On the coefficients of the Taylor expansion of the Dirichlet *L*-function at s = 1

by

HIDEAKI ISHIKAWA (Niigata)

1. Introduction and results. We consider the Dirichlet L-function

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s},$$

where $\chi(n)$ is a Dirichlet character modulo q, and denote its *n*th derivative at s = 1 by $L^{(n)}(1,\chi)$. These derivatives have been widely studied from a number theoretical point of view. Berger [1], Selberg and Chowla [7] and Deninger [2] obtained representations of $L'(1,\chi)$ by elementary functions. Kanemitsu [4] gave similar results for $L^{(n)}(1,\chi)$ for $n \geq 2$. Toyoizumi [8] obtained an upper bound for $L^{(n)}(1,\chi)$ for real non-principal χ . We can write $L^{(n)}(1,\chi)$ in the form

(1)
$$L^{(n)}(1,\chi) = (-1)^n \sum_{a=1}^q \chi(a) \gamma_n(a,q),$$

where the numbers $\gamma_n(a,q)$ are defined by

(2)
$$\gamma_n(a,q) = \lim_{N \to \infty} \left(\sum_{0 \le m \equiv a \pmod{q}}^N \frac{\log^n m}{m} - \frac{\log^{n+1} N}{q(n+1)} \right)$$

and called generalized Euler constants for arithmetical progressions. Hence the study of $L^{(n)}(1,\chi)$ is closely related to that of $\gamma_n(a,q)$. Kanemitsu [4] proved that $\gamma_n(a,q)$ can be expressed in terms of classical functions. K. Dilcher [3] derived further properties of $\gamma_n(a,q)$, calculated $\gamma_n(a,q)$ explicitly in many cases ([3], p. 271), and computed many approximate values of $\gamma_n(a,q)$ ([3], p. 280).

In this paper we are interested in $L^{(n)}(1,\chi)$ as a function of n with fixed q and χ and study the asymptotic behavior of $L^{(n)}(1,\chi)$ as $n \to \infty$. As a

²⁰⁰⁰ Mathematics Subject Classification: Primary 11M06.

by product, we derive a relation (Proposition 1) between $L^{(n)}(1,\chi)$ and the Gauss sum $\tau(\chi) = \sum_{a=1}^{q-1} \chi(a) e^{2\pi i a/q}$. We set

$$S^{+}_{\mu}(N) = \sharp \left\{ n \le N : \left| \arg \frac{(-1)^{n} L^{(n)}(1,\chi)}{i^{\alpha} \tau(\chi)} \right| < \mu \right\},$$
$$S^{-}_{\mu}(N) = \sharp \left\{ n \le N : \left| \arg \frac{(-1)^{n} L^{(n)}(1,\chi)}{-i^{\alpha} \tau(\chi)} \right| < \mu \right\}$$

where $\alpha = 0$ or 1 according as $\chi(-1) = 1$ or -1. Then we have

THEOREM 1. Given an arbitrarily small number $\mu > 0$ and any number λ with $0 < \lambda < 1$, for sufficiently large N we have

$$S^{+}_{\mu}(N) = \frac{1}{2}N + O\left(\frac{N}{\log^{\lambda} N}\right), \quad S^{-}_{\mu}(N) = \frac{1}{2}N + O\left(\frac{N}{\log^{\lambda} N}\right).$$

Theorem 1 asserts that for sufficiently large n, almost all values of $L^{(n)}(1,\chi)$ are located near the line in the complex plane passing through the origin whose argument coincides with that of $i^{\alpha}\tau(\chi)$. This seems interesting since the value $L^{(n)}(1,\chi) = \lim_{s \to 1+0} L^{(n)}(s,\chi)$ can be computed using only real-variable methods, e.g., by using (1), (2) and Euler–Maclaurin summation formula (see, e.g., [3], p. 280, where an error term is given), while $\tau(\chi)$ is an essential constant in the functional equation, i.e., an object of complex analysis.

The precise asymptotic behavior of $|L^{(n)}(1,\chi)|$ is given in the following theorems.

