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of the narrow class group in quadratic number fields
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Qin Yue (Shanghai and Jiangsu) and Keqin Feng (Beijing)

1. Introduction. In the paper, we mainly investigate the relation be-
tween the 4-rank of the tame kernel of a quadratic number field F = Q(

√
d)

and the 4-rank of the narrow class group of a quadratic number field E =
Q(
√
−d).

Let OF be the ring of integers of a number field F . For a finite Abelian
group A, we shall denote by A2 its 2-Sylow subgroup, by 2A its subgroup
consisting of elements of order at most 2, by r2(A) its 2-rank, and by r4(A)
its 4-rank.

A large number of papers have contributed to determining the structure
of the 2-Sylow subgroup of K2OF . By [2, 4, 9] we have known 2-ranks and
4-ranks ofK2OF for general number fields F . Specifically, for quadratic fields
F , J. Browkin and A. Schinzel [2] have given 2-rank formulas of K2OF , and
H. Qin [10, 11] has got a method to calculate 4-ranks of K2OF . Recently,
J. Hurrelbrink and M. Kolster [8] have generalized and improved the results
of [10, 11] and have presented an effective way of computing 4-ranks ofK2OF
for these relative quadratic extensions via the F2-ranks of certain matrices
(the analog of the Rédei matrices) of the local Hilbert symbol.

The aim of this paper is to show two formulas: for a real quadratic field
F = Q(

√
d) and an imaginary quadratic field E = Q(

√
−d),

r4(K2OF ) = a(F ) + r4(C(E)),

where C(E) is the narrow class group of E and a(F ) = −1, 0, or 1 is deter-
mined by F ;

r4(K2OE) = a(E) + r4(C(F )),

where C(F ) is the narrow class group of F and a(E) = −1, 0, or 1 is deter-
mined by E.
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We directly use the Rédei matrices to get the values of a(F ) and a(E).
On the other hand, for some imaginary quadratic fields, we give their Tate
kernels.

2. Rédei’s criteria. Let F = Q(
√
d) be a quadratic field and D the

discriminant of F . We shall denote the narrow class group of F by C(F )
and NF/Q(F ∗) by NF . Then

r4(C(F )) = r2(2C(F ) ∩ C(F )2).

L. Rédei [12] gave a criterion for r4(C(F )). Let D(F ) be the set of all
squarefree positive integers q |D. Then D(F ) is an elementary Abelian 2-
group with multiplication q1 ·q2 = q1q2/(q1, q2)2. For n (6= 0) ∈ Z, we denote
by [n] the squarefree rational integer satisfying the relation n = [n]a2 for
some a ∈ Z. Let q ∈ D(F ) and q′ = [qD]. We call q a D-norm divisor if q ∈
NF . Then q is a D-norm divisor if and only if the equation qx2−q′y2−z2 = 0
has a non-trivial solution x, y, z ∈ Z if and only if

(
q
p

)
= 1 for every odd

prime p | q′, and
(−q′
p

)
= 1 for every odd prime p | q.

Let D(NF ) be the subgroup of D(F ) consisting of all D-norm divisors.
For q ∈ D(F ), let Q be the ideal of F such that (q) = Q2 and cl(Q) ∈ 2C(F )
be the narrow ideal class containing Q. Rédei proved that cl(Q) ∈ C(F )2 if
and only if q ∈ D(NF ) by the Gauss theorem and that the map

α : D(NF )→ 2C(F ) ∩ C(F )2, q 7→ cl(Q),

is a surjective homomorphism with |kerα| = 2. Hence

r4(C(F )) = r2(D(NF ))− 1.

In particular, if D < 0, then kerα = {1, [−D]}, and we have q ∈ D(NF ) if
and only if −q′ ∈ D(NF ).

Rédei also related a criterion for r4(C(F )) to the rank of a certain matrix
with coefficients in Z/2Z. Suppose that a positive integer n is prime to D;
we shall write a =

(
D
n

)′
if the Jacobi symbol

(
D
n

)
= (−1)a with a ∈ Z/2Z.

