A note on Waring's problem in finite fields

by
Arne Winterhof (Wien)

In memory of Karl Mathiak

1. Introduction. Let $g\left(k, p^{n}\right)$ be the smallest s such that every element of $\mathbb{F}_{p^{n}}$ is a sum of $s k$ th powers in $\mathbb{F}_{p^{n}}$.

It is sufficient to restrict ourselves to the case $1 \neq k \mid p^{n}-1$, and it is well known (see [1, Theorem G]) that
(1) $\quad g\left(k, p^{n}\right)$ exists if and only if $\frac{p^{n}-1}{p^{d}-1} \nmid k$ for all $d \mid n, d \neq n$.

We shall suppose from now on that $g\left(k, p^{n}\right)$ exists.
Several bounds for $g\left(k, p^{n}\right)$ are known. For surveys see [7] and [13]. Recent results can be found in [5]-[9] and [13].

In the case $n=1$ it was proved in [4, Theorem 1] that

$$
\begin{equation*}
g(k, p)<68 k^{1 / 2}(\ln k)^{2} \quad \text { for } k<(p-1) / 2 \tag{2}
\end{equation*}
$$

Whether (2) holds true for $n>1$ has not been known yet.
In this note we prove

$$
g\left(k, p^{n}\right)<6.2 n(2 k)^{1 / n} \ln k
$$

which yields an extension of (2) to arbitrary n. Moreover, we show

$$
g\left(k, p^{n}\right)>\frac{1}{2}\left(((n+1) k)^{1 / n}-1\right)
$$

if $n+1$ is a prime such that p is a primitive root modulo $n+1$ and $k=$ $\left(p^{n}-1\right) /(n+1)$.
2. Preliminary results. The following result can be found in [2] for $n=1$. For arbitrary n but p odd it is a simple deduction from [10, Theorem 1]. For arbitrary n and $p=2$ the result was shown in [13, Theorem 3].

[^0]Lemma 1. For $k<\left(p^{n}-1\right) / 2$ we have

$$
g\left(k, p^{n}\right) \leq\lfloor k / 2\rfloor+1
$$

The next lemma was proved in [3, Section 1] for $n=1$ and in [13, Theorem 1] for arbitrary n.

Lemma 2. For $p^{n}>k^{2}$ we have

$$
g\left(k, p^{n}\right) \leq\lfloor 32 \ln k\rfloor+1
$$

3. Extension of the Dodson-Tietäväinen bound. Let

$$
\begin{gathered}
A_{s}=\left\{x_{1}^{k}+\ldots+x_{s}^{k} \mid x_{1}, \ldots, x_{s} \in \mathbb{F}_{p^{n}}\right\}, \quad \psi(x)=e^{2 \pi i \operatorname{Tr}(x) / p} \\
S_{s}(u)=\sum_{y \in A_{s}} \psi(u y) \quad \text { and } \quad M_{s}=\max \left\{\left|S_{s}(u)\right| \mid u \in \mathbb{F}_{p^{n}}^{*}\right\}
\end{gathered}
$$

Lemma 3 (cf. [11, Lemma 1]).

$$
M_{s}<\left(\left|A_{s}\right| k\right)^{1 / 2}
$$

Proof. We have

$$
\begin{aligned}
\sum_{u \in \mathbb{F}_{p^{n}}^{*}}\left|S_{s}(u)\right|^{2} & =\sum_{u \in \mathbb{F}_{p^{n}}}\left|S_{s}(u)\right|^{2}-\left|A_{s}\right|^{2} \\
& =\sum_{y, z \in A_{s}} \sum_{u \in \mathbb{F}_{p^{n}}} \psi(u(y-z))-\left|A_{s}\right|^{2}=\left(p^{n}-\left|A_{s}\right|\right)\left|A_{s}\right|
\end{aligned}
$$

Since $S_{s}(u v)=S_{s}(u)$ for every $0 \neq v \in A_{1}$ we get

$$
\sum_{u \in \mathbb{F}_{p^{n}}^{*}}\left|S_{s}(u)\right|^{2} \geq \frac{p^{n}-1}{k} M_{s}^{2}
$$

Hence,

$$
M_{s}^{2} \leq\left(p^{n}-\left|A_{s}\right|\right)\left|A_{s}\right| k /\left(p^{n}-1\right)<\left|A_{s}\right| k
$$

