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A family of infinite pairs of quadratic fields Q(
√
D) and

Q(
√
−D) whose class numbers are both divisible by 3

by

Toru Komatsu (Tokyo)

Introduction. In [N] and [A-C] it was shown that, for any positive
integer n, there exist infinitely many imaginary quadratic fields whose class
numbers are divisible by n. The same result for real quadratic fields was
shown in [Y] and [W]. Earlier, Honda [Ho] had shown the case where n = 3
for real quadratic fields. Hartung [H1] showed that there exist infinitely
many imaginary quadratic fields whose class numbers are divisible by 3. In
[H2] he also showed the existence of infinitely many imaginary quadratic
fields whose class numbers are not divisible by 3. Scholz [Sc] gave a relation
between the 3-rank r of the ideal class group of a real quadratic field Q(

√
D)

and the 3-rank s of an imaginary quadratic field Q(
√
−3D).

Theorem (A. Scholz). We have

r ≤ s ≤ r + 1.

In particular , for a positive integer D, if 3 |h(Q(
√
D)), then 3 |h(Q(

√
−3D)).

This relation is an original version of the “reflection”. From the results
above there exist infinitely many quadratic fields Q(

√
D) and Q(

√
−3D)

with class numbers both divisible by 3. On the other hand, Zhang [Z] showed
some relations between the class numbers h(Q(

√
D)) and h(Q(

√
−D)) by

means of the fundamental unit of the real quadratic field Q(
√
D).

In this paper we prove the existence of infinite families of quadratic fields
Q(
√
D) with 3 |h(Q(

√
D)) and 3 |h(Q(

√
−D)). We also give explicit integers

{Dn}n≥1 such that 3 |h(Q(
√
Dn)), 3 |h(Q(

√
−Dn)) and ]{Q(

√
Dn) | n ≥

1} =∞ (cf. Examples 2.6, 2.7 and Proposition 2.8). Our method is explicit,
and the divisibility of the class number by 3 is shown by constructing explicit
cubic polynomials which give unramified cyclic cubic extensions of quadratic
fields.
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First we state sufficient conditions for 3 |h(Q(
√
D)) and 3 |h(Q(

√
−D)).

Let d be a square-free integer. Let integers a, b and c be pairwise relatively
prime, and satisfy a2 + db2 = c2. Put D1 = d(c4 + c2a2 + a4)/3.

Theorem I. Suppose that :

(1) there exists a prime number p such that p | a and 2 6∈ F3
p,

(2) 6 | b,
(3) there exists a prime number q such that q | c and 2 6∈ F3

q.

Then
3 |h(Q(

√
D1)) and 3 |h(Q(

√
−D1)).

Here, Fp is the finite field of p elements.

Under the same conditions as in Theorem I, let us define sequences
{an}n≥1, {bn}n≥1 and {cn}n≥1 of integers recursively by

a1 = a, b1 = b, c1 = c,

an+1 = (a2 − db2)an − 2abdbn,

bn+1 = 2aban + (a2 − db2)bn, cn+1 = c2cn.

Moreover we define Dn = Dn(a, b, c) by

Dn =
d(c4n + c2na

2
n + a4

n)
3

.

In Section 2 we will see that Dn ∈ Z.

Theorem II. The number Dn satisfies both

3 |h(Q(
√
Dn)) and 3 |h(Q(

√
−Dn)).

Moreover , ]{Q(
√
Dn) | n ∈ N} =∞.

Thus, as a corollary of Theorem II we obtain

Corollary I. There exist infinitely many quadratic fields Q(
√
D) sat-

isfying both 3 |h(Q(
√
D)) and 3 |h(Q(

√
−D)).

Remark 1. Let SR and SI be the sets of square-free positive integers D
such that 3 |h(Q(

√
D)) and 3 |h(Q(

√
−D)), respectively. Then we have

](SR ∩ {1 < D < 10000}) = 554,

](SI ∩ {1 < D < 10000}) = 2151,

](SR ∩ SI ∩ {1 < D < 10000}) = 152.

