A family of infinite pairs of quadratic fields $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{-D})$ whose class numbers are both divisible by 3

by
Toru Komatsu (Tokyo)

Introduction. In $[\mathrm{N}]$ and $[\mathrm{A}-\mathrm{C}]$ it was shown that, for any positive integer n, there exist infinitely many imaginary quadratic fields whose class numbers are divisible by n. The same result for real quadratic fields was shown in $[\mathrm{Y}]$ and $[\mathrm{W}]$. Earlier, Honda $[\mathrm{Ho}]$ had shown the case where $n=3$ for real quadratic fields. Hartung [H1] showed that there exist infinitely many imaginary quadratic fields whose class numbers are divisible by 3 . In [H2] he also showed the existence of infinitely many imaginary quadratic fields whose class numbers are not divisible by 3 . Scholz [Sc] gave a relation between the 3-rank r of the ideal class group of a real quadratic field $\mathbb{Q}(\sqrt{D})$ and the 3-rank s of an imaginary quadratic field $\mathbb{Q}(\sqrt{-3 D})$.

Theorem (A. Scholz). We have

$$
r \leq s \leq r+1
$$

In particular, for a positive integer D, if $3 \mid h(\mathbb{Q}(\sqrt{D}))$, then $3 \mid h(\mathbb{Q}(\sqrt{-3 D}))$.
This relation is an original version of the "reflection". From the results above there exist infinitely many quadratic fields $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{-3 D})$ with class numbers both divisible by 3 . On the other hand, Zhang $[\mathrm{Z}]$ showed some relations between the class numbers $h(\mathbb{Q}(\sqrt{D}))$ and $h(\mathbb{Q}(\sqrt{-D}))$ by means of the fundamental unit of the real quadratic field $\mathbb{Q}(\sqrt{D})$.

In this paper we prove the existence of infinite families of quadratic fields $\mathbb{Q}(\sqrt{D})$ with $3 \mid h(\mathbb{Q}(\sqrt{D}))$ and $3 \mid h(\mathbb{Q}(\sqrt{-D}))$. We also give explicit integers $\left\{D_{n}\right\}_{n \geq 1}$ such that $3\left|h\left(\mathbb{Q}\left(\sqrt{D_{n}}\right)\right), 3\right| h\left(\mathbb{Q}\left(\sqrt{-D_{n}}\right)\right)$ and $\sharp\left\{\mathbb{Q}\left(\sqrt{D_{n}}\right) \mid n \geq\right.$ $1\}=\infty$ (cf. Examples 2.6, 2.7 and Proposition 2.8). Our method is explicit, and the divisibility of the class number by 3 is shown by constructing explicit cubic polynomials which give unramified cyclic cubic extensions of quadratic fields.

[^0]First we state sufficient conditions for $3 \mid h(\mathbb{Q}(\sqrt{D}))$ and $3 \mid h(\mathbb{Q}(\sqrt{-D}))$. Let d be a square-free integer. Let integers a, b and c be pairwise relatively prime, and satisfy $a^{2}+d b^{2}=c^{2}$. Put $D_{1}=d\left(c^{4}+c^{2} a^{2}+a^{4}\right) / 3$.

Theorem I. Suppose that:
(1) there exists a prime number p such that $p \mid a$ and $2 \notin \mathbb{F}_{p}^{3}$,
(2) $6 \mid b$,
(3) there exists a prime number q such that $q \mid c$ and $2 \notin \mathbb{F}_{q}^{3}$.