THEOREM 2. There exists an n_0 such that for all $n \ge n_0$

$$|L^{(n)}(1,\chi)| \le q^{n/\log n - 1/2} \exp\left(n\log\log n - \frac{n\log\log n}{\log n}\right).$$

By Cauchy's estimate for Taylor coefficients, for any fixed real number r > 0 we have

(3)
$$|L^{(n)}(1,\chi)| \le n! \frac{M_r}{r^n}$$

where $M_r = \max_{|z-1| \le r} |L(z,\chi)|$. The right-hand side in (3) is $\ll e^{n \log n}$ as $n \to \infty$, while Theorem 2 implies the bound $\ll e^{n \log \log n}$. Hence the bound of Theorem 2 is much better than what can be obtained by Cauchy's estimate.

The next theorem shows that Theorem 2 is almost best possible.

THEOREM 3. There exist infinitely many n such that

$$|L^{(n)}(1,\chi)| \ge q^{n/\log n - 1/2} \exp\left(n\log\log n - \frac{n\log\log n}{\log n} - C_1 \frac{n}{\log n}\right)$$

where C_1 is an absolute constant.

Toyoizumi [8] proved an upper bound for $L^{(n)}(1,\chi)$ for a real nonprincipal χ , which gives a sharp bound in terms of q:

Assume that q is cube-free. Then for $\varepsilon > 0$ we have

$$|L^{(n)}(1,\chi)| \le \left(\frac{1}{(k+1)4^{k+1}} \cdot \frac{L(1+\varepsilon,\chi)}{\zeta(1+\varepsilon)} + \varepsilon\right) \log^{n+1} q$$

if $q > q_0(\varepsilon)$.

At the first glance, this result seems to contradict with our Theorem 3. But the proof of this result requires that q_0 is larger than $\exp\left[\frac{1}{1+\varepsilon}n\right]$ to ensure that the function $(\log x)^n/x$ is decreasing in the required area of partial summation. Hence Toyoizumi's result is valid only when $\exp\left[\frac{1}{1+\varepsilon}n\right] \ll q_0$.

Our proof, whose essential idea is due to Matsuoka ([5] and [6]), is based on the functional equation for Dirichlet *L*-functions and the saddle point method. We first prove an asymptotic formula for $L^{(n)}(1,\chi)$.

PROPOSITION 1. Let $P(x) = \cos x$ or $\sin x$ according as $\chi(-1) = 1$ or -1 and χ be a primitive character modulo q. Then there exists an $n_0 > e^q$ such that for all $n > n_0$

(4)
$$(-1)^n L^{(n)}(1,\chi) = i^\alpha \frac{\tau(\chi)}{q} q^{n/\log n} e^{n\log\log n + H_q(n)} \cdot [P(F_q(n)) + E_{q,\alpha}(n)]$$

where $H_q(n)$ and $F_q(n)$ are real valued functions satisfying

$$H_q(n) = -\frac{n\log\log n}{\log n} - \frac{n}{\log n} (\log 2\pi + 1) + O\left(\frac{n(\log\log n)^2}{\log^2 n}\right),$$

$$F_q(n) = -\frac{1}{2}\pi \frac{n}{\log n} + O\left(\frac{n\log\log n}{\log^2 n}\right)$$

and $E_{q,\alpha}(n)$ is a complex valued function satisfying $E_{q,\alpha}(n) = O(1/\log n)$. Each O-constant depends only on q.

Theorem 2 is a consequence of this proposition. Note that by the method of [5] one can show a more precise (but more complicated) asymptotic expansion, which, however, is not needed in this paper.

Taking the argument on both sides in (4), it follows that

$$\arg \frac{(-1)^n L^{(n)}(1,\chi)}{i^{\alpha} \tau(\chi)} = \arg[P(F_q(n)) + E_{q,\alpha}(n)].$$

The right side here must be treated carefully. When the oscillating function $P(F_q(n))$ is small, then $E_{q,\alpha}(n)$ is larger than the "main" term. Hence in Proposition 2, we show that the error terms $E_{q,\alpha}(n)$ are small in most cases.

PROPOSITION 2. Let c be a positive constant, and let m be a sufficiently large positive integer so that $m - c \log m > e^q$. Then for all n with $|n-m| < c \log m > e^q$.