For example,

SR ∩ SI ∩ {1 < D < 2000} = {473, 730, 839, 898, 985, 993, 1090, 1191,

1373, 1478, 1567, 1599, 1882, 1901, 1937}.
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Let N, Z, Q, Fp and Q∗ be the set of positive integers, the ring of
rational integers, the field of rational numbers, the finite field of p elements
and the multiplicative group of non-zero rational numbers, respectively. For
a prime number p and an integer m, vp(m) is the greatest exponent n such
that pn |m. The class number of an algebraic number field F is denoted by
h(F ). The notation f(Z) ∈ Ir(L) means that a polynomial f(Z) ∈ L[Z] is
irreducible over a field L.

I wish to express my deepest gratitude to Professor Masato Kurihara,
for his guidance, encouragement and criticism throughout my study, and I
especially thank Professor Takao Sasai for his many helpful comments.

I would like to thank the referee who pointed out to me the existence
of [R].

1. A sufficient condition for 3 |h(Q(
√
D)) and 3 |h(Q(

√
−D)). For

a square-free integer d, Td denotes the set of triples (a, b, c) defined by

Td = {(a, b, c) ∈ Z× Z× Z | a2 + db2 = c2, gcd(a, b, c) = 1}.
Remark 1.1. Let a, b and c be integers satisfying

(1.1) a2 + db2 = c2.

Then gcd(a, b, c) = 1 if and only if a, b and c are pairwise relatively prime,
that is, gcd(a, b) = gcd(b, c) = gcd(c, a) = 1 since d is square-free.

A polynomial fa,c(Z) is defined by

fa,c(Z) = Z3 − 3c2Z − 2a3.

Let Ka,c be the minimal splitting field of fa,c(Z) over Q. Denote the dis-
criminant of fa,c(Z) by Da,c and put ka,c = Q(

√
Da,c).

Lemma 1.2. For (a, b, c) in Td, assume that fa,c(Z) ∈ Ir(Q). Then the
conditions 2 - c and 3 | ab hold if and only if the extension Ka,c/ka,c is un-
ramified.

For the proof we will use [L-N], which gave a necessary and sufficient con-
dition for the unramifiedness of such extensions. Let f(Z) be an irreducible
polynomial of the form

f(Z) = Z3 −mZ − n
with m,n ∈ Z and Kf be the minimal splitting field of f(Z) over Q. We
denote the discriminant of f(Z) by Df and put kf = Q(

√
Df ). Assume

that, for each prime number p, either vp(m) < 2 or vp(n) < 3.

Proposition LN (P. Llorente and E. Nart). (1) For a prime number
p 6= 3, the extension Kf/kf is ramified at a prime ideal p above p if and
only if 1 ≤ vp(n) ≤ vp(m).
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(2) For a prime number p = 3, the extension Kf/kf is ramified at a
prime ideal p above 3 if and only if one of the following three conditions
holds:

(2.i) 1 ≤ v3(n) ≤ v3(m),

(2.ii) 3 -n, m ≡ 0, 6 (mod 9) and n2 6≡ m+ 1 (mod 9),

(2.iii) 3 -n, m ≡ 3 (mod 9) and n2 6≡ m+ 1 (mod 27).

Proof of Lemma 1.2. Let (a, b, c) be a triple in Td. For a prime number
p with p - 6, it follows obviously from Proposition LN that the extension
Ka,c/ka,c is unramified at prime ideals p above p since gcd(c, a) = 1. Also,
by Proposition LN, Ka,c/ka,c is unramified at prime ideals p above 2 if and
only if 2 - c.

We discuss the ramifiedness of Ka,c/ka,c at prime ideals above 3. Let
p be a prime ideal above 3. First we assume 3 | a. Then v3(3c2) = 1 and
v3(2a3) ≥ 3. From Proposition LN, Ka,c/ka,c is unramified at p.

Next we consider the case where 3 - a and 3 | c. Then 3 - 2a3 and 3c2 ≡ 0
(mod 9). Here, (2a3)2 ≡ 4 (mod 9) and 3c2 + 1 ≡ 1 (mod 9). Proposition LN
implies that Ka,c/ka,c is ramified at p.