Lemma 4 (cf. [12, Lemma 2]). If $\left|A_{s}\right| \geq 2 k$ then

$$
g\left(k, p^{n}\right) \leq s\left(1+\left\lfloor\left(2 \ln p^{n}\right) / \ln 2\right\rfloor\right)
$$

Proof. Let $r=1+\left\lfloor\left(2 \ln p^{n}\right) / \ln 2\right\rfloor, a \in \mathbb{F}_{p^{n}}$ and let $N=N(a)$ be the number of solutions of

$$
y_{1}+\ldots+y_{r}=a \in \mathbb{F}_{p^{n}}, \quad y_{i} \in A_{s}
$$

Then

$$
\begin{aligned}
p^{n} N & =\sum_{y_{1}, \ldots, y_{r} \in A_{s}} \sum_{u \in \mathbb{F}_{p^{n}}} \psi\left(u\left(y_{1}+\ldots+y_{r}-a\right)\right) \\
& =\sum_{u \in \mathbb{F}_{p^{n}}}\left(S_{s}(u)\right)^{r} \psi(-u a) \geq\left|A_{s}\right|^{r}-\left(p^{n}-1\right) M_{s}^{r} .
\end{aligned}
$$

Hence, by Lemma $3,\left|A_{s}\right| / k \geq 2$ and $r / 2>\left(\ln p^{n}\right) / \ln 2$, we get $N>p^{-n}\left(\left|A_{s}\right| k\right)^{r / 2}\left(\left(\left|A_{s}\right| / k\right)^{r / 2}-p^{n}+1\right) \geq p^{-n}\left(\left|A_{s}\right| k\right)^{r / 2}\left(2^{r / 2}-p^{n}+1\right)>0$.

Theorem 1. If $g\left(k, p^{n}\right)$ exists then for $1<k<\left(p^{n}-1\right) / 2$ we have

$$
g\left(k, p^{n}\right)<6.2 n(2 k)^{1 / n} \ln k .
$$

Proof. For $2 \leq k \leq 11$ we get the result by Lemma 1. For $12 \leq k<p^{n / 2}$ the theorem follows by Lemma 2 since

$$
\frac{32 \ln k+1}{n k^{1 / n} \ln k} \leq \frac{32 \ln 12+1}{n 12^{1 / n} \ln 12}<6 .
$$

Hence, we may restrict ourselves to the case $k \geq \max \left(12, p^{n / 2}\right)$. If $g\left(k, p^{n}\right)$ exists, then there exists a basis $\left\{b_{1}, \ldots, b_{n}\right\} \subset A_{1}$ of $\mathbb{F}_{p^{n}}$ over \mathbb{F}_{p}. Since $k<p^{n} / 2$ the expression

$$
m_{1} b_{1}+\ldots+m_{n} b_{n}, \quad 0 \leq m_{i} \leq\left\lfloor(2 k)^{1 / n}\right\rfloor<p,
$$

which is a sum of at most $n\left\lfloor(2 k)^{1 / n}\right\rfloor k$ th powers, represents at least

$$
\left(\left\lfloor(2 k)^{1 / n}\right\rfloor+1\right)^{n} \geq 2 k
$$

distinct elements of $\mathbb{F}_{p^{n}}$. Hence by Lemma 4,

$$
\begin{aligned}
g\left(k, p^{n}\right) & \leq n\left\lfloor(2 k)^{1 / n}\right\rfloor\left(1+\left(2 \ln p^{n}\right) / \ln 2\right) \\
& \leq 2^{1 / n}\left(\frac{1}{\ln k}+\frac{4}{\ln 2}\right) n k^{1 / n} \ln k<6.2 n(2 k)^{1 / n} \ln k .
\end{aligned}
$$

Corollary 1. If $g\left(k, p^{n}\right)$ exists then for $1<k<\left(p^{n}-1\right) / 2$ we have

$$
g\left(k, p^{n}\right)<68 k^{1 / 2}(\ln k)^{2} .
$$

Proof. By (2) and Lemma 2 we may suppose that $n \geq 2$ and $k \geq p^{n / 2}$. Then

$$
6.2 n(2 k)^{1 / n} \ln k<34 \ln p^{n} k^{1 / n} \ln k \leq 68 k^{1 / 2}(\ln k)^{2}
$$

and the assertion is covered by the previous theorem.
4. A lower bound. Now we prove a lower bound, that is, an existence theorem.

