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QIN YUE (Shanghai and Jiangsu) and KEQIN FENG (Beijing)

1. Introduction. In the paper, we mainly investigate the relation be-
tween the 4-rank of the tame kernel of a quadratic number field F = Q(v/d)
and the 4-rank of the narrow class group of a quadratic number field £ =
Qv—a).

Let Op be the ring of integers of a number field F'. For a finite Abelian
group A, we shall denote by A, its 2-Sylow subgroup, by 2A its subgroup
consisting of elements of order at most 2, by r2(A) its 2-rank, and by 74(A)
its 4-rank.

A large number of papers have contributed to determining the structure
of the 2-Sylow subgroup of KxOp. By [2, 4, 9] we have known 2-ranks and
4-ranks of K5O for general number fields F'. Specifically, for quadratic fields
F, J. Browkin and A. Schinzel [2] have given 2-rank formulas of K30, and
H. Qin [10, 11] has got a method to calculate 4-ranks of KoOp. Recently,
J. Hurrelbrink and M. Kolster [8] have generalized and improved the results
of [10, 11] and have presented an effective way of computing 4-ranks of K2Op
for these relative quadratic extensions via the Fs-ranks of certain matrices
(the analog of the Rédei matrices) of the local Hilbert symbol.

The aim of this paper is to show two formulas: for a real quadratic field
F = Q(v/d) and an imaginary quadratic field F = Q(v/—d),

ra(K20p) = a(F) + ry(C(E)),
where C(E) is the narrow class group of E and a(F) = —1,0, or 1 is deter-
mined by F

r4(K20p) = a(E) + r4(C(F)),
where C(F) is the narrow class group of F' and a(E) = —1,0, or 1 is deter-
mined by FE.
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We directly use the Rédei matrices to get the values of a(F) and a(E).
On the other hand, for some imaginary quadratic fields, we give their Tate
kernels.

2. Rédei’s criteria. Let F = Q(v/d) be a quadratic field and D the
discriminant of F'. We shall denote the narrow class group of F' by C(F)
and Np,q(F™) by NF'. Then

ra(C(F)) = r2(2C(F) N C(F)?).

L. Rédei [12] gave a criterion for r4(C(F)). Let D(F) be the set of all
squarefree positive integers ¢ | D. Then D(F') is an elementary Abelian 2-
group with multiplication q; g2 = q1g2/(q1, q2)?. For n (# 0) € Z, we denote
by [n] the squarefree rational integer satisfying the relation n = [n]a? for
some a € Z. Let ¢ € D(F) and ¢’ = [¢D]. We call ¢ a D-norm divisor if q €
NF. Then qis a D-norm divisor if and only if the equation gz%—¢'y?>—22 = 0
has a non-trivial solution z,y,z € Z if and only if (%) = 1 for every odd
prime p|¢’, and (%‘1/) =1 for every odd prime p|q.

Let D(NF') be the subgroup of D(F) consisting of all D-norm divisors.
For ¢ € D(F), let Q be the ideal of F' such that (¢q) = Q? and cl(Q) € 2C(F)
be the narrow ideal class containing Q. Rédei proved that cl(Q) € C(F)? if
and only if ¢ € D(NF) by the Gauss theorem and that the map

o : DINF) = ,C(F)NC(F)?, g cl(Q),
is a surjective homomorphism with |ker a| = 2. Hence
r4(C(F)) =r2(D(NF)) — 1.
In particular, if D < 0, then kera = {1,[—D]}, and we have ¢ € D(NF) if
and only if —¢' € D(NF).

Rédei also related a criterion for r4(C(F')) to the rank of a certain matrix
with coefficients in Z/27Z. Suppose that a positive integer n is prime to D;
we shall write a = (%), if the Jacobi symbol (£) = (—=1)* with a € Z/2Z.
The discriminants p* = (—1)®P=1/2p (p odd prime), —4,8, -8 (p = 2) are
called prime discriminants. Let D = p] ...p; be the unique decomposition
of D into a product of prime discriminants. In the case 2| D, put p; = 2.
We define a t x ¢ square matrix Ap = (a;;) with coefficients in Z /27 by

N
(’i) if i # j,
pj

D/pr\’
(_/1%) ifi=j.
Di

Note that the sum of all rows of A is 0.

