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A family of infinite pairs of quadratic fields Q(v/D) and
Q(v—D) whose class numbers are both divisible by 3

by

Toru Komatsu (Tokyo)

Introduction. In [N] and [A-C] it was shown that, for any positive
integer n, there exist infinitely many imaginary quadratic fields whose class
numbers are divisible by n. The same result for real quadratic fields was
shown in [Y] and [W]. Earlier, Honda [Ho] had shown the case where n =3
for real quadratic fields. Hartung [H1] showed that there exist infinitely
many imaginary quadratic fields whose class numbers are divisible by 3. In
[H2] he also showed the existence of infinitely many imaginary quadratic
fields whose class numbers are not divisible by 3. Scholz [Sc] gave a relation
between the 3-rank r of the ideal class group of a real quadratic field Q(+/D)
and the 3-rank s of an imaginary quadratic field Q(v/—3D).

THEOREM (A. Scholz). We have
r<s<r+1.
In particular, for a positive integer D, if 3| h(Q(v/'D)), then 3| h(Q(v/=3D)).

This relation is an original version of the “reflection”. From the results
above there exist infinitely many quadratic fields Q(v/D) and Q(v/—3D)
with class numbers both divisible by 3. On the other hand, Zhang [Z] showed
some relations between the class numbers h(Q(v/D)) and h(Q(v/=D)) by
means of the fundamental unit of the real quadratic field Q(v/D).

In this paper we prove the existence of infinite families of quadratic fields
Q(v/D) with 3| h(Q(v/D)) and 3| h(Q(v/—D)). We also give explicit integers
{Dy}nz1 such that 3| A(Q(vD,)). 3| h(Q(v/=Dy)) and H{Q(vD,) | n >
1} = oo (cf. Examples 2.6, 2.7 and Proposition 2.8). Our method is explicit,
and the divisibility of the class number by 3 is shown by constructing explicit
cubic polynomials which give unramified cyclic cubic extensions of quadratic
fields.
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First we state sufficient conditions for 3| h(Q(v/D)) and 3 | h(Q(v/—D)).
Let d be a square-free integer. Let integers a, b and ¢ be pairwise relatively
prime, and satisfy a? + db* = ¢?. Put D; = d(c¢* + c?a® + a)/3.

THEOREM 1. Suppose that:

(1) there exists a prime number p such that p|a and 2 ¢ IE“;;,
(2) 610,
(3) there exists a prime number q such that q|c and 2 ¢ F3.
Then
3|h(Q(VDs)) and 3|h(Q(v/=Dy)).
Here, IF), is the finite field of p elements.
Under the same conditions as in Theorem I, let us define sequences
{an}n>1, {bn}n>1 and {c, }n>1 of integers recursively by
a1 =a, bi=0b, c =c,
ang1 = (a* — db*)a, — 2abdb,,
bn+1 = 2aba, + (a2 — dbz)bm Cnil = e,
Moreover we define D,, = D,(a,b, c) by
d(ct +c2a? +a?)
3

D, =
In Section 2 we will see that D,, € Z.
THEOREM II. The number D,, satisfies both
31h(Q(VDy)) and 3| h(Q(V~Dy)).
Moreover, ${Q(v/D,,) | n € N} = co.
Thus, as a corollary of Theorem II we obtain

COROLLARY 1. There exist infinitely many quadratic fields Q(/D) sat-
isfying both 3| h(Q(v/D)) and 3| h(Q(v/—D)).

REMARK 1. Let Sr and S} be the sets of square-free positive integers D
such that 3| h(Q(v/D)) and 3| h(Q(v/—D)), respectively. Then we have

#(Sr N {1 < D < 10000}) = 554,
#(Sr N {1 < D < 10000}) = 2151,
#(SrNS;N{1 < D < 10000}) = 152.
For example,
SrNSrN{l <D <2000} ={473,730,839, 898, 985,993, 1090, 1191,
1373,1478,1567, 1599, 1882, 1901, 1937}.
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Let N, Z, Q, F, and Q* be the set of positive integers, the ring of
rational integers, the field of rational numbers, the finite field of p elements
and the multiplicative group of non-zero rational numbers, respectively. For
a prime number p and an integer m, v,(m) is the greatest exponent n such
that p™ | m. The class number of an algebraic number field F' is denoted by
h(F). The notation f(Z) € Ir(L) means that a polynomial f(Z) € L[Z] is
irreducible over a field L.

I wish to express my deepest gratitude to Professor Masato Kurihara,
for his guidance, encouragement and criticism throughout my study, and I

especially thank Professor Takao Sasai for his many helpful comments.

I would like to thank the referee who pointed out to me the existence
of [R].