Finally assume that 3 - a and 3 - c. Then 3 - 2a3 and 3c2 ≡ 3 (mod 9). By
Proposition LN, Ka,c/ka,c is unramified at p if and only if (2a3)2 ≡ (3c2 +1)
(mod 27). Here,

(2a3)2 − (3c2 + 1) = (2a2 + 1)2(a2 − 1)− 3db2 (by (1.1))

≡ − 3db2 (mod 27) (since 3 - a).

Thus, Ka,c/ka,c is unramified at p if and only if 3 | b since d is square-free.
Hence Ka,c/ka,c is unramified at prime ideals p above 3 if and only if 3 | a
or 3 | b, i.e., 3 | ab. This completes the proof.

Remark 1.3. The referee suggested to me that [R] can be used for the
proof of Lemma 1.2 instead of [LN]. However, the proof above is my original
version.

Corresponding to fa,c(Z), we consider fc,a(Z). As Lemma 1.2, we have

Lemma 1.4. Let (a, b, c) be in Td, and fc,a(Z) ∈ Ir(Q). Then the condi-
tions 2 - a and 3 | bc hold if and only if the extension Kc,a/kc,a is unramified.

Lemmas 1.2 and 1.4 imply

Proposition 1.5. For (a, b, c) in Td, assume that fa,c(Z), fc,a(Z) ∈
Ir(Q). Then 6 | b if and only if both the extensions Ka,c/ka,c and Kc,a/kc,a
are unramified.

P r o o f. It is sufficient to show that 6 | b if and only if 2 - c, 3 | ab, 2 - a and
3 | bc. Assume 6 | b. Then 3 | ab and 3 | bc. As gcd(a, b) = 1 and gcd(b, c) = 1,
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it follows that 2 - c and 2 - a. Conversely, since gcd(c, a) = gcd(a, b) = 1 and
3 | bc, we have 3 - a. Thus 3 | b since 3 | ab. From 2 - c, 2 - a and (1.1), it follows
that 1 + db2 ≡ 1 (mod 8) and 2 | b since d is square-free. Hence 6 | b.

Here, it follows from the definitions and (a, b, c) ∈ Td that Da,c =
3d(c4 + c2a2 + a4)(6b)2. And we also note that Dc,a = −Da,c. Proposi-
tion 1.5 and class field theory give a sufficient condition for 3 |h(Q(

√
D))

and 3 |h(Q(
√
−D)).

Proposition 1.6. Let (a, b, c) be in Td. If fa,c(Z), fc,a(Z) ∈ Ir(Q) and
6 | b, then 3 |h(Q(

√
Da,c)) and 3 |h(Q(

√
−Da,c)).

On the irreducibility of fa,c(Z) we obtain

Lemma 1.7. If there exists a prime number q such that q | c and 2 6∈ F3
q,

then fa,c(Z) ∈ Ir(Q).

P r o o f. If such a q exists, fa,c(Z) ≡ Z3 − 2a3 6≡ Z3 (mod q) since
gcd(c, a) = 1 and q - 2a. From 2 6∈ F3

q, we have fa,c(Z) ∈ Ir(Fq). Hence,
fa,c(Z) ∈ Ir(Q).

Now we can show Theorem I.

Proof of Theorem I. By Lemma 1.7 and the relation between fa,c(Z)
and fc,a(Z), it is clear that if there exists a prime number p with p | a and
2 6∈ F3

p, then fc,a(Z) ∈ Ir(Q). Note that Da,c ≡ d(c4+c2a2+a4)/3 (modQ∗2)
and Q(

√
Da,c) = Q(

√
D1). Thus Proposition 1.6 and Lemma 1.7 imply the

assertion of Theorem I.

2. Proof of Theorem II and examples. First we show that every Dn

satisfies both 3 |h(Q(
√
Dn)) and 3 |h(Q(

√−Dn)). It is sufficient to see that,
for each n, the triple (an, bn, cn) satisfies all the assumptions in Theorem I.
From the definition stated in the introduction we can prove inductively the
following.