The discriminants p∗ = (−1)(p−1)/2p (p odd prime), −4, 8,−8 (p = 2) are
called prime discriminants. Let D = p∗1 . . . p

∗
t be the unique decomposition

of D into a product of prime discriminants. In the case 2 |D, put pt = 2.
We define a t× t square matrix AF = (aij) with coefficients in Z/2Z by

(2.1) aij =





(
p∗i
pj

)′
if i 6= j,

(
D/p∗i
pi

)′
if i = j.

Note that the sum of all rows of AF is 0.
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Let A′F be the (t− 1)× t matrix obtained from AF by deleting the tth
row. Then rankA′F = rankAF . By the reciprocity law, we have

A′F =



(D/p∗1

p1

)′ (p∗1
p2

)′
. . .

( p∗1
pt−1

)′ ( p∗1
p∗t

)′
. . . . . . . . . . . . . . .(p∗t−1

p1

)′ (p∗t−1

p2

)′
. . .

(D/p∗t−1

pt−1

)′ (p∗t−1

pt

)′


(2.2)

=



(D/p∗1

p1

)′ (
p2
p1

)′
. . .

(pt−1

p1

)′ (
pt
p1

)′
. . . . . . . . . . . . . . .(
p1
pt−1

)′ (
p2
pt−1

)′
. . .

(D/p∗t−1

pt−1

)′ (
pt
pt−1

)′


 .

For q ∈ D(F ), we define Xq = t(x1, . . . , xt) ∈ (Z/2Z)t by

xi =
{

1 (pi | q)
0 (pi - q)

(i = 1, . . . , t).

Then we have A′FXq = 0 if and only if AFXq = 0 if and only if




(
q

p

)
= 1 for every odd prime p | q′,

(
(q/p)(D/p∗)

p

)
= 1 for every odd prime p | q,

if and only if
(
q
p

)
= 1 for every odd prime p | q′, and

(−q′
p

)
= 1 for every odd

prime p | q, if and only if the equation qx2 − q′y2 − z2 = 0 has a non-trivial
solution x, y, z ∈ Z. Hence, the map

θ : D(NF )→ {y ∈ (Z/2Z)t | AFXq = 0}, q 7→ Xq,

is an isomorphism, and we have

r4(C(F )) = r2(D(NF ))− 1 = t− 1− rankAF .

3. Real quadratic fields. In the section, let F = Q(
√
d) be a real

quadratic field, and d > 2 a squarefree integer. J. Browkin and A. Schinzel
[2] have given all elements of order 2 of K2OF .

Lemma 3.1. Let F = Q(
√
d), d > 2 a squarefree integer , and p a fixed

odd prime divisor of d. Then all elements of order at most 2 of K2OF are
of the form

{−1,mγj},
where m is an odd divisor of d positive and negative but p -m, γ1 = 1, and
γj = uj +

√
d, u2

j − jw2
j = d, uj , wj ∈ N, j ∈ {−1,±2} ∩NF .

In [10], H. Qin has given conditions for K2OF to have elements of order 4.

Lemma 3.2. Let F = Q(
√
d), d > 2 a squarefree integer , and m an odd

positive divisor of d.
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(1) There is a β ∈ K2OF such that β2 = {−1,m} if and only if there is
an ε ∈ {±1,±2} such that

(3.1)

(
εdm−1

p

)
= 1 for every odd prime p |m,

(
εm

p

)
= 1 for every odd prime p | dm−1.

(2) If 2 ∈ NF, d = u2 − 2w2, u, w ∈ N, then there is a β ∈ K2OF such
that β2 = {−1,m(u+

√
d)} if and only if there is an ε ∈ {±1} such that

(3.2)

(
εdm−1(u+ w)

p

)
= 1 for every odd prime p |m,

(
εm(u+ w)

p

)
= 1 for every odd prime p | dm−1.

In what follows, we shall investigate the conditions (3.1) and (3.2) to
set up the relation between the 4-rank of K2OF of the real quadratic field
F = Q(

√
d) and the 4-rank of the narrow class group C(E) of the imaginary

field E = Q(
√
−d).

Definition 3.1. Let F = Q(
√
d), d > 2 a squarefree integer. We define

S0 = {m | m is an odd positive divisor of d},
S1 = {εm | m ∈ S0 and ε ∈ {1, 2} satisfy (3.1)},
S2 = {|ε|m | m ∈ S0 and ε ∈ {−1,−2} satisfy (3.1), but m, 2m 6∈ S1}.