 $c\log m$, we have

$$(-1)^{n} L^{(n)}(1,\chi) = i^{\alpha} \frac{\tau(\chi)}{q} q^{n/\log n} e^{n\log\log n + H_{q}(n)} \cdot \left[P\left(F_{q}(m) - \frac{1}{2}\pi \frac{n-m}{\log m}\right) + E_{q,\alpha}^{*}(m) \right]$$

where $E_{q,\alpha}^*(m) = O(\log \log m/(\log m))$. Here the O-constant depends on c and q.

Theorems 1 and 3 can be deduced from these propositions (see Section 5).

2. Lemmas for Proposition 1. To prove Proposition 1, we employ the saddle point method. The integrand to be investigated is $e^{\Phi_q(z)}$ with

$$\Phi_q(z) = z \log q - (n+1) \log z - z \log 2\pi i + \log \Gamma(z).$$

In this section, we prove some lemmas on the saddle point of the function $\Phi_q(z)$. We omit the details since they are similar to the lemmas in [5].

LEMMA 1. Let z = x + yi and $n > \log^3 q$ be a sufficiently large positive integer. Then in the region $n^{1/2} < x < n, 0 < y < x$, the equation

$$\frac{d}{dz}\Phi_q(z) = 0$$

has the unique solution x + yi = a + bi.

Proof. Let x be fixed and $h_q(y) = \Im(z\Phi'_q(z))$. Then it follows that $h_q(y) = 0$ has a unique solution in 0 < y < x. Denote this solution y by y_x and put $z_x = x + y_x i$ and $u_q(x) = \Re(z_x \Phi'_q(z_x))$. Then

(5)
$$u_q(x) = x(\log q - \log 2\pi) - (n+1) + \frac{1}{2}\pi y_x + x\log\sqrt{x^2 + y_x^2} - y_x \arg(x+y_x) - \frac{1}{2} + \Re(z_x J'(z_x)),$$

where J(z) is the error term in Stirling's asymptotic formula for $\log \Gamma(z)$ ([9], p. 251), defined by

$$J(z) = 2 \int_{0}^{\infty} \frac{\arctan(t/z)}{e^{2\pi t} - 1} dt \ll |z|^{-1} \quad \text{for } \Re z > 0.$$

We have $\frac{\partial}{\partial x}u_q(x) > 0$ for $n^{1/2} < x < n$. Using (5) we obtain $u_q(n^{1/2}) < 0$ and $u_q(n) > 0$.

Hence $u_q(x) = 0$ has the unique solution in $n^{1/2} < x < n$. The difference with respect to Matsuoka's Lemma 1 (see [5], p. 49) is that we must add a restriction $\log^3 q < n$ to ensure that $u_q(n^{1/2}) < 0$.

LEMMA 2. If $n > e^q$, then

$$\frac{n}{\log n} < a < \frac{n}{\log n} + \frac{2n\log\log n}{\log^2 n}, \quad b = \frac{1}{2}\pi \frac{n}{\log^2 n} + O\bigg(\frac{n\log\log n}{\log^3 n}\bigg).$$

Proof. We easily see that

(6)
$$n = a \log aq - a \log 2\pi + O\left(\frac{a}{\log aq}\right)$$

since a + bi is a solution of $\Phi'_q(z) = 0$. This gives the upper bound for a. Now assume $a \le n/\log n$. Then we have

$$n < a \log aq \le \frac{n}{\log n} \log\left(\frac{n}{\log n}q\right)$$

As $q < \log n$, we have

$$\frac{n}{\log n} \log\left(\frac{n}{\log n}q\right) < n,$$

which is a contradiction. Consequently, we have $a > n/\log n$. The estimate for b is proved similarly.

Note that above estimations are independent of q, as we assumed $q < \log n$.