Then

$$
3 \mid h\left(\mathbb{Q}\left(\sqrt{D_{1}}\right)\right) \quad \text { and } \quad 3 \mid h\left(\mathbb{Q}\left(\sqrt{-D_{1}}\right)\right) .
$$

Here, \mathbb{F}_{p} is the finite field of p elements.
Under the same conditions as in Theorem I, let us define sequences $\left\{a_{n}\right\}_{n \geq 1},\left\{b_{n}\right\}_{n \geq 1}$ and $\left\{c_{n}\right\}_{n \geq 1}$ of integers recursively by

$$
\begin{gathered}
a_{1}=a, \quad b_{1}=b, \quad c_{1}=c \\
a_{n+1}=\left(a^{2}-d b^{2}\right) a_{n}-2 a b d b_{n} \\
b_{n+1}=2 a b a_{n}+\left(a^{2}-d b^{2}\right) b_{n}, \quad c_{n+1}=c^{2} c_{n}
\end{gathered}
$$

Moreover we define $D_{n}=D_{n}(a, b, c)$ by

$$
D_{n}=\frac{d\left(c_{n}^{4}+c_{n}^{2} a_{n}^{2}+a_{n}^{4}\right)}{3}
$$

In Section 2 we will see that $D_{n} \in \mathbb{Z}$.
Theorem II. The number D_{n} satisfies both

$$
3 \mid h\left(\mathbb{Q}\left(\sqrt{D_{n}}\right)\right) \quad \text { and } \quad 3 \mid h\left(\mathbb{Q}\left(\sqrt{-D_{n}}\right)\right)
$$

Moreover, $\sharp\left\{\mathbb{Q}\left(\sqrt{D_{n}}\right) \mid n \in \mathbb{N}\right\}=\infty$.
Thus, as a corollary of Theorem II we obtain
Corollary I. There exist infinitely many quadratic fields $\mathbb{Q}(\sqrt{D})$ satisfying both $3 \mid h(\mathbb{Q}(\sqrt{D}))$ and $3 \mid h(\mathbb{Q}(\sqrt{-D}))$.

Remark 1. Let S_{R} and S_{I} be the sets of square-free positive integers D such that $3 \mid h(\mathbb{Q}(\sqrt{D}))$ and $3 \mid h(\mathbb{Q}(\sqrt{-D}))$, respectively. Then we have

$$
\begin{aligned}
& \sharp\left(S_{R} \cap\{1<D<10000\}\right)=554, \\
& \sharp\left(S_{I} \cap\{1<D<10000\}\right)=2151, \\
& \sharp\left(S_{R} \cap S_{I} \cap\{1<D<10000\}\right)=152 .
\end{aligned}
$$

For example,

$$
\begin{aligned}
S_{R} \cap S_{I} \cap\{1<D<2000\}= & \{473,730,839,898,985,993,1090,1191 \\
& 1373,1478,1567,1599,1882,1901,1937\}
\end{aligned}
$$

Let $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{F}_{p}$ and \mathbb{Q}^{*} be the set of positive integers, the ring of rational integers, the field of rational numbers, the finite field of p elements and the multiplicative group of non-zero rational numbers, respectively. For a prime number p and an integer $m, v_{p}(m)$ is the greatest exponent n such that $p^{n} \mid m$. The class number of an algebraic number field F is denoted by $h(F)$. The notation $f(Z) \in \operatorname{Ir}(L)$ means that a polynomial $f(Z) \in L[Z]$ is irreducible over a field L.

I wish to express my deepest gratitude to Professor Masato Kurihara, for his guidance, encouragement and criticism throughout my study, and I especially thank Professor Takao Sasai for his many helpful comments.

I would like to thank the referee who pointed out to me the existence of $[R]$.

1. A sufficient condition for $3 \mid h(\mathbb{Q}(\sqrt{D}))$ and $3 \mid h(\mathbb{Q}(\sqrt{-D}))$. For a square-free integer d, T_{d} denotes the set of triples (a, b, c) defined by

$$
T_{d}=\left\{(a, b, c) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \mid a^{2}+d b^{2}=c^{2}, \operatorname{gcd}(a, b, c)=1\right\}
$$

REMARK 1.1. Let a, b and c be integers satisfying

$$
\begin{equation*}
a^{2}+d b^{2}=c^{2} \tag{1.1}
\end{equation*}
$$

Then $\operatorname{gcd}(a, b, c)=1$ if and only if a, b and c are pairwise relatively prime, that is, $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, c)=\operatorname{gcd}(c, a)=1$ since d is square-free.

