{2}=(q)$ and $\operatorname{cl}(Q)=1$ in the narrow class group $C(F)$. We call the q the dependent divisor of ambiguous ideals of F. Suppose $r_{4}\left(K_{2} O_{E}\right)=0$. We set up a relation between the Tate kernel of $K_{2} O_{E}$ and the dependent divisor of ambiguous ideals of F.

Theorem 4.3. Let $F=\mathbb{Q}(\sqrt{d}), E=\mathbb{Q}(\sqrt{-d}), d>2$ a squarefree integer. Suppose $r_{4}\left(K_{2} O_{E}\right)=0$. Then, if $q(\neq 2)$ is the dependent divisor of ambiguous ideals of $F, \Delta_{E}=(\{2, q\}) E^{* 2} ;$ if 2 is the dependent divisor of ambiguous ideals of $F, \Delta_{E}=(\{2, m(u+\sqrt{-d})\}) E^{* 2}$, where $m(u+\sqrt{-d}) \in T^{\prime}$.

Proof. If $2 \notin N E$ and $r_{4}\left(K_{2} O_{E}\right)=0$, then, by Corollary 4.1, $r_{4}(C(F))$ $=0$, and $2 m \notin T$ if $d \equiv 1 \bmod 8$. Hence $\operatorname{rank} A_{F}=t-1$ and there is a unique $q(\neq 1,2) \in D(N F)=T$ such that $A_{F} X_{q}=0$. Therefore q is the dependent divisor of ambiguous ideals of F and $q \in \Delta_{E}$.

If $2 \in N E, d \equiv 1 \bmod 8$ and $r_{4}\left(K_{2} O_{E}\right)=0$, then by Corollary 4.1, we have the same result as above.

If $2 \in N E, d \not \equiv 1 \bmod 8$ and $r_{4}\left(K_{2} O_{E}\right)=0$, then by Corollary 4.1, we need to consider two cases.

The first case: $r_{4}(C(F))=1$ and $T^{\prime}=\emptyset$. Then rank $A_{F}=t-2$ and $\bar{T}^{\prime}=T=D(N F)$. Hence $D(N F)=\{1,2, q, 2 q\}$. Suppose that 2 is the dependent divisor of ambiguous ideals of F. Since $2(u+w)^{2}=(u+2 w)^{2}-d$, we have $((u+2 w)+\sqrt{d})=Q_{2} Q_{u+w}^{2}$, where Q_{2} and Q_{u+w} are ideals of F with $Q_{2}^{2}=(2)$ and $Q_{u+w} Q_{u+w}^{\prime}=(u+w)$. Then $\operatorname{cl}\left(Q_{u+w} 2\right)^{2}=\operatorname{cl}\left(Q_{2}\right)=1$. Hence, by genus theory, $\operatorname{cl}\left(Q_{u+w}\right)=\operatorname{cl}\left(Q_{m}\right)$, where Q_{m} is an ideal of F with $Q_{m}^{2}=(m)$ and $m \in D(F)$. So $\operatorname{cl}\left(Q_{u+w} Q_{m}\right)=1 \in C(F)^{2}$ and $m(u+w)=N_{F / \mathbb{Q}}\left(Q_{u+w} Q_{m}\right) \in N F$, contrary to $T^{\prime}=\emptyset$. Therefore, q or $2 q$ is the dependent divisor of ambiguous ideals of F and $q, 2 q \in \Delta_{E}$.

The second case: $r_{4}(C(F))=0$ and $T^{\prime} \neq \emptyset$. Then $\operatorname{rank} A_{F}=t-1$, $D(N F)=T=\{1,2\}$, and $\overline{T^{\prime}}=(m(u+\sqrt{-d})) \times T$. Hence 2 is the dependent divisor of ambiguous ideals of F and $m(u+\sqrt{-d}) \in \Delta_{E}$.

Question. Suppose $r_{4}\left(K_{2} O_{E}\right) \geq 1$. Do we have results similar to Theorem 4.3?

Acknowledgements. The authors would like to thank the referee for helpful suggestions which resulted in the present version.

References

[1] B. Brauckmann, The 2-Sylow-subgroup of the tame kernel of number fields, Canad. J. Math. 43 (1991), 255-264.
[2] J. Browkin and A. Schinzel, On Sylow 2-subgroups of $K_{2} O_{F}$ for quadratic fields F, J. Reine Angew. Math. 331 (1982), 104-113.
[3] A. Candiotti and K. Kramer, On the 2-Sylow subgroup of the Hilbert kernel of K_{2} of number fields, Acta Arith. 52 (1989), 49-65.
[4] P. E. Conner and J. Hurrelbrink, The 4-rank of $K_{2} O_{F}$, Canad. J. Math. 41 (1989), 932-960.
[5] K. Q. Feng, Non-congruent numbers, odd graphs and the Birch-Swinnerton-Dyer conjecture, Acta Arith. 75 (1996), 71-83.
[6] E. Hecke, Lecture on the Theory of Algebraic Numbers, Grad. Texts in Math. 77, Springer, 1981.
[7] J. Hurrelbrink, Circular graphs and 4-ranks of ideal class groups, Canad. J. Math. 46 (1994), 169-183.
[8] J. Hurrelbrink and M. Kolster, Tame kernels under relative quadratic extensions and Hilbert symbols, J. Reine Angew. Math. 499 (1998), 145-188.
[9] M. Kolster, The structure of the 2-Sylow subgroup of $K_{2}(O), I$, Comment. Math. Helv. 61 (1986), 376-388.
[10] H. Qin, The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields, Acta Arith. 69 (1995), 153-169.
[11] -, The 4-rank of $K_{2} O_{F}$ for real quadratic fields F, ibid. 72 (1995), 323-333.
[12] L. Rédei, Arithmetischer Beweis des Satzes über die Anzahl der durch 4 teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, J. Reine Angew. Math. 171 (1935), 55-60.
[13] Y. Sueyoshi, On a comparison of the 4-ranks of the narrow ideal class groups of $\mathbb{Q}(\sqrt{d})$ and $\mathbb{Q}(\sqrt{-d})$, Kyushu J. Math. 51 (1997), 261-272.
[14] J. Tate, Relations between K_{2} and Galois cohomology, Invent. Math. 36 (1976), 257-274.

Institute of Mathematics
Fudan University
Shanghai 200433, P.R. China
Department of Mathematics
Xuzhou Normal University
Jiangsu 221009, P.R. China
E-mail: yue-qin@263.net

Department of Mathematics
Tsinghua University
Beijing 100000, P.R. China
E-mail: kqfeng@public.bta.net.cn

[^0]: 2000 Mathematics Subject Classification: 11R65, 11R70, 19C99, 19D50.
 The paper is supported by the National Natural Science Foundation and Morningside Center of Math., CAS.