(21) Qij =
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Let A% be the (¢t — 1) x t matrix obtained from Ap by deleting the tth
row. Then rank A% = rank Ap. By the reciprocity law, we have

0 ¢ TP ) B
' e (pt_l)/ (pt_l)’ (D/'p.Z._1)’ (Pt__1)/
P1 D2 Pt—1 Pt

S BT C 0 B (O

= SR
) G (SR )

For ¢ € D(F), we define X, = *(z1,...,2;) € (Z/2Z)" by

R 1 (pi|Q) i =
:131—{0 (pi 1) (i=1,...,1).

Then we have A% X, = 0 if and only if ApX, = 0 if and only if

<g> =1 for every odd prime p|¢’,
p

D *
(W) =1 for every odd prime p]|g,

if and only if (%) = 1 for every odd prime p|¢’, and (;q/) = 1 for every odd
prime p| ¢, if and only if the equation qz? — ¢'y?> — 22 = 0 has a non-trivial
solution z,y, z € Z. Hence, the map

0:D(NF)— {y € (Z/22)" | ArX, =0}, q— X,
is an isomorphism, and we have

r4(C(F)) =r2(D(NF))—1=t—1—rank Ap.

3. Real quadratic fields. In the section, let F = Q(v/d) be a real
quadratic field, and d > 2 a squarefree integer. J. Browkin and A. Schinzel
[2] have given all elements of order 2 of K5Op.

LEMMA 3.1. Let F = Q(\/E), d > 2 a squarefree integer, and p a fixed
odd prime divisor of d. Then all elements of order at most 2 of KO are
of the form

{_Lm’Yj}’
where m is an odd divisor of d positive and negative but ptm, v1 = 1, and
Vi = U +Vd, u? —jwjz =d, uj,w; €N, je{-1,£2} N NF.

In [10], H. Qin has given conditions for K5O to have elements of order 4.

LEMMA 3.2. Let F = Q(\/d), d > 2 a squarefree integer, and m an odd
positive divisor of d.
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(1) There is a 8 € KaOF such that 32 = {—1,m} if and only if there is
an e € {£1,+2} such that

d —1
<€ mn > =1 for every odd prime p|m,
(3.1) P
(%) =1 for every odd prime p|dm™1!.
(2) If2€ NF, d =u® - 2w?, u,w € N, then there is a 3 € KoOp such
that 3% = {—1,m(u+ v/d)} if and only if there is an e € {1} such that
<5dm1(u+w)

> =1 for every odd prime p|m,
p

(W) =1 for every odd prime p|dm~'.

In what follows, we shall investigate the conditions (3.1) and (3.2) to
set up the relation between the 4-rank of K>Op of the real quadratic field
F = Q(+/d) and the 4-rank of the narrow class group C(FE) of the imaginary
field £ = Q(v/—d).

DEFINITION 3.1. Let F = Q(V/d), d > 2 a squarefree integer. We define

So = {m | m is an odd positive divisor of d},

S1={em|m e Sy and e € {1,2} satisfy (3.1)},

So ={lelm | m € Sy and € € {—1, —2} satisfy (3.1), but m, 2m & S; }.
If2€ NF,d=u?—-2w? u,w €N, we define

S = {m(u+Vd) | me Sy and e = 1 satisfy (3.2)},
Sy = {m(u+Vd) | m e Sy and e = —1 satisfy (3.2), but m & S} }.

In fact, if —1 or =2 is in NF, then Sy = S5 = (). Similarly to D(F),
we define S7 = S, which is an elementary Abelian 2-group, and Ss =
(S2 U Sy) is the group generated by the set Sy U S; with multiplication
my - mg = mima/(my,mo)?. If 2 € NF, u? — 2w? = d, u,w € N, we define

I = (81 US7) to be the group generated by the set S7 U Sy and S, =
(54 U S1) to be the group generated by the set S, U S with multiplication
(ma(ut-Vd)-mz = (my-ma) (u+V/d), (mi(utVd))-(ma(utVd) = mi-mo.

LEMMA 3.3. Notations as above.