A polynomial $f_{a, c}(Z)$ is defined by

$$
f_{a, c}(Z)=Z^{3}-3 c^{2} Z-2 a^{3}
$$

Let $K_{a, c}$ be the minimal splitting field of $f_{a, c}(Z)$ over \mathbb{Q}. Denote the discriminant of $f_{a, c}(Z)$ by $D_{a, c}$ and put $k_{a, c}=\mathbb{Q}\left(\sqrt{D_{a, c}}\right)$.

Lemma 1.2. For (a, b, c) in T_{d}, assume that $f_{a, c}(Z) \in \operatorname{Ir}(\mathbb{Q})$. Then the conditions $2 \nmid c$ and $3 \mid$ ab hold if and only if the extension $K_{a, c} / k_{a, c}$ is unramified.

For the proof we will use $[\mathrm{L}-\mathrm{N}]$, which gave a necessary and sufficient condition for the unramifiedness of such extensions. Let $f(Z)$ be an irreducible polynomial of the form

$$
f(Z)=Z^{3}-m Z-n
$$

with $m, n \in \mathbb{Z}$ and K_{f} be the minimal splitting field of $f(Z)$ over \mathbb{Q}. We denote the discriminant of $f(Z)$ by D_{f} and put $k_{f}=\mathbb{Q}\left(\sqrt{D_{f}}\right)$. Assume that, for each prime number p, either $v_{p}(m)<2$ or $v_{p}(n)<3$.

Proposition LN (P. Llorente and E. Nart). (1) For a prime number $p \neq 3$, the extension K_{f} / k_{f} is ramified at a prime ideal \mathfrak{p} above p if and only if $1 \leq v_{p}(n) \leq v_{p}(m)$.
(2) For a prime number $p=3$, the extension K_{f} / k_{f} is ramified at a prime ideal \mathfrak{p} above 3 if and only if one of the following three conditions holds:
(2.iii) $\quad 3 \nmid n, \quad m \equiv 3(\bmod 9) \quad$ and $\quad n^{2} \not \equiv m+1(\bmod 27)$.

Proof of Lemma 1.2. Let (a, b, c) be a triple in T_{d}. For a prime number p with $p \nmid 6$, it follows obviously from Proposition LN that the extension $K_{a, c} / k_{a, c}$ is unramified at prime ideals \mathfrak{p} above p since $\operatorname{gcd}(c, a)=1$. Also, by Proposition LN, $K_{a, c} / k_{a, c}$ is unramified at prime ideals \mathfrak{p} above 2 if and only if $2 \nmid c$.

We discuss the ramifiedness of $K_{a, c} / k_{a, c}$ at prime ideals above 3. Let \mathfrak{p} be a prime ideal above 3 . First we assume $3 \mid a$. Then $v_{3}\left(3 c^{2}\right)=1$ and $v_{3}\left(2 a^{3}\right) \geq 3$. From Proposition LN, $K_{a, c} / k_{a, c}$ is unramified at \mathfrak{p}.

Next we consider the case where $3 \nmid a$ and $3 \mid c$. Then $3 \nmid 2 a^{3}$ and $3 c^{2} \equiv 0$ $(\bmod 9)$. Here, $\left(2 a^{3}\right)^{2} \equiv 4(\bmod 9)$ and $3 c^{2}+1 \equiv 1(\bmod 9)$. Proposition LN implies that $K_{a, c} / k_{a, c}$ is ramified at \mathfrak{p}.