Lemma 2.1. We have

(2.1) a2
n + db2n = c2n.

P r o o f. This is obvious when n = 1. Assume that (2.1) holds for n = k.
Then, by definition,

a2
k+1 + db2k+1 = (a2 + db2)2(a2

k + db2k) = c4c2k = c2k+1.

Lemma 2.2. The integers an, bn and cn are pairwise relatively prime.

P r o o f. By (2.1) and Remark 1.1, it is enough to show gcd(an, bn) = 1.
The definition of an and bn implies

(2.2) an+1 + bn+1
√
−d = (a+ b

√
−d)2(an + bn

√
−d).
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Thus (an + bn
√
−d) = (a+ b

√
−d)2n−1. Suppose gcd(an, bn) 6= 1. Let l be a

prime number such that l | gcd(an, bn). Then (2.1) implies that l | cn. From
definition we have cn = c2n−1 and l | c. Note that l - a since gcd(c, a) = 1.
Since gcd(b, c) = 1 and 6 | b, both c and l are odd. It follows from
l | gcd(an, bn) that (l) | (an±bn

√
−d) = (a±b

√
−d)2n−1 as ideals of Q(

√
−d).

First we consider the case where the prime l does not ramify in the
extension Q(

√
−d)/Q. Then (l) | (a±b

√
−d)2n−1 implies (l) | (a±b

√
−d). So

2a ∈ (l) and (l) | (2a). Since l is odd, we get l | a. This contradicts l - a.
Next, consider the case where l ramifies. This implies that l | d since l is

odd. From a2 + db2 = c2 and l | c, we have l | a. This is also a contradiction.
Thus gcd(an, bn) = 1.

Remark 2.3. We note that the sequences in the introduction are defined
so as to satisfy (2.2).

Lemma 2.4. The integers an, bn and cn satisfy the conditions (1), (2) and
(3) in Theorem I.

P r o o f. It is obvious from the definition that a | an, b | bn and c | cn.

We need the following version of Siegel’s theorem. Let MQ be the set of
standard absolute values on Q.

Theorem (C. Siegel, cf. [Si] and [Sil; IX Theorem 4.3]). Let S be a finite
set of absolute values such that {∞} ⊂ S ⊂ MQ and f(x) ∈ Q[x] be a
polynomial of degree d ≥ 3 with distinct roots (in Q). Then

]{(x, y) ∈ RS ×RS | y2 = f(x)} <∞,
where RS is the ring of S-integers of Q, i.e., RS = {x ∈ Q | |x|v ≤ 1 for all
v ∈MQ \ S}.

Lemma 2.5. For any square-free integer D,

]{n ∈ N |Dn ≡ D (modQ∗2)} <∞.
P r o o f. Let ND be the set {n ∈ N |Dn ≡ D (modQ∗2)}. If ND = ∅,

then the assertion is trivial. When ND 6= ∅ and n ∈ ND, there exists xn ∈ Z
such that

Dx2
n = Dn = d(c4n + c2na

2
n + a4

n)/3

for D is square-free and Dn is an integer. In fact, from gcd(an, bn) =
gcd(bn, cn) = 1 and 3 | bn, we have c4n + c2na

2
n + a4

n ≡ 0 (mod 3) and Dn ∈ Z.
By the equation above, we have

(
xn
c2n

)2

=
d

3D

((
an
cn

)4

+
(
an
cn

)2

+ 1
)
.

Let S be the finite set defined by

S = {∞} ∪ {l ∈ N | l is a prime number such that l | c},
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and set

ED,S =
{

(X,Y ) ∈ RS ×RS
∣∣∣∣ Y 2 =

d

3D
(X4 +X2 + 1)

}
.