(1) If 2¢ NF, then r4(K2Op) = 1r2(S1) + s — 1, where

10 if So=0.
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(2) If 2 € NF, then r4(K2Op) = r2(S1) + 8" — 2, where

2 if S9, 51,85 are all non-empty,
s'=1< 1 if only one of So,S7,Sh is non-empty,
0 if So=8]=5,=10.

Proof. (1) Let 2 ¢ NF. Suppose Sy # (), so take m € Ss. Then mS; =
{m-mq | my € S1} = Sy and mSy = {m -my | my € So} = S;. Hence
S =81S5 = (m) x S;. By Lemmas 3.1 and 3.2, the map v : S — 2 Ko0p N
(K20F)?%, a — {—1,a}, is a surjective homomorphism of two groups, and
kery = (d) C S;. Therefore 14(K20p) =12(2 K20 N (K20r)?) =12(S) — 1
=1ry(S1) — 1+ s, where s =01if S, =0 or s =1 if S} # ().

(2) Let 2 € NF. Similarly, if S/ # 0, then S, = (m(u 4+ Vd)) x Si,
where m(u++v/d) € S, i = 1,2; if two of Sy, S, S, are non-empty, then the
third is non-empty; if So, S, S5 are all non-empty, then S = 515,575}, =
(m) x (my(u-++/d)) x S1, where m € Sy and m1(u++/d) € S;. On the other
hand, the map 7' : S — 2K20Fp N (K20r)?, a — {—1,a}, is a surjective
homomorphism and ker v’ = (2) x (d) C S;. Hence r4(K20p) = r2(2 KoOpN
(K20Fr)?) = 19(S) —2 =19(S1) + 8 — 2, where s’ =0 if Sy = S| = S} =0,
or s’ =1 if only one of Sy, S}, S} is non-empty, or s’ = 2 if Sy, 57, S5 are all
non-empty.

LEMMA 3.4. Notations as above. Suppose d = —1 mod 8. Then Sy = ()
and S, =0 if2 € NF.

Proof. Suppose odd m € S5. Then (d";‘.%l) = (771) for every odd prime
p|m, and (%) = (%) for every odd prime p|dm~!. By d = —1 mod 8 and

the quadratic reciprocity law, (d”;nil) = ( T ), SO (_Wl) = (d’r:l,—ll)’ which

is contradictory. Similarly, we can prove that there is no even 2m € Ss.
Let 2 € NF, u? —2w? = d, u,w € N. Suppose m(u + v/d) € S}. Then

(77”(“;“’)) = (_71) for every odd prime p | dm ™! and (4dm711§u+w)) = (_71) for

every odd prime p|m. By d = —1 mod 8 and the quadratic reciprocity law,
(dm_l) = (72%1). Also 2(u+w)? = d+ (u+2w)? and let u+w = 2°(u + w),

m

where u+ w is odd. Then 1 = ( —d )= (*mdm_l). Hence (E) = (E)

utw utw dm—1 m
by d = —1 mod 8 and the quadratic reciprocity. Therefore (_Wl) = ( dr:;l)’
contrary to d = —1 mod 8.

It is clear that S; is related to the group D(NE) of the quadratic field
E = Q(v/—d), which is defined as in the second section, so we can get the
following formula.

THEOREM 3.1. Let F = Q(Vd), E = Q(v/—d), d > 2 a squarefree
integer, and C(E) the (narrow) class group of E.
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(1) If 2¢ NF, then r4(K20p) = r4(C(E)) + s, where

3:{1 if So # 0, or d = —1 mod 8 and even 2m € S,
0 otherwise.

(2) If 2 € NF, then

_Jr(C(E))+s —1 if d# —1modS8,
TﬂkboF)"{rdch»-%y if d=—1mod 8,
where
2 if Sy, 51,54 are all empty,
s’ =< 1 if only one of So, S}, Sh is non-empty,

0 ifSy=5=25,=0.

Moreover, r4(K2Op) = r4(C(E)) + a(F), where a(F) = —1, 0, or 1 is
determined by F.

Proof. By Lemmas 3.3 and 3.4, it is sufficient to find the relation be-
tween r3(S1) and r4(C(E)).

(1) Let 2 ¢ NF. Suppose d Z —1 mod 4. Then 2| D, where D is the
discriminant of E = Q(v/—d), so D(NE) = S;. Hence ry(C(E)) =
TQ(D(NF)) —1= 7“2(51) — 1.

