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1. Introduction and results. We consider the Dirichlet L-function

L(s, χ) =
∞∑

n=1

χ(n)
ns

,

where χ(n) is a Dirichlet character modulo q, and denote its nth derivative
at s = 1 by L(n)(1, χ). These derivatives have been widely studied from a
number theoretical point of view. Berger [1], Selberg and Chowla [7] and
Deninger [2] obtained representations of L′(1, χ) by elementary functions.
Kanemitsu [4] gave similar results for L(n)(1, χ) for n ≥ 2. Toyoizumi [8]
obtained an upper bound for L(n)(1, χ) for real non-principal χ. We can
write L(n)(1, χ) in the form

(1) L(n)(1, χ) = (−1)n
q∑

a=1

χ(a)γn(a, q),

where the numbers γn(a, q) are defined by

(2) γn(a, q) = lim
N→∞

( N∑

0≤m≡a (mod q)

lognm
m

− logn+1 N

q(n+ 1)

)

and called generalized Euler constants for arithmetical progressions. Hence
the study of L(n)(1, χ) is closely related to that of γn(a, q). Kanemitsu [4]
proved that γn(a, q) can be expressed in terms of classical functions. K. Dil-
cher [3] derived further properties of γn(a, q), calculated γn(a, q) explicitly in
many cases ([3], p. 271), and computed many approximate values of γn(a, q)
([3], p. 280).

In this paper we are interested in L(n)(1, χ) as a function of n with fixed
q and χ and study the asymptotic behavior of L(n)(1, χ) as n → ∞. As a
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byproduct, we derive a relation (Proposition 1) between L(n)(1, χ) and the
Gauss sum τ(χ) =

∑q−1
a=1 χ(a)e2πia/q. We set

S+
µ (N) = ]

{
n ≤ N :

∣∣∣∣arg
(−1)nL(n)(1, χ)

iατ(χ)

∣∣∣∣ < µ

}
,

S−µ (N) = ]

{
n ≤ N :

∣∣∣∣arg
(−1)nL(n)(1, χ)
−iατ(χ)

∣∣∣∣ < µ

}

where α = 0 or 1 according as χ(−1) = 1 or −1. Then we have

Theorem 1. Given an arbitrarily small number µ > 0 and any number
λ with 0 < λ < 1, for sufficiently large N we have

S+
µ (N) =

1
2
N +O

(
N

logλN

)
, S−µ (N) =

1
2
N +O

(
N

logλN

)
.

Theorem 1 asserts that for sufficiently large n, almost all values of
L(n)(1, χ) are located near the line in the complex plane passing through the
origin whose argument coincides with that of iατ(χ). This seems interesting
since the value L(n)(1, χ) = lims→1+0 L

(n)(s, χ) can be computed using only
real-variable methods, e.g., by using (1), (2) and Euler–Maclaurin summa-
tion formula (see, e.g., [3], p. 280, where an error term is given), while τ(χ)
is an essential constant in the functional equation, i.e., an object of complex
analysis.

The precise asymptotic behavior of |L(n)(1, χ)| is given in the following
theorems.

Theorem 2. There exists an n0 such that for all n ≥ n0

|L(n)(1, χ)| ≤ qn/log n−1/2 exp
(
n log log n− n log log n

logn

)
.

By Cauchy’s estimate for Taylor coefficients, for any fixed real number
r > 0 we have

(3) |L(n)(1, χ)| ≤ n!
Mr

rn

where Mr = max|z−1|≤r |L(z, χ)|. The right-hand side in (3) is � en log n

as n → ∞, while Theorem 2 implies the bound � en log log n. Hence the
bound of Theorem 2 is much better than what can be obtained by Cauchy’s
estimate.

The next theorem shows that Theorem 2 is almost best possible.

Theorem 3. There exist infinitely many n such that

|L(n)(1, χ)| ≥ qn/log n−1/2 exp
(
n log logn− n log logn

log n
− C1

n

log n

)

where C1 is an absolute constant.
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Toyoizumi [8] proved an upper bound for L(n)(1, χ) for a real non-
principal χ, which gives a sharp bound in terms of q:

Assume that q is cube-free. Then for ε > 0 we have

|L(n)(1, χ)| ≤
(

1
(k + 1)4k+1 ·

L(1 + ε, χ)
ζ(1 + ε)

+ ε

)
logn+1 q

if q > q0(ε).

At the first glance, this result seems to contradict with our Theorem 3.
But the proof of this result requires that q0 is larger than exp

[
1

1+εn
]

to en-
sure that the function (log x)n/x is decreasing in the required area of partial
summation. Hence Toyoizumi’s result is valid only when exp

[
1

1+εn
]
� q0.