Then we have (an/cn, xn/c2n) ∈ ED,S since cn = c2n−1. On the other hand,
since S and the polynomial d(X4 +X2 +1)/(3D) satisfy all the assumptions
of Siegel’s theorem, the set ED,S is finite. Thus the number of an/cn with
(an/cn, xn/c2n) ∈ ED,S is also finite. Let l be a prime number such that l | c.
It follows from Lemma 2.2 that vl(an/cn) = −(2n − 1)vl(c). Then we have
an/cn 6= an′/cn′ if n 6= n′. Therefore the number of n with (an/cn, xn/c2n) ∈
ED,S is finite and so is the number of n such that Dn ≡ D (modQ∗2).

Now we can show Theorem II.

Proof of Theorem II. From the arguments in the proof of Lemma 2.5, we
see that Dn ∈ Z. Lemmas 2.1, 2.2 and 2.4 show that an, bn and cn satisfy all
the assumptions in Theorem I. So Theorem I implies both 3 |h(Q(

√
Dn))

and 3 |h(Q(
√−Dn)). Lemma 2.5 implies that {Q(

√
Dn) |n ∈ N} has in-

finitely many different quadratic fields. We have completed the proof of
Theorem II.

Example 2.6. Let d = 1, a1 = 35, b1 = 12 and c1 = 37. It is easy
to see that d, a1, b1 and c1 satisfy all the assumptions in Theorem I. Theo-
rem II says that Dn satisfy both 3 |h(Q(

√
Dn)) and 3 |h(Q(

√
−Dn)), and

]{Q(
√
Dn) | n ∈ N} =∞. We have

D1 = 1683937 = 433 · 3889, h(Q(
√
D1)) = 12, h(Q(

√
−D1)) = 672,

D2 = 3050952502003085377 = 853 · 5791 · 111103 · 5559133,

D3 = 7757894159469769344747675626017

= 31 · 601 · 7537 · 24091 · 41737 · 142837 · 384673609,

D4 = 45043879740675646345801459024027040863145857

= 571 · 2383 · 3706819 · 70642129 · 38030787199 · 3324108301201,

D5 = 277287339809527862957979104790908859930084553439035084897

= 67 · 691 · 919 · 28537 · 14312569 · 40767057750432961

× 391405030092220229263.

The last term of each equality above is a prime factorization of Dn. We can
check that, for every integer 1 ≤ n ≤ 7, Dn is square-free.

Example 2.7. Let d = 7, a1 = 19, b1 = 12 and c1 = 37. They also satisfy
the assumptions of Theorem I. In this case
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D1 = 5830279 = 7 · 13 · 79 · 811, h(Q(
√
D1)) = 24, h(Q(

√
−D1)) = 1128,

D2 = 45978905373807036967 = 7 · 31 · 73 · 3187 · 8647 · 105324283,

D3 = 65814604465782226589968415476039

= 7 · 13 · 787 · 1291 · 2551 · 34603 · 73681 · 177907 · 615187,

D4 = 279133894082503704397304381251464503374521319

= 7 · 67 · 304583551 · 334934627311 · 5834091503628484372891,

D5 = 1957694456266233255276185732172788361735944283677443361287

= 7 · 132 · 103 · 823 · 1237 · 9870577 · 5386011953359

× 296854442842333785360337291.

We can construct many families by using a, b, c in the following Propo-
sition 2.8 as initial terms of the sequences.

Proposition 2.8. Let p and q be distinct prime numbers which are inert
in the extension Q( 3

√
2)/Q. Let integers a, b, c and a square-free integer d be

such that
a = p3, c = q3, db2 = q6 − p6.

Then a, b, c and d satisfy all the assumptions of Theorem I, and

D1 = d(p12 + p6q6 + q12)/3.

P r o o f. It is enough to see that a prime l is inert in Q( 3
√

2)/Q if and
only if 2 6∈ F3

l . Here, q6 − p6 ≡ 1− 1 ≡ 0 (mod 36) since p ≡ q ≡ 1 (mod 6).
Thus we have 6 | b.

Remark 2.9. Let T be the set of primes which are inert in Q( 3
√

2)/Q. It
follows from the Chebotarev density theorem that ]T =∞. Siegel’s theorem
above implies that Proposition 2.8 also gives an infinite family we desire.
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