Suppose d = —5 mod 8. Then 21 D. Also there is no even 2m € S; by the
quadratic reciprocity law (or (2‘1:7”{1 = diﬁl
Hence D(NE) = 51, so r4(C(E)) =r2(S1) — 1.

Suppose that d = —1 mod 8 and there is an even 2m € S;. Then S; =
(2m) x D(NE), so r4(C(E)) = r2(S1) — 2.

(2) If 2 € NF, then 2 € S;. Suppose d # —1 mod 4. Then 2| D, where
D is the discriminant of E, and D(NE) = Sy, so r4(C(E)) = r2(S1) — 1.
Suppose d = —1 mod 8. Then 2tD (= —d) and S; = (2) x D(NE), so
r4(C(E)) = ra2(S1) — 2.

In Theorem 3.1, in order to get the value of r4(K20F) clearly, we use
the Rédei matrix to determine if Sy, S, S5 are empty.

THEOREM 3.2. Let F = Q(\/E), E = Q(v—d), and d > 2 a squarefree
integer.

(1) If 2¢ NF and d = —1 mod 8, then there is an even 2m € Sy if and
only if the system of equations
(3.3) X =B
. / .
1s solvable, where B’ = t((p%),, e, (]%) ) and Alg is defined as (2.2).

(2) If —1,—2 ¢ NF, then So = 0 if and only if the system (3.3) has
no solution, where B’ = t((fl)/,...,( —1 )/) if d 2 —1mod4 and B' =

p_l Pt—1

(32 (5%)") if d=3mod 8.

P_l Pt—1

), which is contradictory).
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(3) If 2 € NF, then S7 = 0 if and only if the system (3.3) has no

. ! !
solution, where B’ = t((u;—lw) 7’(2115) )-

(4) If 2e€ NF, —1 &€ NF, and d # —1 mod 8, then S, = 0 if and only

if the system (3.3) has no solution, where B’ = t((ﬂ;—:w)/, e (%)’)

Proof (1) Ifd = —1mod8 and 2 ¢ NF, then D = —d is the dis-

criminant of £ and 1 = (2) = (p%)(p%) For 2m € Sy, we define

d
Xm = t(ajlw . .,$t) € (Z/QZ)t by

L 0 1fpz+m7

wherei = 1,...,t. So we have A} X,,, = B', where B’ = ((2 )/,...,( 2 )/),

P1

Pt—1
if and only if AgX,, = B, where B ="*((2)",..., (2)'), if and only if
2
<@> = <—> for every prime p|dm ™1,
p p
(%5-)- ) |
= (-] for every prime p|m,
p p

if and only if 2m € 5;.

(2) Suppose d # —1 mod 4 and —1,—2 ¢ NF. Then D = —4d is the
discriminant of E and p; = 2. For m € Sy and € € {1, 2}, we have AL X.,, =
B’ where X.,, is defined as above and B’ = t((_—l),, e (_—1)/), if and

p1 Pt—1
only if

-1
<€_m> — (_) for every prime p (# p¢) |dm 1,
p p
4d -1 -1
(%#) = (7> for every prime p (# p¢) | m,

if and only if em € S,.

Suppose d = 3mod 8 and —1,—2 ¢ NF. Then D = —d is the discrim-
inant of E, odd m ¢ S by the quadratic reciprocity law, and 1 = (_72) =
(;—12) . (;—f) Similarly to (1), we can get the second part of (2).

(3)If2 € NF, d = u?—-2w?, u,w € N, and 2(u+w)? = d+ (u+2w)?, we
need only consider the case of d = —1 mod 8. Let u + w = 2'u + w, where
u + w is odd. Then

1_( —d >_<u+w>_(u+w) <u+w>
C\utw /) d N P1 T\ e
by 2 € NF, d = —1 mod 8, and the quadratic reciprocity law. Similarly to

(1), we can get (3).
(4) It is clear.
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COROLLARY 3.1. Let F = Q(vd), E = Q(v/—d), d > 2 a squarefree
integer, —1 or —2 € NF, and C(E) the (narrow) class group of E.

(1) If 2 & NF, then the 2-Sylow subgroup of KoOp is elementary Abelian
if and only if r4(C(E)) = 0.