If 2 ∈ NF , d = u2 − 2w2, u, w ∈ N, we define

S′1 = {m(u+
√
d) | m ∈ S0 and ε = 1 satisfy (3.2)},

S′2 = {m(u+
√
d) | m ∈ S0 and ε = −1 satisfy (3.2), but m 6∈ S′1}.

In fact, if −1 or −2 is in NF , then S2 = S′2 = ∅. Similarly to D(F ),
we define S1 = S1, which is an elementary Abelian 2-group, and S2 =
(S2 ∪ S1) is the group generated by the set S2 ∪ S1 with multiplication
m1 ·m2 = m1m2/(m1,m2)2. If 2 ∈ NF , u2 − 2w2 = d, u, w ∈ N, we define
S′1 = (S′1 ∪ S1) to be the group generated by the set S ′1 ∪ S1 and S′2 =
(S′2 ∪ S1) to be the group generated by the set S ′2 ∪ S1 with multiplication
(m1(u+

√
d))·m2 = (m1·m2)(u+

√
d), (m1(u+

√
d))·(m2(u+

√
d)) = m1·m2.

Lemma 3.3. Notations as above.

(1) If 2 6∈ NF , then r4(K2OF ) = r2(S1) + s− 1, where

s =
{

1 if S2 6= ∅,
0 if S2 = ∅.
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(2) If 2 ∈ NF , then r4(K2OF ) = r2(S1) + s′ − 2, where

s′ =





2 if S2, S1, S
′
2 are all non-empty ,

1 if only one of S2, S
′
1, S
′
2 is non-empty ,

0 if S2 = S′1 = S′2 = ∅.

P r o o f. (1) Let 2 6∈ NF . Suppose S2 6= ∅, so take m ∈ S2. Then mS1 =
{m · m1 | m1 ∈ S1} = S2 and mS2 = {m · m2 | m2 ∈ S2} = S1. Hence
S = S1S2 = (m)× S1. By Lemmas 3.1 and 3.2, the map γ : S → 2K2OF ∩
(K2OF )2, a 7→ {−1, a}, is a surjective homomorphism of two groups, and
ker γ = (d) ⊂ S1. Therefore r4(K2OF ) = r2(2K2OF ∩ (K2OF )2) = r2(S)− 1
= r2(S1)− 1 + s, where s = 0 if S′2 = ∅ or s = 1 if S′2 6= ∅.

(2) Let 2 ∈ NF . Similarly, if S′i 6= ∅, then S′i = (m(u +
√
d)) × S1,

where m(u+
√
d) ∈ S′i, i = 1, 2; if two of S2, S

′
1, S
′
2 are non-empty, then the

third is non-empty; if S2, S
′
1, S
′
2 are all non-empty, then S = S1S2S

′
1S
′
2 =

(m)× (m1(u+
√
d))×S1, where m ∈ S2 and m1(u+

√
d) ∈ S′1. On the other

hand, the map γ′ : S → 2K2OF ∩ (K2OF )2, a 7→ {−1, a}, is a surjective
homomorphism and ker γ′ = (2)×(d) ⊂ S1. Hence r4(K2OF ) = r2(2K2OF ∩
(K2OF )2) = r2(S)− 2 = r2(S1) + s′ − 2, where s′ = 0 if S2 = S′1 = S′2 = ∅,
or s′ = 1 if only one of S2, S

′
1, S
′
2 is non-empty, or s′ = 2 if S2, S

′
1, S
′
2 are all

non-empty.

Lemma 3.4. Notations as above. Suppose d ≡ −1 mod 8. Then S2 = ∅
and S′2 = ∅ if 2 ∈ NF .