1. A sufficient condition for 3|h(Q(v/D)) and 3|h(Q(v/—D)). For

a square-free integer d, T,; denotes the set of triples (a, b, ¢) defined by
Ty ={(a,b,c) €EZ X Z x 7| a*+db* = c?, ged(a,b,c) = 1}.

REMARK 1.1. Let a,b and ¢ be integers satisfying
(1.1) a® 4+ db* = 2.
Then ged(a,b,c¢) = 1 if and only if a,b and ¢ are pairwise relatively prime,
that is, ged(a, b) = ged(b, ¢) = ged(c, a) = 1 since d is square-free.

A polynomial f, .(Z) is defined by

fae(2) = 2% =327 — 2d°.

Let K, . be the minimal splitting field of f, .(Z) over Q. Denote the dis-
criminant of f, .(Z) by Dg, and put kg = Q(y/Dq.c).

LEMMA 1.2. For (a,b,c) in Ty, assume that fq.(Z) € Ir(Q). Then the
conditions 24 ¢ and 3| ab hold if and only if the extension K, c/kq,c is un-
ramified.

For the proof we will use [L-N], which gave a necessary and sufficient con-
dition for the unramifiedness of such extensions. Let f(Z) be an irreducible
polynomial of the form

f(Z)=2%>—-mZ—n

with m,n € Z and Ky be the minimal splitting field of f(Z) over Q. We
denote the discriminant of f(Z) by Dy and put kf = Q(,/Dy). Assume
that, for each prime number p, either v,(m) < 2 or v,(n) < 3.

PropOSITION LN (P. Llorente and E. Nart). (1) For a prime number
p # 3, the extension Ky/ky is ramified at a prime ideal p above p if and
only if 1 < wvp(n) < vp(m).
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(2) For a prime number p = 3, the exstension Ky/ky is ramified at a
prime ideal p above 3 if and only if one of the following three conditions
holds:

(2.1) 1<ws(n) <wvsz(m),
(2ii)  3fn, m=0,6 (mod9) and n®#m+1 (mod9),
(2.ii)  3tn, m =3 (mod9) and n?®#m+1 (mod?27).

Proof of Lemma 1.2. Let (a,b,c) be a triple in T,. For a prime number
p with pt6, it follows obviously from Proposition LN that the extension
K, c/ka,c is unramified at prime ideals p above p since ged(c,a) = 1. Also,
by Proposition LN, K, ./kq, is unramified at prime ideals p above 2 if and
only if 2tec.

We discuss the ramifiedness of K, ./kq . at prime ideals above 3. Let
p be a prime ideal above 3. First we assume 3|a. Then v3(3¢*) = 1 and
v3(2a®) > 3. From Proposition LN, K, ./k, . is unramified at p.

Next we consider the case where 3fa and 3|c. Then 312a® and 3¢ =
(mod 9). Here, (2a®)? = 4 (mod9) and 3¢?+1 =1 (mod9). Proposition LN
implies that K, ./kq, . is ramified at p.

Finally assume that 3{a and 3fc. Then 312a® and 3c¢? = 3 (mod9). By
Proposition LN, K, ../kq.. is unramified at p if and only if (2a)? = (3¢2 +1)
(mod 27). Here,

(2a*)? — (3¢ +1) = (2a* + 1)*(a* — 1) — 3db*  (by (1.1))
= —3db* (mod27) (since 3{a).
Thus, K, ¢/kq is unramified at p if and only if 3|b since d is square-free.

Hence K, ./kq,c is unramified at prime ideals p above 3 if and only if 3|a
or 3|b, i.e., 3| ab. This completes the proof. m

REMARK 1.3. The referee suggested to me that [R] can be used for the
proof of Lemma 1.2 instead of [LN]. However, the proof above is my original
version.

Corresponding to f,..(Z), we consider f.,(Z). As Lemma 1.2, we have

LEMMA 1.4. Let (a,b,c) be in Ty, and f.o(Z) € Ir(Q). Then the condi-
tions 2ta and 3 | be hold if and only if the extension K. q/ke,q is unramified.

Lemmas 1.2 and 1.4 imply

PROPOSITION 1.5. For (a,b,c) in Ty, assume that fq .(Z2), fea(Z) €
Ir(Q). Then 6|b if and only if both the extensions Ko c/kac and K¢ o/kcq
are unramified.