Finally assume that $3 \nmid a$ and $3 \nmid c$. Then $3 \nmid 2 a^{3}$ and $3 c^{2} \equiv 3(\bmod 9)$. By Proposition LN, $K_{a, c} / k_{a, c}$ is unramified at \mathfrak{p} if and only if $\left(2 a^{3}\right)^{2} \equiv\left(3 c^{2}+1\right)$ (mod 27). Here,

$$
\begin{align*}
\left(2 a^{3}\right)^{2}-\left(3 c^{2}+1\right) & =\left(2 a^{2}+1\right)^{2}\left(a^{2}-1\right)-3 d b^{2} \quad(\text { by } \tag{1.1}\\
& \equiv-3 d b^{2}(\bmod 27) \quad(\text { since } 3 \nmid a) .
\end{align*}
$$

Thus, $K_{a, c} / k_{a, c}$ is unramified at \mathfrak{p} if and only if $3 \mid b$ since d is square-free. Hence $K_{a, c} / k_{a, c}$ is unramified at prime ideals \mathfrak{p} above 3 if and only if $3 \mid a$ or $3 \mid b$, i.e., $3 \mid a b$. This completes the proof.

REmark 1.3. The referee suggested to me that $[R]$ can be used for the proof of Lemma 1.2 instead of [LN]. However, the proof above is my original version.

Corresponding to $f_{a, c}(Z)$, we consider $f_{c, a}(Z)$. As Lemma 1.2, we have
Lemma 1.4. Let (a, b, c) be in T_{d}, and $f_{c, a}(Z) \in \operatorname{Ir}(\mathbb{Q})$. Then the conditions $2 \nmid a$ and $3 \mid$ bc hold if and only if the extension $K_{c, a} / k_{c, a}$ is unramified.

Lemmas 1.2 and 1.4 imply
Proposition 1.5. For (a, b, c) in T_{d}, assume that $f_{a, c}(Z), f_{c, a}(Z) \in$ $\operatorname{Ir}(\mathbb{Q})$. Then $6 \mid b$ if and only if both the extensions $K_{a, c} / k_{a, c}$ and $K_{c, a} / k_{c, a}$ are unramified.
Proof. It is sufficient to show that $6 \mid b$ if and only if $2 \nmid c, 3 \mid a b, 2 \nmid a$ and $3 \mid b c$. Assume $6 \mid b$. Then $3 \mid a b$ and $3 \mid b c$. As $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(b, c)=1$,
it follows that $2 \nmid c$ and $2 \nmid a$. Conversely, since $\operatorname{gcd}(c, a)=\operatorname{gcd}(a, b)=1$ and $3 \mid b c$, we have $3 \nmid a$. Thus $3 \mid b$ since $3 \mid a b$. From $2 \nmid c, 2 \nmid a$ and (1.1), it follows that $1+d b^{2} \equiv 1(\bmod 8)$ and $2 \mid b$ since d is square-free. Hence $6 \mid b$.

Here, it follows from the definitions and $(a, b, c) \in T_{d}$ that $D_{a, c}=$ $3 d\left(c^{4}+c^{2} a^{2}+a^{4}\right)(6 b)^{2}$. And we also note that $D_{c, a}=-D_{a, c}$. Proposition 1.5 and class field theory give a sufficient condition for $3 \mid h(\mathbb{Q}(\sqrt{D}))$ and $3 \mid h(\mathbb{Q}(\sqrt{-D}))$.

Proposition 1.6. Let (a, b, c) be in T_{d}. If $f_{a, c}(Z), f_{c, a}(Z) \in \operatorname{Ir}(\mathbb{Q})$ and $6 \mid b$, then $3 \mid h\left(\mathbb{Q}\left(\sqrt{D_{a, c}}\right)\right)$ and $3 \mid h\left(\mathbb{Q}\left(\sqrt{-D_{a, c}}\right)\right)$.

On the irreducibility of $f_{a, c}(Z)$ we obtain
Lemma 1.7. If there exists a prime number q such that $q \mid c$ and $2 \notin \mathbb{F}_{q}^{3}$, then $f_{a, c}(Z) \in \operatorname{Ir}(\mathbb{Q})$.