P r o o f. Suppose odd m ∈ S2. Then
(
dm−1

p

)
=
(−1
p

)
for every odd prime

p |m, and
(
m
p

)
=
(−1
p

)
for every odd prime p | dm−1. By d ≡ −1 mod 8 and

the quadratic reciprocity law,
(
dm−1

m

)
=
(

m
dm−1

)
, so

(−1
m

)
=
( −1
dm−1

)
, which

is contradictory. Similarly, we can prove that there is no even 2m ∈ S2.
Let 2 ∈ NF, u2 − 2w2 = d, u, w ∈ N. Suppose m(u +

√
d) ∈ S′2. Then(m(u+w)

p

)
=
(−1
p

)
for every odd prime p | dm−1 and

(dm−1(u+w)
p

)
=
(−1
p

)
for

every odd prime p |m. By d ≡ −1 mod 8 and the quadratic reciprocity law,(
dm−1

m

)
=
(

m
dm−1

)
. Also 2(u+w)2 = d+(u+2w)2 and let u+w = 2i(u+ w),

where u+ w is odd. Then 1 =
( −d
u+w

)
=
(−mdm−1

u+w

)
. Hence

(
u+w
dm−1

)
=
(
u+w
m

)

by d ≡ −1 mod 8 and the quadratic reciprocity. Therefore
(−1
m

)
=
( −1
dm−1

)
,

contrary to d ≡ −1 mod 8.
It is clear that S1 is related to the group D(NE) of the quadratic field

E = Q(
√
−d), which is defined as in the second section, so we can get the

following formula.

Theorem 3.1. Let F = Q(
√
d), E = Q(

√
−d), d > 2 a squarefree

integer , and C(E) the (narrow) class group of E.
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(1) If 2 6∈ NF , then r4(K2OF ) = r4(C(E)) + s, where

s =
{

1 if S2 6= ∅, or d ≡ −1 mod 8 and even 2m ∈ S1,
0 otherwise.

(2) If 2 ∈ NF, then

r4(K2OF ) =
{
r4(C(E)) + s′ − 1 if d 6≡ −1 mod 8,
r4(C(E)) + s′ if d ≡ −1 mod 8,

where

s′ =





2 if S2, S1, S
′
2 are all empty ,

1 if only one of S2, S
′
1, S
′
2 is non-empty ,

0 if S2 = S′1 = S′2 = ∅.
Moreover , r4(K2OF ) = r4(C(E)) + a(F ), where a(F ) = −1, 0, or 1 is

determined by F .

P r o o f. By Lemmas 3.3 and 3.4, it is sufficient to find the relation be-
tween r2(S1) and r4(C(E)).

(1) Let 2 6∈ NF . Suppose d 6≡ −1 mod 4. Then 2 |D, where D is the
discriminant of E = Q(

√
−d), so D(NE) = S1. Hence r4(C(E)) =

r2(D(NF ))− 1 = r2(S1)− 1.
Suppose d ≡ −5 mod 8. Then 2 -D. Also there is no even 2m ∈ S1 by the

quadratic reciprocity law (or
(

2dm−1

m

)
=
(

2m
dm−1

)
, which is contradictory).

Hence D(NE) = S1, so r4(C(E)) = r2(S1)− 1.
Suppose that d ≡ −1 mod 8 and there is an even 2m ∈ S1. Then S1 =

(2m)×D(NE), so r4(C(E)) = r2(S1)− 2.
(2) If 2 ∈ NF , then 2 ∈ S1. Suppose d 6≡ −1 mod 4. Then 2 |D, where

D is the discriminant of E, and D(NE) = S1, so r4(C(E)) = r2(S1) − 1.
Suppose d ≡ −1 mod 8. Then 2 -D (= −d) and S1 = (2) × D(NE), so
r4(C(E)) = r2(S1)− 2.

In Theorem 3.1, in order to get the value of r4(K2OF ) clearly, we use
the Rédei matrix to determine if S2, S

′
1, S
′
2 are empty.

Theorem 3.2. Let F = Q(
√
d), E = Q(

√
−d), and d > 2 a squarefree

integer.

(1) If 2 6∈ NF and d ≡ −1 mod 8, then there is an even 2m ∈ S1 if and
only if the system of equations

(3.3) A′EX = B′

is solvable, where B′ = t
((

2
p1

)′
, . . . ,

(
2

pt−1

)′)
and A′E is defined as (2.2).

(2) If −1,−2 6∈ NF , then S2 = ∅ if and only if the system (3.3) has
no solution, where B′ = t

((−1
p1

)′
, . . . ,

( −1
pt−1

)′)
if d 6≡ −1 mod 4 and B′ =

t
((−2

p1

)′
, . . . ,

( −2
pt−1

)′)
if d ≡ 3 mod 8.
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(3) If 2 ∈ NF , then S′1 = ∅ if and only if the system (3.3) has no
solution, where B′ = t

((
u+w
p1

)′
, . . . ,

(
u+w
pt−1

)′)
.