LEMMA 3. Let $g_q(y) = \Re \Phi_q(a+yi), f_q(y) = \Im \Phi_q(a+yi)$. Then

(7) $g_q(y)$ is strictly increasing in $0 \le y \le b$,

(8)
$$g_q(y)$$
 is strictly decreasing in $b \le y \le a$

(9)
$$g_q''(b) = -\frac{\log aq}{a} + \frac{\log 2\pi - 1}{a} + O\left(\frac{1}{a\log aq}\right),$$

(10)
$$f_q''(b) = \frac{\pi}{a} + O\left(\frac{1}{a\log aq}\right),$$

(11)
$$g_q(b) - g_q(b + \Delta) > \frac{1}{3} (\log aq)^3,$$

(12)
$$g_q(b) - g_q(b - \Delta) > \frac{1}{3} (\log aq)^3$$

where $\Delta = a^{1/2} \log aq$.

Proof. The proof follows the similar argument of Matsuoka's Lemma 3 (see [5], p. 52). \blacksquare

3. Proof of Proposition 1. We expand $L(s, \chi)$ into the Taylor series at s = 1:

$$L(s,\chi) = \sum_{n=0}^{\infty} \frac{L^{(n)}(1,\chi)}{n!} (s-1)^n.$$

Putting s = 1 - z, we have

$$(-1)^{n} L^{(n)}(1,\chi) = \frac{n!}{2\pi i} \int_{C} \frac{1}{z^{n+1}} L(1-z,\chi) \, dz$$

where C is the counter-clockwise circular path with center z = 0 and radius $\rho > 0$. Next we deform C into C', the rectangular path with corners $(c \pm Ri), (-R \pm Ri)$ where R and c are positive numbers to be chosen later. If n - c + 1/2 > 0, the contribution of the horizontal segments and the left side of the rectangle tend to 0 as $R \to \infty$. As a result,

(13)
$$(-1)^n L^{(n)}(1,\chi) = \frac{n!}{2\pi i} \int_{E_1} \frac{1}{z^{n+1}} L(1-z,\chi) \, dz + \frac{n!}{2\pi i} \int_{E_2} \frac{1}{z^{n+1}} L(1-z,\chi) \, dz$$
$$= H_1 + H_2$$

where E_1 is a vertical path from c + 0i to $c + \infty i$ and E_2 is a path from $c - \infty i$ to c - 0i. Now we use the functional equation. Suppose first that $\chi(-1) = 1$. Then

$$H_1 = \frac{n!}{2\pi i} \int_{E_1} \frac{1}{z^{n+1}} \cdot \frac{\tau(\chi)}{q} \left(\frac{q}{2\pi}\right)^z 2\cos\frac{1}{2}\pi z \cdot \Gamma(z)L(z,\overline{\chi}) \, dz.$$

Writing $\cos \frac{1}{2}\pi z = (e^{\frac{1}{2}\pi zi} + e^{-\frac{1}{2}\pi zi})/2$, we will see later that the contribution from the term $e^{\frac{1}{2}\pi zi}$ is an error term. Next we have $L(c + yi, \overline{\chi}) = 1 + \sum_{k=2}^{\infty} \overline{\chi}(k)/k^{c+y}$. The contribution from $\sum_{k=2}^{\infty} \overline{\chi}(k)/k^{c+y}$ is small, since we will take the real part c of the path E_1 large. Hence we expect the main term to be

$$\frac{n!}{2\pi i} \cdot \frac{\tau(\chi)}{q} \int_{E_1} \frac{1}{z^{n+1}} \left(\frac{q}{2\pi}\right)^z e^{-\frac{1}{2}\pi z i} \Gamma(z) \, dz.$$

We write the integrand as $e^{\Phi_q(z)}$ where

$$\Phi_q(z) = z \log q - (n+1) \log z - z \log 2\pi i + \log \Gamma(z).$$

The saddle point a + bi of $e^{\Phi_q(z)}$, and of $\Phi_q(z)$, is estimated in Lemma 1. Henceforth we set c = a.

Treating H_2 similarly, we see that the main term in the estimate for H_2 is given by

$$\frac{n!}{2\pi} \int_{0}^{\infty} e^{\Phi_q(a+yi)} \, dy$$

Hence it follows that

(14)
$$(-1)^n L^{(n)}(1,\chi) = \frac{n!}{\pi} \cdot \frac{\tau(\chi)}{q} \Big(\Re \int_0^\infty e^{\Phi_q(a+yi)} \, dy + V_1 \Big)$$

where V_1 is an error term which we will estimate later.