(2) If 2 € NF, then the 2-Sylow subgroup of K2Op is elementary Abelian
if and only if r4(C(E)) = 1 and the system (3.3) is not solvable, where
B ="((m5e) . (BE)).

P1 Pt—1
Proof. Since —1 or —2 is in NF, d # —1 mod 8 by the quadratic
reciprocity law. If 2 ¢ NF,| by Theorem 3.1, we can get (1). If 2 € NF', then
d=1or 2mod 8 and r4(C(FE)) > 1, so we can get (2) by Theorem 3.1.

4. Imaginary quadratic field. For an imaginary quadratic field F =
Q(v/—d), by [14], we have [Ap : E*?| =4, where Ap={a € E* | {~1,a} =
1} is called the Tate kernel of E.

J. Browkin and A. Schinzel [2] have given all elements of order 2 of
K>O0p.

LEMMA 4.1. Let E = Q(v/—d), d > 2 a squarefree integer. Then all
elements of order at most 2 of K3Op are of the form
{—1,777/}/]}, ] = 1727

where m is an odd positive divisor of D, y1 =1, and v2 = u++vV—d, —d =
u? — 2w?, u,w € N. Moreover there is a unique m~; (# 1) € Ag.

In [11], H. Qin has given conditions for K5Op to have elements of order 4.

LEMMA 4.2. Let E = Q(v/—d), F = Q(V/d), d > 2 a squarefree integer,
and m an odd positive divisor of d.

(1) There is a 3 € K2Og such that 3% = {—1,m} if and only if there is
e € {1,2} such that em € NF.

(2) If 2 € NE, —d = u® — 2w?, u,w € N, then there is a 3 € K20
such that 32 = {—1,m(u ++/—d)} if and only if m(u + w) € NF.

DEFINITION 4.1. Let E = Q(v/—d), d > 2 a squarefree integer. We define
So = {m | m is an odd positive divisor of d},
T={eme NF|mecS, and ¢ € {1,2}}.
If2€ NE, —d = u? — 2w?, u,w € N, we define
T = {m(u+v—d) | m € Sy and m(u +w) € NF}.

Similarly, 7" is the group with multiplication my-mg = myma/(my,ma)?,
and T” = (T"UT) is the group generated by the set 7"UT with multiplication
mi(u + v —=d) - ma(u 4+ vV—d) = my - my, my - ma(u+v=d) = (my - my)
“(u 4+ v—=d). In fact, if 7" # 0, then 7" = (m(u + V—d)) x T, where
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m(u + +/—d) € T'. Note that, by [11], there is a § (# 1,2) € T UT’ such
that § € Ag.

LEMMA 4.3. Notations as above.

(1) If 2 g NE, then 7“4(K20E) == T‘Q(T) — 1.
(2) If 2€ NE, then r4(K2Og) = ro(T) + s — 2, where

82{1 if T" # 0,
0 if T =0.

Proof. (1) If2¢ NE, then a: T — 3K20p N (K20g)?, a+— {-1,a},
is a surjective homomorphism and kera = {1,em}, where {—1,em} = 1
and em # 1,2. Hence r4(K20p) = ro(T) — 1.

(2) If2 € NF, then a : T' — 5(K20g)U(K20g)?%, emy; — {—1,em;},
J = 1,2, is surjective homomorphism and ker o = {1, 2, 2m~;, my;}, where
{—=1,my;} = 1and my; # 1,2. Hence ry(K20g) = ro(T") =2 = ro(T)+5-2,
where s =1if T" # (@ or s =0 if T" = 0.

THEOREM 4.1. Let F = Q(\d), E = Q(v/—d), d > 2 a squarefree
integer, and C(F) the narrow class group of F.
(1) If 2¢ NE, then r4(K20g) = r4(C(F)) + s, where

s:{l ifd=1mod 8 and 2m € T,
0 otherwise.

(2) If 2 € NE, then

[ ra(C(F)) + & if d=1mod 8,
r4(K20E) = {ri(c(p)) +s =1 if d#Z1modS8,

where
S/ — 1 @f TI 7& ®7
0 if T =0.
Moreover, r4(K2Og) = r4(C(F)) + a(E), where a(E) = —1,0, or 1 is
determined by E.