Proof. It is sufficient to show that 6 | b if and only if 21 ¢, 3| ab, 2{a and
3| be. Assume 6 |b. Then 3| ab and 3| be. As ged(a,b) = 1 and ged(b, ¢) = 1,



Infinite pairs of quadratic fields 217

it follows that 21 ¢ and 2{a. Conversely, since ged(c, a) = ged(a,b) = 1 and
3| be, we have 31a. Thus 3| b since 3| ab. From 21¢, 24a and (1.1), it follows
that 1 4+ db?> = 1 (mod 8) and 2| b since d is square-free. Hence 6 |b. =

Here, it follows from the definitions and (a,b,c¢) € Ty that D,. =
3d(c* + c?a® + a*)(6b)%. And we also note that D., = —D,.. Proposi-
tion 1.5 and class field theory give a sufficient condition for 3|h(Q(v/D))
and 3| h(Q(v/—D)).

PROPOSITION 1.6. Let (a,b,c) be in Ty. If fo,c(Z), fe,a(Z) € Ir(Q) and
6]b, then 3|h(Q(y/Da,)) and 3| h(Q(y/—Da.c))-

On the irreducibility of f, .(Z) we obtain

LEMMA 1.7. If there exists a prime number q such that q|c and 2 ¢ Fg,
then fq..(Z) € Ir(Q).

Proof. If such a q exists, f,.(Z) = Z% — 2a® # Z3 (modgq) since
ged(c,a) = 1 and ¢f2a. From 2 ¢ F2, we have f,.(Z) € Ir(F;). Hence,
fae(Z) €Ir(Q). m

Now we can show Theorem 1.

Proof of Theorem I. By Lemma 1.7 and the relation between f, .(Z2)
and f..(Z), it is clear that if there exists a prime number p with p|a and
2 ¢ F2, then f. o(Z) € Ir(Q). Note that D, . = d(c*+c*a*+a*)/3 (mod Q*?)
and Q(y/Dq..) = Q(v/D1). Thus Proposition 1.6 and Lemma 1.7 imply the
assertion of Theorem 1. m

2. Proof of Theorem II and examples. First we show that every D,
satisfies both 3 | h(Q(v/D,,)) and 3| h(Q(v/—D,,)). It is sufficient to see that,
for each n, the triple (ay, b, ¢, ) satisfies all the assumptions in Theorem I.
From the definition stated in the introduction we can prove inductively the
following.

LEMMA 2.1. We have
(2.1) a? 4+ db? = 2.

Proof. This is obvious when n = 1. Assume that (2.1) holds for n = k.
Then, by definition,

a%H + dbiJrl = (a® + db*)*(a? + db3) = c*ci = ci_ﬂ. n
LEMMA 2.2. The integers a,, b, and ¢, are pairwise relatively prime.

Proof. By (2.1) and Remark 1.1, it is enough to show ged(ay,,b,) = 1.
The definition of a,, and b,, implies

(2.2) nt1 + bnp1V—d = (a+ bvV—d)*(an + bV —d).
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Thus (a, + b,V —d) = (a+byv/—d)?>" 1. Suppose ged(an, b,) # 1. Let | be a
prime number such that [ | gcd(ay,, b,). Then (2.1) implies that [ |¢,,. From
definition we have ¢, = ¢>*~! and [|c. Note that [{a since ged(c,a)=1.
Since ged(b,c) = 1 and 6|b, both ¢ and [ are odd. It follows from
1| ged(an,, by) that (1) | (an£b,v/—d) = (a£by/—d)?>" ! as ideals of Q(v/—d).

First we consider the case where the prime [ does not ramify in the
extension Q(v/—d)/Q. Then (1) | (a £byv/—d)?*~! implies (1) | (a =bv/—d). So
2a € (1) and (1) | (2a). Since ! is odd, we get [ | a. This contradicts 11 a.

Next, consider the case where [ ramifies. This implies that [ | d since [ is
odd. From a? + db? = ¢? and | ¢, we have [ | a. This is also a contradiction.
Thus ged(an,b,) =1. =

REMARK 2.3. We note that the sequences in the introduction are defined
so as to satisfy (2.2).

LEMMA 2.4. The integers a,, b, and ¢, satisfy the conditions (1), (2) and
(3) in Theorem I.

Proof. It is obvious from the definition that a|a,, b|b, and c|c,,. =

We need the following version of Siegel’s theorem. Let Mg be the set of
standard absolute values on Q.

THEOREM (C. Siegel, cf. [Si] and [Sil; IX Theorem 4.3]). Let S be a finite
set of absolute values such that {co} C S C Mg and f(z) € Q[z] be a
polynomial of degree d > 3 with distinct roots (in Q). Then

#{(z,y) € Rs x Rs|y* = f(x)} < oo,
where Rg is the ring of S-integers of Q, i.e., Rg = {x € Q||z|, <1 for all
ve Mg\ S}
LEMMA 2.5. For any square-free integer D,
t{n € N| D, = D (modQ*?)} < oc.