Next we split the integral in (14) into

$$\Re \int_{0}^{\infty} e^{\Phi_q(a+yi)} dy = \Re \int_{b-\Delta}^{b+\Delta} e^{\Phi_q(a+yi)} dy + V_2$$

where V_2 is the integral along the remainder of the path. We take $\Delta = a^{1/2} \log aq$, which will ensure that V_2 is small. From now on, we denote by V_i (i = 1, 2, ...) the expected error terms.

By using Taylor's formula, there exists η $(b - \Delta < \eta < b + \Delta)$ such that

$$\Phi_q(a+yi) = \Phi_q(a+bi) - \frac{W}{2}(y-b)^2 + O\bigg(\lim_{y\to\eta} \frac{d^3}{dy^3} \Phi_q(a+yi)\Delta^3\bigg),$$

where W is defined by

$$W = -\lim_{y \to b} \frac{d^2}{d^2 y} \Phi_q(a+yi) = \lim_{z \to a+bi} \frac{d^2}{d^2 z} \Phi_q(x+yi)$$

Here the second equality is justified since

$$\frac{d}{dz} \varPhi_q(z) = -i \frac{\partial}{\partial y} \Re \varPhi_q(x+yi) + \frac{\partial}{\partial y} \Im \varPhi_q(x+yi)$$

by the Cauchy–Riemann equations. (We do not use a notation like $\Phi''(a+bi)$ to avoid confusion.) Then it follows that

(15)
$$\exp\left[O\left(\lim_{y \to \eta} \frac{d^3}{dy^3} \Phi_q(a+yi)\Delta^3\right)\right] = 1 + O\left(\frac{\log aq}{a^2}\Delta^3\right)$$
$$= 1 + O\left(\frac{\log^4 aq}{a^{1/2}}\right).$$

Hence we have

(16)
$$\Re \int_{b-\Delta}^{b+\Delta} e^{\Phi_q(a+yi)} \, dy = \Re \Big(e^{\Phi_q(a+bi)} \int_{b-\Delta}^{b+\Delta} e^{-(W/2)(y-b)^2} \, dy + V_3 \Big),$$

where V_3 is an error term to be treated later. Finally we write the integral in (16) as

$$\Re e^{\Phi_q(a+bi)} \left(\int_{-\infty}^{\infty} -\int_{b+\Delta}^{\infty} -\int_{-\infty}^{b-\Delta} e^{-(W/2)(y-b)^2} \, dy \right) = M + V_4 + V_5$$

where M is the desired main term

$$M = \Re\left(e^{\Phi_q(a+bi)}\sqrt{\frac{2}{W}}\pi^{1/2}\right) = \frac{\sqrt{2\pi}\,e^{g_q(b)}}{|W|^{1/2}}\cos\left(f_q(b) - \frac{1}{2}\arg W\right).$$

By (9), (10) and Lemma 2 we have arg $W = O(\log^{-1} n)$. We denote $1/|W|^{1/2}$

by W_n . Then it is easily seen that

$$W_n = \frac{n^{1/2}}{\log n} \left[1 + O\left(\left(\frac{\log \log n}{\log n} \right)^{1/4} \right) \right]$$

We write $F_q(n)$ instead of $f_q(b)$ to indicate that $f_q(b)$ is a function of n. We then have

(17)
$$M = \sqrt{2\pi} e^{g_q(b)} W_n \cdot [\cos F_q(n) + O(\log^{-1} n)].$$

It remains to estimate the error terms V_i . The term V_1 can be split into $V_1 = \sum_{j=1}^2 \frac{1}{2}(I_j + I'_j)$ where