(4) If 2 ∈ NF, −1 6∈ NF , and d 6≡ −1 mod 8, then S′2 = ∅ if and only
if the system (3.3) has no solution, where B′ = t

((−u−w
p1

)′
, . . . ,

(−u−w
pt−1

)′)
.

P r o o f. (1) If d ≡ −1 mod 8 and 2 6∈ NF , then D = −d is the dis-
criminant of E and 1 =

(
2
d

)
=
(

2
p1

)
. . .
(

2
pt

)
. For 2m ∈ S1, we define

Xm = t(x1, . . . , xt) ∈ (Z/2Z)t by

xi =
{

1 if pi |m,
0 if pi -m,

where i = 1, . . . , t. So we have A′EXm=B′, where B′ = t
((

2
p1

)′
, . . . ,

(
2

pt−1

)′)
,

if and only if AEXm = B, where B = t
((

2
p1

)′
, . . . ,

(
2
pt

)′
)
, if and only if





(
m

p

)
=
(

2
p

)
for every prime p | dm−1,

(
dm−1

p

)
=
(

2
p

)
for every prime p |m,

if and only if 2m ∈ S1.
(2) Suppose d 6≡ −1 mod 4 and −1,−2 6∈ NF . Then D = −4d is the

discriminant of E and pt = 2. For m ∈ S0 and ε ∈ {1, 2}, we have A′EXεm =
B′, where Xεm is defined as above and B′ = t

((−1
p1

)′
, . . . ,

( −1
pt−1

)′)
, if and

only if




(
εm

p

)
=
(−1
p

)
for every prime p (6= pt) | dm−1,

(
4d(εm)−1

p

)
=
(−1
p

)
for every prime p (6= pt) |m,

if and only if εm ∈ S2.
Suppose d ≡ 3 mod 8 and −1,−2 6∈ NF . Then D = −d is the discrim-

inant of E, odd m 6∈ S2 by the quadratic reciprocity law, and 1 =
(−2
d

)
=(−2

p1

)
. . .
(−2
pt

)
. Similarly to (1), we can get the second part of (2).

(3) If 2 ∈ NF, d = u2−2w2, u, w ∈ N, and 2(u+w)2 = d+(u+2w)2, we
need only consider the case of d ≡ −1 mod 8. Let u + w = 2iu+ w, where
u+ w is odd. Then

1 =
( −d
u+ w

)
=
(
u+ w

d

)
=
(
u+ w

p1

)
. . .

(
u+ w

pt

)

by 2 ∈ NF , d ≡ −1 mod 8, and the quadratic reciprocity law. Similarly to
(1), we can get (3).

(4) It is clear.
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Corollary 3.1. Let F = Q(
√
d), E = Q(

√
−d), d > 2 a squarefree

integer , −1 or −2 ∈ NF , and C(E) the (narrow) class group of E.
(1) If 2 6∈ NF , then the 2-Sylow subgroup of K2OF is elementary Abelian

if and only if r4(C(E)) = 0.
(2) If 2 ∈ NF , then the 2-Sylow subgroup of K2OF is elementary Abelian

if and only if r4(C(E)) = 1 and the system (3.3) is not solvable, where
B′ = t

((
u+w
p1

)′
, . . . ,

(
u+w
pt−1

)′)
.

P r o o f. Since −1 or −2 is in NF , d 6≡ −1 mod 8 by the quadratic
reciprocity law. If 2 6∈ NF , by Theorem 3.1, we can get (1). If 2 ∈ NF , then
d ≡ 1 or 2 mod 8 and r4(C(E)) ≥ 1, so we can get (2) by Theorem 3.1.

4. Imaginary quadratic field. For an imaginary quadratic field E =
Q(
√
−d), by [14], we have [∆E : E∗2] = 4, where ∆E ={a ∈ E∗ | {−1, a} =

1} is called the Tate kernel of E.
J. Browkin and A. Schinzel [2] have given all elements of order 2 of

K2OE .