Proof. Let Np be the set {n € N|D,, = D (modQ*?)}. If Np = 0,
then the assertion is trivial. When Np # () and n € Np, there exists z,, € Z
such that

Dx?2 = D,, =d(ck + a2 +a})/3
for D is square-free and D,, is an integer. In fact, from gcd(ay,b,) =
ged(bp, ¢n) = 1 and 3| by, we have ¢ + c2a2 +al =0 (mod 3) and D,, € Z.
By the equation above, we have

T 2 d an 4 an 2
(%) =a6((2) +(2) +1)
Let S be the finite set defined by
S ={o0}U{l € N|[is a prime number such that [ |c},
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and set

d
Eps = {(X,Y) € Rg X Rg Y2 = 3_D(X4 X2 1)}

Then we have (a, /¢y, Tn/c2) € Ep g since ¢, = ¢*~1. On the other hand,
since S and the polynomial d(X*+ X?2+1)/(3D) satisfy all the assumptions
of Siegel’s theorem, the set Ep g is finite. Thus the number of a,,/c, with
(an/cn,zn/c2) € Ep. s is also finite. Let [ be a prime number such that [ | c.
It follows from Lemma 2.2 that v;(a,/c,) = —(2n — 1)v;(c). Then we have
An/Cn # apr[Cyr if 1 # n'. Therefore the number of n with (a,,/cp, 2, /c2) €
Ep s is finite and so is the number of n such that D,, = D (mod Q*?). =

Now we can show Theorem II.

Proof of Theorem II. From the arguments in the proof of Lemma 2.5, we
see that D,, € Z. Lemmas 2.1, 2.2 and 2.4 show that a,,, b, and ¢, satisfy all
the assumptions in Theorem I. So Theorem I implies both 3| h(Q(v/Dy))
and 3| h(Q(v/—D,)). Lemma 2.5 implies that {Q(v/D,)|n € N} has in-
finitely many different quadratic fields. We have completed the proof of
Theorem II. m

ExaMPLE 2.6. Let d = 1, a1 = 35, by = 12 and ¢; = 37. It is easy
to see that d,a1,b; and ¢; satisfy all the assumptions in Theorem I. Theo-
rem II says that D,, satisfy both 3| h(Q(v/D,,)) and 3| h(Q(v/—D,)), and
#H{Q(v/D,,) | n € N} = co. We have

Dy = 1683937 = 4333889, h(Q(\/D1)) =12, h(Q(/—Dy)) = 672,
D, = 3050952502003085377 = 853 - 5791 - 111103 - 5559133,
Dy = 77578941594697693447476 75626017
— 31-601 - 7537 - 24091 - 41737 - 142837 - 384673609,
D, = 45043879740675646345801459024027040863145857
= 571 - 2383 - 3706819 - 70642129 - 38030787199 - 3324108301201,
D5 = 277287339809527862957979104790908859930084553439035084897
= 67691 - 919 - 28537 - 14312569 - 40767057750432961
x 391405030092220229263.

The last term of each equality above is a prime factorization of D,,. We can
check that, for every integer 1 < n <7, D,, is square-free.

EXAMPLE 2.7. Let d = 7, a1 = 19, by = 12 and ¢; = 37. They also satisfy
the assumptions of Theorem I. In this case
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Dy = 5830279 = 7-13-79 - 811, h(Q(\/D1)) = 24, h(Q(v/—Dy)) = 1128,
Dy = 45978905373807036967 = 7 - 31 - 73 - 3187 - 8647 - 105324283,
D3 = 65814604465782226539968415476039
— 7137871291 - 2551 - 34603 - 73681 - 177907 - 615187,
D, = 279133894082503704397304381251464503374521319
— 767 - 304583551 - 334934627311 - 5834091503628484372891,
D5 = 1957694456266233255276185732172788361735944283677443361287

= 7-13%-103 - 823 - 1237 - 9870577 - 5386011953359
x 296854442842333785360337291.

We can construct many families by using a, b, ¢ in the following Propo-
sition 2.8 as initial terms of the sequences.

PROPOSITION 2.8. Let p and q be distinct prime numbers which are inert
in the extension Q(3/2)/Q. Let integers a,b,c and a square-free integer d be
such that

a=p’, c=¢° db’=¢"-p°.
Then a,b,c and d satisfy all the assumptions of Theorem I, and
Dy =d(p*? +p°¢° + ¢*?)/3.

Proof. It is enough to see that a prime [ is inert in Q(4/2)/Q if and
only if 2 ¢ F}. Here, ¢ —p% =1 —1 =0 (mod 36) since p =g =1 (mod 6).
Thus we have 6 |b. =

REMARK 2.9. Let T be the set of primes which are inert in Q(¥/2)/Q. It
follows from the Chebotarev density theorem that 7" = co. Siegel’s theorem
above implies that Proposition 2.8 also gives an infinite family we desire.
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