Proof. By Lemma 4.3, the relation between T' and D(NF'), and by
r4(C(F)) =ro( D(NF)) — 1, we get the result.
COROLLARY 4.1. Notations as above.
(1) If 2 ¢ NE, then r4(K20g) = 0 if and only if r4(C(F)) = 0, and
2m ¢ T if d =1 mod 8.
(2) If 2 € NE and d = 1mod 8, then r4(K20g) = 0 if and only if
r4(C(F)) =0 and T' = (.
(3) If 2 € NE and d # 1 mod 8, then r4(K2O0p) = 0 if and only if
ry(C(F)) =1 and T' =0, or r4(C(F)) =0 and T" # 0.
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THEOREM 4.2. Let F = Q(vd), E = Q(vV—d), d > 2 a squarefree
integer, C'(F') the narrow class group of F', and A’; defined as in (2.2).

(1) If 2¢ NE and d = 1 mod 8, then there is even 2m € T if and only
if the system of equations

(4.1) ALX =B
is solvable, where A’ is defined as in (2.2) and B’ = t(( 2 )I, el ( 2 )/)

p_1 pPt—1

(2) If 2€ NF, —d = u? — 2w?, u,w € N, then T" # () if and only if the

system (4.1) is solvable, where B' = t((“;r—lw)/, e (z:r_i’)/)

Proof. Proceed as in the proof of Theorem 3.2.

Let F' = @(\/E) be a real quadratic field. By genus theory, there is a
unique ¢ (# 1) € D(NF) such that Q% = (q) and cl(Q) = 1 in the narrow
class group C(F'). We call the ¢ the dependent divisor of ambiguous ideals
of F. Suppose 74(K20p) = 0. We set up a relation between the Tate kernel
of K2Op and the dependent divisor of ambiguous ideals of F.

THEOREM 4.3. Let F = Q(Vd), E = Q(vV—d), d > 2 a squarefree
integer. Suppose r4(K2Og) = 0. Then, if q (# 2) is the dependent divisor
of ambiguous ideals of F, Agp = ({2,¢})E*? if 2 is the dependent
divisor of ambiguous ideals of F, Ap = ({2,m(u + v—d)})E**, where
m(u++v—d) € T'.

Proof. If2 ¢ NFE and r4(K20g) = 0, then, by Corollary 4.1, r4(C(F))
=0, and 2m ¢ T if d = 1 mod 8. Hence rank Ar = ¢t — 1 and there is a
unique ¢ (# 1,2) € D(NF) = T such that Ap X, = 0. Therefore ¢ is the
dependent divisor of ambiguous ideals of ' and g € Ag.

If 2€ NE, d =1mod 8 and r4(K20g) = 0, then by Corollary 4.1, we
have the same result as above.

If2€ NE, d # 1 mod 8 and r4(K20pg) = 0, then by Corollary 4.1, we
need to consider two cases.

The first case: 74(C(F)) = 1 and 7/ = (. Then rank Ap = ¢t — 2 and
T'=T = D(NF). Hence D(NF) = {1,2,q,2q}. Suppose that 2 is the de-
pendent divisor of ambiguous ideals of F'. Since 2(u + w)? = (u + 2w)? — d,
we have ((u + 2w) + Vd) = Q2Q2 ., where Q2 and Q4 are ideals of F
with Q3 = (2) and Qu+wQ),, = (u+ w). Then cl(Quiw2)? = cl(Q2) = 1.
Hence, by genus theory, cl(Quiw) = cl(Qm), where @, is an ideal of F
with @2, = (m) and m € D(F). So c(QuiwQm) = 1 € C(F)? and
m(u + w) = Np/g(Quiw@m) € NF, contrary to T” = (). Therefore, ¢
or 2¢ is the dependent divisor of ambiguous ideals of F' and ¢, 2q € Ag.

The second case: r4(C(F)) = 0 and 77 # (. Then rank Ap = t — 1,
D(NF) =T ={1,2},and T" = (m(u++/—d)) x T. Hence 2 is the dependent
divisor of ambiguous ideals of F' and m(u + v/—d) € Ag.
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QUESTION. Suppose 74(K20pg) > 1. Do we have results similar to The-
orem 4.37
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