Proof. If such a q exists, $f_{a, c}(Z) \equiv Z^{3}-2 a^{3} \not \equiv Z^{3}(\bmod q)$ since $\operatorname{gcd}(c, a)=1$ and $q \nmid 2 a$. From $2 \notin \mathbb{F}_{q}^{3}$, we have $f_{a, c}(Z) \in \operatorname{Ir}\left(\mathbb{F}_{q}\right)$. Hence, $f_{a, c}(Z) \in \operatorname{Ir}(\mathbb{Q})$.

Now we can show Theorem I.
Proof of Theorem I. By Lemma 1.7 and the relation between $f_{a, c}(Z)$ and $f_{c, a}(Z)$, it is clear that if there exists a prime number p with $p \mid a$ and $2 \notin \mathbb{F}_{p}^{3}$, then $f_{c, a}(Z) \in \operatorname{Ir}(\mathbb{Q})$. Note that $D_{a, c} \equiv d\left(c^{4}+c^{2} a^{2}+a^{4}\right) / 3\left(\bmod \mathbb{Q}^{* 2}\right)$ and $\mathbb{Q}\left(\sqrt{D_{a, c}}\right)=\mathbb{Q}\left(\sqrt{D_{1}}\right)$. Thus Proposition 1.6 and Lemma 1.7 imply the assertion of Theorem I.
2. Proof of Theorem II and examples. First we show that every D_{n} satisfies both $3 \mid h\left(\mathbb{Q}\left(\sqrt{D_{n}}\right)\right)$ and $3 \mid h\left(\mathbb{Q}\left(\sqrt{-D_{n}}\right)\right)$. It is sufficient to see that, for each n, the triple $\left(a_{n}, b_{n}, c_{n}\right)$ satisfies all the assumptions in Theorem I. From the definition stated in the introduction we can prove inductively the following.

Lemma 2.1. We have

$$
\begin{equation*}
a_{n}^{2}+d b_{n}^{2}=c_{n}^{2} \tag{2.1}
\end{equation*}
$$

Proof. This is obvious when $n=1$. Assume that (2.1) holds for $n=k$. Then, by definition,

$$
a_{k+1}^{2}+d b_{k+1}^{2}=\left(a^{2}+d b^{2}\right)^{2}\left(a_{k}^{2}+d b_{k}^{2}\right)=c^{4} c_{k}^{2}=c_{k+1}^{2}
$$

Lemma 2.2. The integers a_{n}, b_{n} and c_{n} are pairwise relatively prime.
Proof. By (2.1) and Remark 1.1, it is enough to show $\operatorname{gcd}\left(a_{n}, b_{n}\right)=1$. The definition of a_{n} and b_{n} implies

$$
\begin{equation*}
a_{n+1}+b_{n+1} \sqrt{-d}=(a+b \sqrt{-d})^{2}\left(a_{n}+b_{n} \sqrt{-d}\right) \tag{2.2}
\end{equation*}
$$

Thus $\left(a_{n}+b_{n} \sqrt{-d}\right)=(a+b \sqrt{-d})^{2 n-1}$. Suppose $\operatorname{gcd}\left(a_{n}, b_{n}\right) \neq 1$. Let l be a prime number such that $l \mid \operatorname{gcd}\left(a_{n}, b_{n}\right)$. Then (2.1) implies that $l \mid c_{n}$. From definition we have $c_{n}=c^{2 n-1}$ and $l \mid c$. Note that $l \nmid a$ since $\operatorname{gcd}(c, a)=1$. Since $\operatorname{gcd}(b, c)=1$ and $6 \mid b$, both c and l are odd. It follows from $l \mid \operatorname{gcd}\left(a_{n}, b_{n}\right)$ that $(l) \mid\left(a_{n} \pm b_{n} \sqrt{-d}\right)=(a \pm b \sqrt{-d})^{2 n-1}$ as ideals of $\mathbb{Q}(\sqrt{-d})$.

First we consider the case where the prime l does not ramify in the extension $\mathbb{Q}(\sqrt{-d}) / \mathbb{Q}$. Then $(l) \mid(a \pm b \sqrt{-d})^{2 n-1}$ implies $(l) \mid(a \pm b \sqrt{-d})$. So $2 a \in(l)$ and $(l) \mid(2 a)$. Since l is odd, we get $l \mid a$. This contradicts $l \nmid a$.