Theorem 2. Let r and p be primes such that p is a primitive root modulo r. Let $n=r-1$ and $k=\left(p^{n}-1\right) /(n+1)$. Then $g\left(k, p^{n}\right)$ exists and we have

$$
g\left(k, p^{n}\right)>\frac{1}{2}\left(((n+1) k)^{1 / n}-1\right) .
$$

Proof. Since $p^{d} \not \equiv 1 \bmod (n+1)$ for $1 \leq d<n$ we have $\left(p^{n}-1\right) /\left(p^{d}-1\right) \nmid k$ and $g\left(k, p^{n}\right)$ exists by (1).

We have $A_{1}=\left\{0,1, \zeta, \zeta^{2}, \ldots, \zeta^{n}\right\}$, where ζ denotes a primitive r th root of unity. Then

$$
\begin{aligned}
A_{s}= & \left\{\nu_{0}+\nu_{1} \zeta+\nu_{2} \zeta^{2}+\ldots+\nu_{n} \zeta^{n} \mid 0 \leq \nu_{0}+\nu_{1}+\nu_{2}+\ldots+\nu_{n} \leq s\right\} \\
= & \left\{\left(\nu_{0}-\nu_{n}\right)+\left(\nu_{1}-\nu_{n}\right) \zeta\right. \\
& \left.+\ldots+\left(\nu_{n-1}-\nu_{n}\right) \zeta^{n-1} \mid 0 \leq \nu_{0}+\ldots+\nu_{n} \leq s\right\} \\
\subset & \left\{\mu_{0}+\mu_{1} \zeta+\ldots+\mu_{n-1} \zeta^{n-1} \mid-s \leq \mu_{0}, \mu_{1}, \ldots, \mu_{n-1} \leq s\right\} .
\end{aligned}
$$

The cardinality of the latter set is at most $(2 s+1)^{n}$, whence

$$
A_{s} \neq \mathbb{F}_{p^{n}} \quad \text { if } s \leq \frac{1}{2}\left(((n+1) k)^{1 / n}-1\right),
$$

which implies the theorem.

References

[1] M. Bhaskaran, Sums of mth powers in algebraic and abelian number fields, Arch. Math. (Basel) 17 (1966), 497-504; Correction, ibid. 22 (1971), 370-371.
[2] S. Chowla, H. B. Mann and E. G. Straus, Some applications of the CauchyDavenport theorem, Norske Vid. Selsk. Forh. Trondheim 32 (1959), 74-80.
[3] M. M. Dodson, On Waring's problem in GF[p], Acta Arith. 19 (1971), 147-173.
[4] M. M. Dodson and A. Tietäväinen, A note on Waring's problem in GF[p], ibid. 30 (1976), 159-167.
[5] C. Garcia and P. Solé, Diameter lower bounds for Waring graphs and multiloop networks, Discrete Math. 111 (1993), 257-261.
[6] D. R. Heath-Brown and S. Konyagin, New bounds for Gauss sums derived from kth powers and for Heilbronn's exponential sum, Quart. J. Math. 51 (2000), 221-235.
[7] S. V. Konyagin, On estimates of Gaussian sums and Waring's problem for a prime modulus, Trudy Mat. Inst. Steklov. 198 (1992), 111-124 (in Russian); English transl.: Proc. Steklov Inst. Math. 1994, no. 1, 105-117.
[8] I. Shparlinskĭ̆, On bounds of Gaussian sums, Mat. Zametki 50 (1991), 122-130 (in Russian); English transl.: Math. Notes 50 (1991), 740-746.
[9] -, On exponential sums with sparse polynomials and rational functions, J. Number Theory 60 (1996), 233-244.
[10] A. Tietäväinen, On diagonal forms over finite fields, Ann. Univ. Turku Ser. A I 118 (1968), 10 pp.
[11] -, Proof of a conjecture of S. Chowla, J. Number Theory 7 (1975), 353-356.
[12] -, Note on Waring's problem $(\bmod p)$, Ann. Acad. Sci. Fenn. A I 554 (1973), 7 pp.
[13] A. Winterhof, On Waring's problem in finite fields, Acta Arith. 87 (1998), 171-177.

Institute of Discrete Mathematics
Austrian Academy of Sciences
Sonnenfelsgasse 19
A-1010 Wien, Austria
E-mail: Arne.Winterhof@oeaw.ac.at

[^0]: 2000 Mathematics Subject Classification: 11P05, 11T24.