Our proof, whose essential idea is due to Matsuoka ([5] and [6]), is based
on the functional equation for Dirichlet L-functions and the saddle point
method. We first prove an asymptotic formula for L(n)(1, χ).

Proposition 1. Let P (x) = cosx or sinx according as χ(−1) = 1 or
−1 and χ be a primitive character modulo q. Then there exists an n0 > eq

such that for all n > n0

(4) (−1)nL(n)(1, χ) = iα
τ(χ)
q

qn/log nen log log n+Hq(n) · [P (Fq(n))+Eq,α(n)]

where Hq(n) and Fq(n) are real valued functions satisfying

Hq(n) = −n log logn
logn

− n

logn
(log 2π + 1) +O

(
n(log log n)2

log2 n

)
,

Fq(n) = −1
2
π

n

logn
+O

(
n log logn

log2 n

)

and Eq,α(n) is a complex valued function satisfying Eq,α(n) = O(1/logn).
Each O-constant depends only on q.

Theorem 2 is a consequence of this proposition. Note that by the method
of [5] one can show a more precise (but more complicated) asymptotic ex-
pansion, which, however, is not needed in this paper.

Taking the argument on both sides in (4), it follows that

arg
(−1)nL(n)(1, χ)

iατ(χ)
= arg[P (Fq(n)) + Eq,α(n)].

The right side here must be treated carefully. When the oscillating func-
tion P (Fq(n)) is small, then Eq,α(n) is larger than the “main” term. Hence
in Proposition 2, we show that the error terms Eq,α(n) are small in most
cases.

Proposition 2. Let c be a positive constant , and let m be a sufficiently
large positive integer so that m−c logm > eq. Then for all n with |n−m| <
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c logm, we have

(−1)nL(n)(1, χ)

= iα
τ(χ)
q

qn/log nen log log n+Hq(n) ·
[
P

(
Fq(m)− 1

2
π
n−m
logm

)
+E∗q,α(m)

]

where E∗q,α(m) = O(log logm/(logm)). Here the O-constant depends on c
and q.

Theorems 1 and 3 can be deduced from these propositions (see Section 5).

2. Lemmas for Proposition 1. To prove Proposition 1, we employ
the saddle point method. The integrand to be investigated is eΦq(z) with

Φq(z) = z log q − (n+ 1) log z − z log 2πi+ logΓ (z).

In this section, we prove some lemmas on the saddle point of the function
Φq(z). We omit the details since they are similar to the lemmas in [5].

Lemma 1. Let z = x+ yi and n > log3 q be a sufficiently large positive
integer. Then in the region n1/2 < x < n, 0 < y < x, the equation

d

dz
Φq(z) = 0

has the unique solution x+ yi = a+ bi.

Proof. Let x be fixed and hq(y) = =(zΦ′q(z)). Then it follows that
hq(y) = 0 has a unique solution in 0 < y < x. Denote this solution y
by yx and put zx = x+ yxi and uq(x) = <(zxΦ′q(zx)). Then

uq(x) = x(log q − log 2π)− (n+ 1) +
1
2
πyx + x log

√
x2 + y2

x(5)

− yx arg(x+ yx)− 1
2

+ <(zxJ ′(zx)),

where J(z) is the error term in Stirling’s asymptotic formula for logΓ (z)
([9], p. 251), defined by

J(z) = 2
∞�

0

arctan(t/z)
e2πt − 1

dt� |z|−1 for <z > 0.

We have ∂
∂xuq(x) > 0 for n1/2 < x < n. Using (5) we obtain uq(n1/2) < 0

and uq(n) > 0.
Hence uq(x) = 0 has the unique solution in n1/2 < x < n. The difference

with respect to Matsuoka’s Lemma 1 (see [5], p. 49) is that we must add a
restriction log3 q < n to ensure that uq(n1/2) < 0.

Lemma 2. If n > eq, then

n

logn
< a <

n

logn
+

2n log log n

log2 n
, b =

1
2
π

n

log2 n
+O

(
n log logn

log3 n

)
.
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Proof. We easily see that

(6) n = a log aq − a log 2π +O

(
a

log aq

)

since a + bi is a solution of Φ′q(z) = 0. This gives the upper bound for a.
Now assume a ≤ n/logn. Then we have

n < a log aq ≤ n

logn
log
(

n

logn
q

)
.