Lemma 4.1. Let E = Q(
√
−d), d > 2 a squarefree integer. Then all

elements of order at most 2 of K2OF are of the form

{−1,mγj}, j = 1, 2,

where m is an odd positive divisor of D, γ1 = 1, and γ2 = u+
√
−d, −d =

u2 − 2w2, u, w ∈ N. Moreover there is a unique mγj (6= 1) ∈ ∆E.

In [11], H. Qin has given conditions for K2OE to have elements of order 4.

Lemma 4.2. Let E = Q(
√
−d), F = Q(

√
d), d > 2 a squarefree integer ,

and m an odd positive divisor of d.

(1) There is a β ∈ K2OE such that β2 = {−1,m} if and only if there is
ε ∈ {1, 2} such that εm ∈ NF .

(2) If 2 ∈ NE, −d = u2 − 2w2, u, w ∈ N, then there is a β ∈ K2OE
such that β2 = {−1,m(u+

√
−d)} if and only if m(u+ w) ∈ NF .

Definition 4.1. Let E = Q(
√
−d), d > 2 a squarefree integer. We define

S0 = {m | m is an odd positive divisor of d},
T = {εm ∈ NF | m ∈ S0 and ε ∈ {1, 2}}.

If 2 ∈ NE, −d = u2 − 2w2, u, w ∈ N, we define

T ′ = {m(u+
√
−d) | m ∈ S0 and m(u+ w) ∈ NF}.

Similarly, T is the group with multiplicationm1 ·m2 = m1m2/(m1,m2)2,
and T ′ = (T ′∪T ) is the group generated by the set T ′∪T with multiplication
m1(u +

√
−d) ·m2(u +

√
−d) = m1 ·m2, m1 ·m2(u +

√
−d) = (m1 ·m2)

· (u +
√
−d). In fact, if T ′ 6= ∅, then T ′ = (m(u +

√
−d)) × T , where
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m(u +
√
−d) ∈ T ′. Note that, by [11], there is a δ (6= 1, 2) ∈ T ∪ T ′ such

that δ ∈ ∆E.

Lemma 4.3. Notations as above.

(1) If 2 6∈ NE, then r4(K2OE) = r2(T )− 1.
(2) If 2 ∈ NE, then r4(K2OE) = r2(T ) + s− 2, where

s =
{

1 if T ′ 6= ∅,
0 if T ′ = ∅.

P r o o f. (1) If 2 6∈ NE, then α : T → 2K2OE ∩ (K2OE)2, a 7→ {−1, a},
is a surjective homomorphism and kerα = {1, εm}, where {−1, εm} = 1
and εm 6= 1, 2. Hence r4(K2OF ) = r2(T )− 1.

(2) If 2 ∈ NF , then α : T ′ → 2(K2OE)∪ (K2OE)2, εmγj 7→ {−1, εmγj},
j = 1, 2, is surjective homomorphism and kerα = {1, 2, 2mγj ,mγj}, where
{−1,mγj} = 1 and mγj 6= 1, 2. Hence r4(K2OE) = r2(T ′)−2 = r2(T )+s−2,
where s = 1 if T ′ 6= ∅ or s = 0 if T ′ = ∅.

Theorem 4.1. Let F = Q(
√
d), E = Q(

√
−d), d > 2 a squarefree

integer , and C(F ) the narrow class group of F .

(1) If 2 6∈ NE, then r4(K2OE) = r4(C(F )) + s, where

s =
{

1 if d ≡ 1 mod 8 and 2m ∈ T,
0 otherwise.

(2) If 2 ∈ NE, then

r4(K2OE) =
{
r4(C(F )) + s′ if d ≡ 1 mod 8,
r4(C(F )) + s′ − 1 if d 6≡ 1 mod 8,

where

s′ =
{

1 if T ′ 6= ∅,
0 if T ′ = ∅.

Moreover , r4(K2OE) = r4(C(F )) + a(E), where a(E) = −1, 0, or 1 is
determined by E.

P r o o f. By Lemma 4.3, the relation between T and D(NF ), and by
r4(C(F )) = r2(D(NF ))− 1, we get the result.

Corollary 4.1. Notations as above.

(1) If 2 6∈ NE, then r4(K2OE) = 0 if and only if r4(C(F )) = 0, and
2m 6∈ T if d ≡ 1 mod 8.