$$\begin{split} I_1 &= \int_0^\infty \frac{1}{(a+yi)^{n+1}} \left(\frac{q}{2\pi}\right)^{a+yi} e^{\frac{1}{2}\pi(a+yi)i} \Gamma(a+yi) L(a+yi,\overline{\chi}) \, dy, \\ I_2 &= \int_0^\infty \frac{1}{(a+yi)^{n+1}} \left(\frac{q}{2\pi}\right)^{a+yi} e^{-\frac{1}{2}\pi(a+yi)i} \Gamma(a+yi) \sum_{k=2}^\infty \overline{\chi}(k)/k^{a+yi} \, dy, \\ I_1' &= \int_{-\infty}^0 \frac{1}{(a+yi)^{n+1}} \left(\frac{q}{2\pi}\right)^{a+yi} e^{-\frac{1}{2}\pi(a+yi)i} \Gamma(a+yi) L(a+yi,\overline{\chi}) \, dy, \\ I_2' &= \int_{-\infty}^0 \frac{1}{(a+yi)^{n+1}} \left(\frac{q}{2\pi}\right)^{a+yi} e^{\frac{1}{2}\pi(a+yi)i} \Gamma(a+yi) \sum_{k=2}^\infty \overline{\chi}(k)/k^{a+yi} \, dy. \end{split}$$

For I_1 we have

$$I_1 \ll \int_0^\infty \frac{1}{(a^2 + y^2)^{(1/2)(n-a+3/2)}} \left(\frac{q}{2\pi}\right)^a e^{-\frac{1}{2}\pi y - y \arg(a+yi)} \, dy$$

by using Stirling's formula for $\log \Gamma(z)$ ([9], p. 251). The right-hand side is

$$\ll q^a (2\pi e)^{-a} a^{-(n-a+1/2)} \ll \exp[g_q(0) + \log a],$$

since $g_q(0) = a \log q - (n - a + 3/2) \log a - a(\log 2\pi + 1) + O(1)$. Thus we have

$$I_1 \ll e^{g_q(b)} \exp\left[-\frac{(\log aq)^3}{3} + \log a\right] \ll e^{g_q(b)} \left(\frac{\log n}{n}\right)^{1/3}$$

by using Lemma 3.

For I_2 it follows that

$$I_2 \ll e^{g_q(b)} \left(\frac{\log n}{n}\right)^{1/3} e^{-\frac{1}{10} \cdot \frac{n}{\log n}}$$

We have the same estimates for I'_1 and I'_2 . Summing up, we have

$$V_1 \ll e^{g_q(b)} \left(\frac{\log n}{n}\right)^{1/3}$$

48

For V_3 , (15) and Lemma 3 give the bound

$$V_3 \ll e^{g_q(b)} \int_{b-\Delta}^{b+\Delta} e^{\frac{1}{2}g_q''(b)(y-b)^2} \frac{\log^4 aq}{a^{1/2}} \, dy \ll e^{g_q(b)} \Delta \frac{\log^4 aq}{a^{1/2}}$$
$$= e^{g_q(b)} \log^5 aq.$$

Hence it follows that

 $V_3 \ll e^{g_q(b)} \log^5 n.$

The terms V_2, V_4 and V_5 are $\ll e^{g_q(b)}((\log n)/n)^{1/3}$. We omit the details, since the proofs are straightforward. Hence we see that

(18)
$$\sum_{i=1}^{5} V_i \ll e^{g_q(b)} \log^5 n$$

Combining (17) and (18), we obtain

$$(-1)^{n} L^{(n)}(1,\chi) = \frac{n!}{\pi} \cdot \frac{\tau(\chi)}{q} \left(M + \sum_{i=1}^{5} V_{i} \right)$$
$$= \frac{n!}{\pi} \cdot \frac{\tau(\chi)}{q} \left(\sqrt{2\pi} e^{g_{q}(b)} W_{n} \cdot \left[\cos F_{q}(n) + O\left(\frac{1}{\log n}\right) \right] + \sum_{i=1}^{5} V_{i} \right)$$
$$= \sqrt{\frac{2}{\pi}} \cdot \frac{\tau(\chi)}{q} n! e^{g_{q}(b)} W_{n} \cdot \left[\cos F_{q}(n) + E_{q}(n) \right]$$

where $E_q(n) \ll \log^{-1} n$. Proposition 1 for $\chi(-1) = 1$ easily follows from this formula by using Stirling's formula for n!.

In the case $\chi(-1) = -1$ the result follows by a similar argument.