As q < logn, we have

n

logn
log
(

n

logn
q

)
< n,

which is a contradiction. Consequently, we have a > n/logn. The estimate
for b is proved similarly.

Note that above estimations are independent of q, as we assumed q <
logn.

Lemma 3. Let gq(y) = <Φq(a+ yi), fq(y) = =Φq(a+ yi). Then

gq(y) is strictly increasing in 0 ≤ y ≤ b,(7)

gq(y) is strictly decreasing in b ≤ y ≤ a,(8)

g′′q (b) = − log aq
a

+
log 2π − 1

a
+O

(
1

a log aq

)
,(9)

f ′′q (b) =
π

a
+O

(
1

a log aq

)
,(10)

gq(b)− gq(b+∆) >
1
3

(log aq)3,(11)

gq(b)− gq(b−∆) >
1
3

(log aq)3(12)

where ∆ = a1/2 log aq.

Proof. The proof follows the similar argument of Matsuoka’s Lemma 3
(see [5], p. 52).

3. Proof of Proposition 1. We expand L(s, χ) into the Taylor series
at s = 1:

L(s, χ) =
∞∑

n=0

L(n)(1, χ)
n!

(s− 1)n.

Putting s = 1− z, we have

(−1)nL(n)(1, χ) =
n!

2πi

�

C

1
zn+1L(1− z, χ) dz
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where C is the counter-clockwise circular path with center z = 0 and radius
% > 0. Next we deform C into C ′, the rectangular path with corners (c ±
Ri), (−R ± Ri) where R and c are positive numbers to be chosen later. If
n − c + 1/2 > 0, the contribution of the horizontal segments and the left
side of the rectangle tend to 0 as R→∞. As a result,

(13) (−1)nL(n)(1, χ)

=
n!

2πi

�

E1

1
zn+1L(1− z, χ) dz +

n!
2πi

�

E2

1
zn+1L(1− z, χ) dz

= H1 +H2

where E1 is a vertical path from c + 0i to c +∞i and E2 is a path from
c − ∞i to c − 0i. Now we use the functional equation. Suppose first that
χ(−1) = 1. Then

H1 =
n!

2πi

�

E1

1
zn+1 ·

τ(χ)
q

(
q

2π

)z
2 cos

1
2
πz · Γ (z)L(z, χ) dz.

Writing cos 1
2πz = (e

1
2πzi+e−

1
2πzi)/2, we will see later that the contribution

from the term e
1
2πzi is an error term. Next we have L(c + yi, χ) = 1 +∑∞

k=2 χ(k)/kc+y. The contribution from
∑∞
k=2 χ(k)/kc+y is small, since we

will take the real part c of the path E1 large. Hence we expect the main
term to be

n!
2πi
· τ(χ)

q

�

E1

1
zn+1

(
q

2π

)z
e−

1
2πziΓ (z) dz.

We write the integrand as eΦq(z) where

Φq(z) = z log q − (n+ 1) log z − z log 2πi+ logΓ (z).

The saddle point a + bi of eΦq(z), and of Φq(z), is estimated in Lemma 1.
Henceforth we set c = a.

Treating H2 similarly, we see that the main term in the estimate for H2

is given by

n!
2π

∞�

0

eΦq(a+yi) dy.

Hence it follows that

(14) (−1)nL(n)(1, χ) =
n!
π
· τ(χ)

q

(
<
∞�

0

eΦq(a+yi) dy + V1

)

where V1 is an error term which we will estimate later.
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Next we split the integral in (14) into

<
∞�

0

eΦq(a+yi)dy = <
b+∆�

b−∆
eΦq(a+yi) dy + V2

where V2 is the integral along the remainder of the path. We take ∆ =
a1/2 log aq, which will ensure that V2 is small. From now on, we denote by
Vi (i = 1, 2, . . .) the expected error terms.

By using Taylor’s formula, there exists η (b−∆ < η < b+∆) such that

Φq(a+ yi) = Φq(a+ bi)− W

2
(y − b)2 +O

(
lim
y→η

d3

dy3Φq(a+ yi)∆3
)
,

where W is defined by

W = − lim
y→b

d2

d2y
Φq(a+ yi) = lim

z→a+bi

d2

d2z
Φq(x+ yi).

Here the second equality is justified since

d

dz
Φq(z) = −i ∂

∂y
<Φq(x+ yi) +

∂

∂y
=Φq(x+ yi)

by the Cauchy–Riemann equations. (We do not use a notation like Φ′′(a+bi)
to avoid confusion.) Then it follows that

exp
[
O

(
lim
y→η

d3

dy3Φq(a+ yi)∆3
)]

= 1 +O

(
log aq
a2 ∆3

)
(15)

= 1 +O

(
log4 aq

a1/2

)
.