Next, consider the case where l ramifies. This implies that $l \mid d$ since l is odd. From $a^{2}+d b^{2}=c^{2}$ and $l \mid c$, we have $l \mid a$. This is also a contradiction. Thus $\operatorname{gcd}\left(a_{n}, b_{n}\right)=1$.

REMARK 2.3. We note that the sequences in the introduction are defined so as to satisfy (2.2).

Lemma 2.4. The integers a_{n}, b_{n} and c_{n} satisfy the conditions (1), (2) and (3) in Theorem I.

Proof. It is obvious from the definition that $a\left|a_{n}, b\right| b_{n}$ and $c \mid c_{n}$.
We need the following version of Siegel's theorem. Let $M_{\mathbb{Q}}$ be the set of standard absolute values on \mathbb{Q}.

Theorem (C. Siegel, cf. [Si] and [Sil; IX Theorem 4.3]). Let S be a finite set of absolute values such that $\{\infty\} \subset S \subset M_{\mathbb{Q}}$ and $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree $d \geq 3$ with distinct roots (in $\overline{\mathbb{Q}})$. Then

$$
\sharp\left\{(x, y) \in R_{S} \times R_{S} \mid y^{2}=f(x)\right\}<\infty,
$$

where R_{S} is the ring of S-integers of \mathbb{Q}, i.e., $R_{S}=\left\{x \in \mathbb{Q} \|\left. x\right|_{v} \leq 1\right.$ for all $\left.v \in M_{\mathbb{Q}} \backslash S\right\}$.

Lemma 2.5. For any square-free integer D,

$$
\sharp\left\{n \in \mathbb{N} \mid D_{n} \equiv D\left(\bmod \mathbb{Q}^{* 2}\right)\right\}<\infty
$$

Proof. Let N_{D} be the set $\left\{n \in \mathbb{N} \mid D_{n} \equiv D\left(\bmod \mathbb{Q}^{* 2}\right)\right\}$. If $N_{D}=\emptyset$, then the assertion is trivial. When $N_{D} \neq \emptyset$ and $n \in N_{D}$, there exists $x_{n} \in \mathbb{Z}$ such that

$$
D x_{n}^{2}=D_{n}=d\left(c_{n}^{4}+c_{n}^{2} a_{n}^{2}+a_{n}^{4}\right) / 3
$$

for D is square-free and D_{n} is an integer. In fact, from $\operatorname{gcd}\left(a_{n}, b_{n}\right)=$ $\operatorname{gcd}\left(b_{n}, c_{n}\right)=1$ and $3 \mid b_{n}$, we have $c_{n}^{4}+c_{n}^{2} a_{n}^{2}+a_{n}^{4} \equiv 0(\bmod 3)$ and $D_{n} \in \mathbb{Z}$. By the equation above, we have

$$
\left(\frac{x_{n}}{c_{n}^{2}}\right)^{2}=\frac{d}{3 D}\left(\left(\frac{a_{n}}{c_{n}}\right)^{4}+\left(\frac{a_{n}}{c_{n}}\right)^{2}+1\right)
$$

Let S be the finite set defined by

$$
S=\{\infty\} \cup\{l \in \mathbb{N} \mid l \text { is a prime number such that } l \mid c\}
$$

and set

$$
E_{D, S}=\left\{(X, Y) \in R_{S} \times R_{S} \left\lvert\, Y^{2}=\frac{d}{3 D}\left(X^{4}+X^{2}+1\right)\right.\right\}
$$