4. Proof of Proposition 2. Proposition 2 is equivalent to Matsuoka's Theorem 1 in [6], p. 281, and its proof is similar. The proof depends on the following lemma:

LEMMA 4. Let c be a positive constant, and let m be a sufficiently large positive integer so that $m-c\log m > e^q$. Then for all n with $|n-m| < c\log m$, we have

$$F_q(n) = F_q(m) - \frac{1}{2}\pi \frac{n-m}{\log m} + O\left(\frac{\log\log m}{\log m}\right)$$

where the O-constant depends on c and q.

Proof. This can be proved as in [6], p. 281, since we may regard the conductor q as a constant.

H. Ishikawa

5. Proof of theorems. We first show the following:

LEMMA 5. For arbitrary $\mu > 0$ and any number λ satisfying $0 < \lambda < 1$ there exists an $m_0(\mu, \lambda)$ such that for all $m > m_0$,

(19)
$$S^+_{\mu}(m+4\log m) - S^+_{\mu}(m) = 2\log m + O(\log^{1-\lambda} m),$$

(20)
$$S_{\mu}^{-}(m+4\log m) - S_{\mu}^{-}(m) = 2\log m + O(\log^{1-\lambda} m).$$

Proof. Denote by [x] the greatest integer not exceeding x and $\{x\} = x - [x]$. Using Proposition 2 and setting $\{F_q(m)/(2\pi)\} = \theta_m$, we have $(-1)^n L^{(n)}(1,\chi)$ $= i^{\alpha} \frac{\tau(\chi)}{q} q^{n/\log n} e^{n\log\log n + H_q(n)} \cdot \left[P\left(2\pi \left(\theta_m - \frac{1}{4} \cdot \frac{n-m}{\log m}\right)\right) + E_{q,\alpha}^*(m) \right]$

for all n in the interval $(m, m + 4 \log m]$. Setting n - m = k, we have

$$\theta_m - \frac{1}{4} \cdot \frac{n-m}{\log m} = \theta_m - \frac{1}{4} \cdot \frac{1}{\log m} k \quad (k = 1, 2, \dots, [4\log m]).$$

Suppose first $\chi(-1) = 1$. Then

$$P\left(2\pi\left(\theta_m - \frac{1}{4} \cdot \frac{n-m}{\log m}\right)\right) = \cos\left(2\pi\left\{\theta_m - \frac{1}{4} \cdot \frac{1}{\log m}k\right\}\right).$$

The right-hand side is greater than $\sin(\pi \varepsilon/2)$, provided

(21)
$$0 \leq \left\{ \theta_m - \frac{1}{4} \cdot \frac{1}{\log m} k \right\} < \frac{1}{4} - \frac{1}{4} \varepsilon \quad \text{or}$$
$$\frac{3}{4} + \frac{1}{4} \varepsilon < \left\{ \theta_m - \frac{1}{4} \cdot \frac{1}{\log m} k \right\} < 1.$$

If we take $\varepsilon = \log^{-\lambda} m$ where λ is fixed number satisfying $0 < \lambda < 1$, then $\sin \frac{1}{2}\pi\varepsilon > \log^{-\lambda} m$.

The number of integers $k = 1, 2, ..., [4 \log m]$ satisfying

$$\cos\left(2\pi\left(\theta_m - \frac{1}{4} \cdot \frac{k}{\log m}\right)\right) > \frac{1}{\log^\lambda m}$$

is $2 \log m - 2 \log^{1-\lambda} m + O(1)$. Thus

$$\left| \arctan\left(\frac{\Im E_{q,\alpha}^*(m)}{\cos\left(2\pi\left\{\theta_m - \frac{k}{4\log m}\right\}\right) + \Re E_{q,\alpha}^*(m)}\right) \right| \le A \frac{\log\log m}{\log^{1-\lambda} m}$$

for k satisfying (21), where A is a constant depending only on q. Hence we have

(22)
$$S^+_{\mu}(m+4\log m) - S^+_{\mu}(m) \ge 2\log m - 2\log^{1-\lambda} m + O(1)$$

if we choose m large enough such that

$$A\frac{\log\log m}{\log^{1-\lambda} m} < \mu.$$

Analogously, we obtain

(23)
$$S^{-}_{\mu}(m+4\log m) - S^{-}_{\mu}(m) \ge 2\log m - 2\log^{1-\lambda} m + O(1).$$