Hence we have

(16) <
b+∆�

b−∆
eΦq(a+yi) dy = <

(
eΦq(a+bi)

b+∆�

b−∆
e−(W/2)(y−b)2

dy + V3

)
,

where V3 is an error term to be treated later. Finally we write the integral
in (16) as

<eΦq(a+bi)
( ∞�

−∞
−
∞�

b+∆

−
b−∆�

−∞
e−(W/2)(y−b)2

dy
)

= M + V4 + V5

where M is the desired main term

M = <
(
eΦq(a+bi)

√
2
W
π1/2

)
=

√
2π egq(b)

|W |1/2 cos
(
fq(b)−

1
2

argW
)
.

By (9), (10) and Lemma 2 we have argW = O(log−1 n). We denote 1/|W |1/2
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by Wn. Then it is easily seen that

Wn =
n1/2

logn

[
1 +O

((
log logn

logn

)1/4)]
.

We write Fq(n) instead of fq(b) to indicate that fq(b) is a function of n. We
then have

(17) M =
√

2π egq(b)Wn · [cosFq(n) +O(log−1 n)].

It remains to estimate the error terms Vi. The term V1 can be split into
V1 =

∑2
j=1

1
2 (Ij + I ′j) where

I1 =
∞�

0

1
(a+ yi)n+1

(
q

2π

)a+yi

e
1
2π(a+yi)iΓ (a+ yi)L(a+ yi, χ) dy,

I2 =
∞�

0

1
(a+ yi)n+1

(
q

2π

)a+yi

e−
1
2π(a+yi)iΓ (a+ yi)

∞∑

k=2

χ(k)/ka+yi dy,

I ′1 =
0�

−∞

1
(a+ yi)n+1

(
q

2π

)a+yi

e−
1
2π(a+yi)iΓ (a+ yi)L(a+ yi, χ) dy,

I ′2 =
0�

−∞

1
(a+ yi)n+1

(
q

2π

)a+yi

e
1
2π(a+yi)iΓ (a+ yi)

∞∑

k=2

χ(k)/ka+yi dy.

For I1 we have

I1 �
∞�

0

1
(a2 + y2)(1/2)(n−a+3/2)

(
q

2π

)a
e−

1
2πy−y arg(a+yi) dy

by using Stirling’s formula for logΓ (z) ([9], p. 251). The right-hand side is

� qa(2πe)−aa−(n−a+1/2) � exp[gq(0) + log a],

since gq(0) = a log q − (n − a + 3/2) log a − a(log 2π + 1) + O(1). Thus we
have

I1 � egq(b) exp
[
− (log aq)3

3
+ log a

]
� egq(b)

(
logn
n

)1/3

by using Lemma 3.
For I2 it follows that

I2 � egq(b)
(

logn
n

)1/3

e−
1
10 · n

logn .

We have the same estimates for I ′1 and I ′2. Summing up, we have

V1 � egq(b)
(

logn
n

)1/3

.
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For V3, (15) and Lemma 3 give the bound

V3 � egq(b)
b+∆�

b−∆
e

1
2g
′′
q (b)(y−b)2 log4 aq

a1/2
dy � egq(b)∆

log4 aq

a1/2

= egq(b) log5 aq.

Hence it follows that
V3 � egq(b) log5 n.

The terms V2, V4 and V5 are � egq(b)((logn)/n)1/3. We omit the details,
since the proofs are straightforward. Hence we see that

(18)
5∑

i=1

Vi � egq(b) log5 n.

Combining (17) and (18), we obtain

(−1)nL(n)(1, χ) =
n!
π
· τ(χ)

q

(
M +

5∑

i=1

Vi

)

=
n!
π
· τ(χ)

q

(√
2π egq(b)Wn ·

[
cosFq(n) +O

(
1

log n

)]
+

5∑

i=1

Vi

)

=

√
2
π
· τ(χ)

q
n!egq(b)Wn · [cosFq(n) + Eq(n)]

where Eq(n)� log−1 n. Proposition 1 for χ(−1) = 1 easily follows from this
formula by using Stirling’s formula for n!.

In the case χ(−1) = −1 the result follows by a similar argument.