Then we have $\left(a_{n} / c_{n}, x_{n} / c_{n}^{2}\right) \in E_{D, S}$ since $c_{n}=c^{2 n-1}$. On the other hand, since S and the polynomial $d\left(X^{4}+X^{2}+1\right) /(3 D)$ satisfy all the assumptions of Siegel's theorem, the set $E_{D, S}$ is finite. Thus the number of a_{n} / c_{n} with $\left(a_{n} / c_{n}, x_{n} / c_{n}^{2}\right) \in E_{D, S}$ is also finite. Let l be a prime number such that $l \mid c$. It follows from Lemma 2.2 that $v_{l}\left(a_{n} / c_{n}\right)=-(2 n-1) v_{l}(c)$. Then we have $a_{n} / c_{n} \neq a_{n^{\prime}} / c_{n^{\prime}}$ if $n \neq n^{\prime}$. Therefore the number of n with $\left(a_{n} / c_{n}, x_{n} / c_{n}^{2}\right) \in$ $E_{D, S}$ is finite and so is the number of n such that $D_{n} \equiv D\left(\bmod \mathbb{Q}^{* 2}\right)$.

Now we can show Theorem II.
Proof of Theorem II. From the arguments in the proof of Lemma 2.5, we see that $D_{n} \in \mathbb{Z}$. Lemmas $2.1,2.2$ and 2.4 show that a_{n}, b_{n} and c_{n} satisfy all the assumptions in Theorem I. So Theorem I implies both $3 \mid h\left(\mathbb{Q}\left(\sqrt{D_{n}}\right)\right)$ and $3 \mid h\left(\mathbb{Q}\left(\sqrt{-D_{n}}\right)\right)$. Lemma 2.5 implies that $\left\{\mathbb{Q}\left(\sqrt{D_{n}}\right) \mid n \in \mathbb{N}\right\}$ has infinitely many different quadratic fields. We have completed the proof of Theorem II.

Example 2.6. Let $d=1, a_{1}=35, b_{1}=12$ and $c_{1}=37$. It is easy to see that d, a_{1}, b_{1} and c_{1} satisfy all the assumptions in Theorem I. Theorem II says that D_{n} satisfy both $3 \mid h\left(\mathbb{Q}\left(\sqrt{D_{n}}\right)\right)$ and $3 \mid h\left(\mathbb{Q}\left(\sqrt{-D_{n}}\right)\right)$, and $\sharp\left\{\mathbb{Q}\left(\sqrt{D_{n}}\right) \mid n \in \mathbb{N}\right\}=\infty$. We have

$$
\begin{aligned}
D_{1}= & 1683937=433 \cdot 3889, \quad h\left(\mathbb{Q}\left(\sqrt{D_{1}}\right)\right)=12, \quad h\left(\mathbb{Q}\left(\sqrt{-D_{1}}\right)\right)=672 \\
D_{2}= & 3050952502003085377=853 \cdot 5791 \cdot 111103 \cdot 5559133 \\
D_{3}= & 7757894159469769344747675626017 \\
= & 31 \cdot 601 \cdot 7537 \cdot 24091 \cdot 41737 \cdot 142837 \cdot 384673609 \\
D_{4}= & 45043879740675646345801459024027040863145857 \\
= & 571 \cdot 2383 \cdot 3706819 \cdot 70642129 \cdot 38030787199 \cdot 3324108301201, \\
D_{5}= & 277287339809527862957979104790908859930084553439035084897 \\
= & 67 \cdot 691 \cdot 919 \cdot 28537 \cdot 14312569 \cdot 40767057750432961 \\
& \times 39140503009222022923
\end{aligned}
$$

The last term of each equality above is a prime factorization of D_{n}. We can check that, for every integer $1 \leq n \leq 7, D_{n}$ is square-free.