(2) If 2 ∈ NE and d ≡ 1 mod 8, then r4(K2OE) = 0 if and only if
r4(C(F )) = 0 and T ′ = ∅.

(3) If 2 ∈ NE and d 6≡ 1 mod 8, then r4(K2OF ) = 0 if and only if
r4(C(F )) = 1 and T ′ = ∅, or r4(C(F )) = 0 and T ′ 6= ∅.
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Theorem 4.2. Let F = Q(
√
d), E = Q(

√
−d), d > 2 a squarefree

integer , C(F ) the narrow class group of F , and A′F defined as in (2.2).

(1) If 2 6∈ NE and d ≡ 1 mod 8, then there is even 2m ∈ T if and only
if the system of equations

(4.1) A′FX = B′

is solvable, where A′F is defined as in (2.2) and B′ = t
((

2
p1

)′
, . . . ,

(
2

pt−1

)′)
.

(2) If 2 ∈ NF , −d = u2 − 2w2, u, w ∈ N, then T ′ 6= ∅ if and only if the
system (4.1) is solvable, where B′ = t

((
u+w
p1

)′
, . . . ,

(
u+w
pt−1

)′)
.

P r o o f. Proceed as in the proof of Theorem 3.2.

Let F = Q(
√
d) be a real quadratic field. By genus theory, there is a

unique q (6= 1) ∈ D(NF ) such that Q2 = (q) and cl(Q) = 1 in the narrow
class group C(F ). We call the q the dependent divisor of ambiguous ideals
of F . Suppose r4(K2OE) = 0. We set up a relation between the Tate kernel
of K2OE and the dependent divisor of ambiguous ideals of F .

Theorem 4.3. Let F = Q(
√
d), E = Q(

√
−d), d > 2 a squarefree

integer. Suppose r4(K2OE) = 0. Then, if q (6= 2) is the dependent divisor
of ambiguous ideals of F , ∆E = ({2, q})E∗2; if 2 is the dependent
divisor of ambiguous ideals of F , ∆E = ({2,m(u +

√
−d)})E∗2, where

m(u+
√
−d) ∈ T ′.

P r o o f. If 2 6∈ NE and r4(K2OE) = 0, then, by Corollary 4.1, r4(C(F ))
= 0, and 2m 6∈ T if d ≡ 1 mod 8. Hence rankAF = t − 1 and there is a
unique q (6= 1, 2) ∈ D(NF ) = T such that AFXq = 0. Therefore q is the
dependent divisor of ambiguous ideals of F and q ∈ ∆E.

If 2 ∈ NE, d ≡ 1 mod 8 and r4(K2OE) = 0, then by Corollary 4.1, we
have the same result as above.

If 2 ∈ NE, d 6≡ 1 mod 8 and r4(K2OE) = 0, then by Corollary 4.1, we
need to consider two cases.

The first case: r4(C(F )) = 1 and T ′ = ∅. Then rankAF = t − 2 and
T ′ = T = D(NF ). Hence D(NF ) = {1, 2, q, 2q}. Suppose that 2 is the de-
pendent divisor of ambiguous ideals of F . Since 2(u+w)2 = (u+ 2w)2 − d,
we have ((u + 2w) +

√
d) = Q2Q

2
u+w, where Q2 and Qu+w are ideals of F

with Q2
2 = (2) and Qu+wQ

′
u+w = (u + w). Then cl(Qu+w2)2 = cl(Q2) = 1.

Hence, by genus theory, cl(Qu+w) = cl(Qm), where Qm is an ideal of F
with Q2

m = (m) and m ∈ D(F ). So cl(Qu+wQm) = 1 ∈ C(F )2 and
m(u + w) = NF/Q(Qu+wQm) ∈ NF , contrary to T ′ = ∅. Therefore, q
or 2q is the dependent divisor of ambiguous ideals of F and q, 2q ∈ ∆E .

The second case: r4(C(F )) = 0 and T ′ 6= ∅. Then rankAF = t − 1,
D(NF ) = T = {1, 2}, and T ′ = (m(u+

√
−d))×T . Hence 2 is the dependent

divisor of ambiguous ideals of F and m(u+
√
−d) ∈ ∆E .
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Question. Suppose r4(K2OE) ≥ 1. Do we have results similar to The-
orem 4.3?
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