4. Proof of Proposition 2. Proposition 2 is equivalent to Matsuoka’s
Theorem 1 in [6], p. 281, and its proof is similar. The proof depends on the
following lemma:

Lemma 4. Let c be a positive constant , and let m be a sufficiently large
positive integer so that m−c logm > eq. Then for all n with |n−m| < c logm,
we have

Fq(n) = Fq(m)− 1
2
π
n−m
logm

+O

(
log logm

logm

)

where the O-constant depends on c and q.

Proof. This can be proved as in [6], p. 281, since we may regard the
conductor q as a constant.
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5. Proof of theorems. We first show the following:

Lemma 5. For arbitrary µ > 0 and any number λ satisfying 0 < λ < 1
there exists an m0(µ, λ) such that for all m > m0,

S+
µ (m+ 4 logm)− S+

µ (m) = 2 logm+O(log1−λm),(19)

S−µ (m+ 4 logm)− S−µ (m) = 2 logm+O(log1−λm).(20)

Proof. Denote by [x] the greatest integer not exceeding x and {x} =
x− [x]. Using Proposition 2 and setting {Fq(m)/(2π)} = θm, we have

(−1)nL(n)(1, χ)

= iα
τ(χ)
q

qn/log nen log log n+Hq(n) ·
[
P

(
2π
(
θm −

1
4
· n−m

logm

))
+E∗q,α(m)

]

for all n in the interval (m,m+ 4 logm]. Setting n−m = k, we have

θm −
1
4
· n−m

logm
= θm −

1
4
· 1

logm
k (k = 1, 2, . . . , [4 logm]).

Suppose first χ(−1) = 1. Then

P

(
2π
(
θm −

1
4
· n−m

logm

))
= cos

(
2π
{
θm −

1
4
· 1

logm
k

})
.

The right-hand side is greater than sin(πε/2), provided

(21)
0 ≤

{
θm −

1
4
· 1

logm
k

}
<

1
4
− 1

4
ε or

3
4

+
1
4
ε <

{
θm −

1
4
· 1

logm
k

}
< 1.

If we take ε = log−λm where λ is fixed number satisfying 0 < λ < 1, then
sin 1

2πε > log−λm.
The number of integers k = 1, 2, . . . , [4 logm] satisfying

cos
(

2π
(
θm −

1
4
· k

logm

))
>

1

logλm

is 2 logm− 2 log1−λm+O(1). Thus
∣∣∣∣arctan

( =E∗q,α(m)

cos
(
2π
{
θm − k

4 logm

})
+ <E∗q,α(m)

)∣∣∣∣ ≤ A
log logm

log1−λm

for k satisfying (21), where A is a constant depending only on q. Hence we
have

(22) S+
µ (m+ 4 logm)− S+

µ (m) ≥ 2 logm− 2 log1−λm+O(1)
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if we choose m large enough such that

A
log logm

log1−λm
< µ.

Analogously, we obtain

(23) S−µ (m+ 4 logm)− S−µ (m) ≥ 2 logm− 2 log1−λm+O(1).

Noting that

(24) [4 logm]− (S∓µ (m+ 4 logm)− S∓µ (m))

≥ S±µ (m+ 4 logm)− S±µ (m),

we see that (19) and (20) follow from (22)–(24).

Proof of Theorem 1. Set N0 = N , N1 + 4 logN1 = N0, . . . , Ni + 4 logNi
= Ni−1. Then it follows from Lemma 5 that

S±µ (Ni−1)− S±µ (Ni) = 2 logNi +O(log1−λNi)

provided Ni is sufficiently large. For sufficiently large l, we have

Nl = N1/2 + A(N) logN

where A(N) is a function of N satisfying 0 ≤ A(N) ≤ 1 and therefore

l∑

i=1

(S±µ (Ni−1)− S±µ (Ni))

=
1
2

(N −N1/2 − A(N) logN) +
l∑

i=1

O(log1−λNi).

We see that
l∑

i=1

O(log1−λNi)� log−λNl
l∑

i=1

logNi ≤ A1
N

logλN

where A1 is an absolute constant since Nl is chosen sufficiently large, which
depends on λ and µ. Hence Theorem 1 for the case χ(−1) = 1 follows
immediately.

The case χ(−1) = −1 is proved likewise.

Proof of Theorems 2 and 3. Theorem 2 follows from Proposition 1. To
show Theorem 3, we take n = m+ [4θm logm]− α logm. Then by Proposi-
tion 2,

(−1)nL(n)(1, χ)

= iαqn/log n τ(χ)
q

en log log n+Hq(n) ·
[
1 +O

(
1

log2 m

)
+ E∗q,α(m)

]
.
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The expression in brackets is close to 1 for infinitely many m. Hence, The-
orem 3 follows.
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