Example 2.7. Let $d=7, a_{1}=19, b_{1}=12$ and $c_{1}=37$. They also satisfy the assumptions of Theorem I. In this case

$$
\begin{aligned}
D_{1}= & 5830279=7 \cdot 13 \cdot 79 \cdot 811, h\left(\mathbb{Q}\left(\sqrt{D_{1}}\right)\right)=24, h\left(\mathbb{Q}\left(\sqrt{-D_{1}}\right)\right)=1128, \\
D_{2}= & 45978905373807036967=7 \cdot 31 \cdot 73 \cdot 3187 \cdot 8647 \cdot 105324283, \\
D_{3}= & 65814604465782226589968415476039 \\
= & 7 \cdot 13 \cdot 787 \cdot 1291 \cdot 2551 \cdot 34603 \cdot 73681 \cdot 177907 \cdot 615187, \\
D_{4}= & 279133894082503704397304381251464503374521319 \\
= & 7 \cdot 67 \cdot 304583551 \cdot 334934627311 \cdot 5834091503628484372891, \\
D_{5}= & 1957694456266233255276185732172788361735944283677443361287 \\
= & 7 \cdot 13^{2} \cdot 103 \cdot 823 \cdot 1237 \cdot 9870577 \cdot 5386011953359 \\
& \times 296854442842333785360337291 .
\end{aligned}
$$

We can construct many families by using a, b, c in the following Proposition 2.8 as initial terms of the sequences.

Proposition 2.8. Let p and q be distinct prime numbers which are inert in the extension $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$. Let integers a, b, c and a square-free integer d be such that

$$
a=p^{3}, \quad c=q^{3}, \quad d b^{2}=q^{6}-p^{6} .
$$

Then a, b, c and d satisfy all the assumptions of Theorem I, and

$$
D_{1}=d\left(p^{12}+p^{6} q^{6}+q^{12}\right) / 3
$$

Proof. It is enough to see that a prime l is inert in $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ if and only if $2 \notin \mathbb{F}_{l}^{3}$. Here, $q^{6}-p^{6} \equiv 1-1 \equiv 0(\bmod 36)$ since $p \equiv q \equiv 1(\bmod 6)$. Thus we have $6 \mid b$.

Remark 2.9. Let T be the set of primes which are inert in $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$. It follows from the Chebotarev density theorem that $\sharp T=\infty$. Siegel's theorem above implies that Proposition 2.8 also gives an infinite family we desire.

References

[A-C] N. C. Ankeny and S. Chowla, On the divisibility of the class number of quadratic fields, Pacific J. Math. 5 (1955), 321-324.
[H1] P. Hartung, Explicit construction of a class of infinitely many imaginary quadratic fields whose class number is divisible by 3, J. Number Theory 6 (1974), 279-281.
[H2] -, Proof of the existence of infinitely many imaginary quadratic fields whose class number is not divisible by 3, ibid., 276-278.
[Ho] T. Honda, On real quadratic fields whose class numbers are multiples of 3, J. Reine Angew. Math. 233 (1968), 101-102.
[L-N] P. Llorente and E. Nart, Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585.
[N] T. Nagell, Über die Klassenzahl imaginär-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg 1 (1922), 140-150.
[R] H. Reichardt, Arithmetische Theorie der kubischen Körper als Radikalkörper, Monatsh. Math.-Phys. 40 (1933), 323-350.
[Sc] A. Scholz, Über die Beziehung der Klassenzahlen quadratischer Körper zueinander, J. Reine Angew. Math. 166 (1932), 201-203.
[Si] C. Siegel, Über einige Anwendungen diophantischer Approximationen, in: Collected Works, Springer, 1966, 209-266.
[Sil] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986.
[W] P. J. Weinberger, Real quadratic fields with class numbers divisible by n, J. Number Theory 5 (1973), 237-241.
[Y] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57-76.
[Z] X. K. Zhang, Congruences modulo 8 for class numbers of general quadratic fields $\mathbb{Q}(\sqrt{m})$ and $\mathbb{Q}(\sqrt{-m})$, J. Number Theory 32 (1989), 332-338.

Department of Mathematics
Tokyo Metropolitan University
Hachioji, Tokyo 192-0397, Japan
E-mail: trkomatu@comp.metro-u.ac.jp

Received on 8.6.1999
and in revised form 16.5.2000

[^0]: 2000 Mathematics Subject Classification: Primary 11R29; Secondary 11R11.