Noting that

(24)
$$[4\log m] - (S^{\mp}_{\mu}(m+4\log m) - S^{\mp}_{\mu}(m)) \\ \ge S^{\pm}_{\mu}(m+4\log m) - S^{\pm}_{\mu}(m),$$

we see that (19) and (20) follow from (22)–(24). \blacksquare

Proof of Theorem 1. Set $N_0 = N$, $N_1 + 4 \log N_1 = N_0, \ldots, N_i + 4 \log N_i$ = N_{i-1} . Then it follows from Lemma 5 that

$$S^{\pm}_{\mu}(N_{i-1}) - S^{\pm}_{\mu}(N_i) = 2\log N_i + O(\log^{1-\lambda} N_i)$$

provided N_i is sufficiently large. For sufficiently large l, we have

$$N_l = N^{1/2} + A(N) \log N$$

where A(N) is a function of N satisfying $0 \le A(N) \le 1$ and therefore

$$\sum_{i=1}^{l} (S^{\pm}_{\mu}(N_{i-1}) - S^{\pm}_{\mu}(N_{i}))$$
$$= \frac{1}{2} (N - N^{1/2} - A(N) \log N) + \sum_{i=1}^{l} O(\log^{1-\lambda} N_{i}).$$

We see that

$$\sum_{i=1}^{l} O(\log^{1-\lambda} N_i) \ll \log^{-\lambda} N_l \sum_{i=1}^{l} \log N_i \le A_1 \frac{N}{\log^{\lambda} N}$$

where A_1 is an absolute constant since N_l is chosen sufficiently large, which depends on λ and μ . Hence Theorem 1 for the case $\chi(-1) = 1$ follows immediately.

The case $\chi(-1) = -1$ is proved likewise.

Proof of Theorems 2 and 3. Theorem 2 follows from Proposition 1. To show Theorem 3, we take $n = m + [4\theta_m \log m] - \alpha \log m$. Then by Proposition 2,

$$(-1)^{n} L^{(n)}(1,\chi) = i^{\alpha} q^{n/\log n} \frac{\tau(\chi)}{q} e^{n\log\log n + H_{q}(n)} \cdot \left[1 + O\left(\frac{1}{\log^{2} m}\right) + E_{q,\alpha}^{*}(m)\right].$$

The expression in brackets is close to 1 for infinitely many m. Hence, Theorem 3 follows.

References

- A. Berger, Sur une sommation de quelques séries, Nova Acta Reg. Soc. Sci. Ups. (3) 12 (1883), 31 pp.
- C. Deninger, On the analogue of the formula of Chowla and Selberg for real quadratic fields, J. Reine Angew. Math. 351 (1984), 172–191.
- K. Dilcher, Generalized Euler constants for arithmetical progressions, Math. Comp. 59 (1992), 259–282.
- [4] S. Kanemitsu, On evaluation of certain limits in closed form, in: Théorie des nombers (Quebec, PQ, 1987), J.-M. De Koninck and C. Levesque (eds.), de Gruyter, 1989, 459–474.
- Y. Matsuoka, On the power series coefficients of the Riemann zeta function, Tokyo J. Math. 12 (1989), 49–58.
- [6] —, Generalized Euler constants associated with the Riemann zeta function, in: Number Theory and Combinatorics, World Sci., 1985, 279–295.
- [7] A. Selberg and S. Chowla, On Epstein's zeta-function, J. Reine Angew. Math. 227 (1967), 86–110.
- [8] M. Toyoizumi, On the size of $L^{(k)}(1,\chi)$, J. Indian Math. Soc. 60 (1994), 145–149.
- [9] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, 1927.

Graduate School of Science and Technology Niigata University Niigata, 950-2181, Japan E-mail: isikawah@qed.sc.niigata-u.ac.jp

> Received on 28.1.1999 and in revised form on 20.10.1999 (3550)

52