On the coefficients of the Taylor expansion of the Dirichlet L-function at $s=1$

by
Hideaki Ishikawa (Niigata)

1. Introduction and results. We consider the Dirichlet L-function

$$
L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}},
$$

where $\chi(n)$ is a Dirichlet character modulo q, and denote its nth derivative at $s=1$ by $L^{(n)}(1, \chi)$. These derivatives have been widely studied from a number theoretical point of view. Berger [1], Selberg and Chowla [7] and Deninger [2] obtained representations of $L^{\prime}(1, \chi)$ by elementary functions. Kanemitsu [4] gave similar results for $L^{(n)}(1, \chi)$ for $n \geq 2$. Toyoizumi [8] obtained an upper bound for $L^{(n)}(1, \chi)$ for real non-principal χ. We can write $L^{(n)}(1, \chi)$ in the form

$$
\begin{equation*}
L^{(n)}(1, \chi)=(-1)^{n} \sum_{a=1}^{q} \chi(a) \gamma_{n}(a, q) \tag{1}
\end{equation*}
$$

where the numbers $\gamma_{n}(a, q)$ are defined by

$$
\begin{equation*}
\gamma_{n}(a, q)=\lim _{N \rightarrow \infty}\left(\sum_{0 \leq m \equiv a(\bmod q)}^{N} \frac{\log ^{n} m}{m}-\frac{\log ^{n+1} N}{q(n+1)}\right) \tag{2}
\end{equation*}
$$

and called generalized Euler constants for arithmetical progressions. Hence the study of $L^{(n)}(1, \chi)$ is closely related to that of $\gamma_{n}(a, q)$. Kanemitsu [4] proved that $\gamma_{n}(a, q)$ can be expressed in terms of classical functions. K. Dilcher [3] derived further properties of $\gamma_{n}(a, q)$, calculated $\gamma_{n}(a, q)$ explicitly in many cases ([3], p. 271), and computed many approximate values of $\gamma_{n}(a, q)$ ([3], p. 280).

In this paper we are interested in $L^{(n)}(1, \chi)$ as a function of n with fixed q and χ and study the asymptotic behavior of $L^{(n)}(1, \chi)$ as $n \rightarrow \infty$. As a

[^0]byproduct, we derive a relation (Proposition 1) between $L^{(n)}(1, \chi)$ and the Gauss sum $\tau(\chi)=\sum_{a=1}^{q-1} \chi(a) e^{2 \pi i a / q}$. We set
\[

$$
\begin{aligned}
& S_{\mu}^{+}(N)=\sharp\left\{n \leq N:\left|\arg \frac{(-1)^{n} L^{(n)}(1, \chi)}{i^{\alpha} \tau(\chi)}\right|<\mu\right\}, \\
& S_{\mu}^{-}(N)=\sharp\left\{n \leq N:\left|\arg \frac{(-1)^{n} L^{(n)}(1, \chi)}{-i^{\alpha} \tau(\chi)}\right|<\mu\right\}
\end{aligned}
$$
\]

where $\alpha=0$ or 1 according as $\chi(-1)=1$ or -1 . Then we have
THEOREM 1. Given an arbitrarily small number $\mu>0$ and any number λ with $0<\lambda<1$, for sufficiently large N we have

$$
S_{\mu}^{+}(N)=\frac{1}{2} N+O\left(\frac{N}{\log ^{\lambda} N}\right), \quad S_{\mu}^{-}(N)=\frac{1}{2} N+O\left(\frac{N}{\log ^{\lambda} N}\right)
$$

Theorem 1 asserts that for sufficiently large n, almost all values of $L^{(n)}(1, \chi)$ are located near the line in the complex plane passing through the origin whose argument coincides with that of $i^{\alpha} \tau(\chi)$. This seems interesting since the value $L^{(n)}(1, \chi)=\lim _{s \rightarrow 1+0} L^{(n)}(s, \chi)$ can be computed using only real-variable methods, e.g., by using (1), (2) and Euler-Maclaurin summation formula (see, e.g., [3], p. 280, where an error term is given), while $\tau(\chi)$ is an essential constant in the functional equation, i.e., an object of complex analysis.

The precise asymptotic behavior of $\left|L^{(n)}(1, \chi)\right|$ is given in the following theorems.

THEOREM 2. There exists an n_{0} such that for all $n \geq n_{0}$

$$
\left|L^{(n)}(1, \chi)\right| \leq q^{n / \log n-1 / 2} \exp \left(n \log \log n-\frac{n \log \log n}{\log n}\right)
$$

By Cauchy's estimate for Taylor coefficients, for any fixed real number $r>0$ we have

$$
\begin{equation*}
\left|L^{(n)}(1, \chi)\right| \leq n!\frac{M_{r}}{r^{n}} \tag{3}
\end{equation*}
$$

where $M_{r}=\max _{|z-1| \leq r}|L(z, \chi)|$. The right-hand side in (3) is $\ll e^{n \log n}$ as $n \rightarrow \infty$, while Theorem 2 implies the bound $\ll e^{n \log \log n}$. Hence the bound of Theorem 2 is much better than what can be obtained by Cauchy's estimate.

The next theorem shows that Theorem 2 is almost best possible.
Theorem 3. There exist infinitely many n such that

$$
\left|L^{(n)}(1, \chi)\right| \geq q^{n / \log n-1 / 2} \exp \left(n \log \log n-\frac{n \log \log n}{\log n}-C_{1} \frac{n}{\log n}\right)
$$

where C_{1} is an absolute constant.

Toyoizumi [8] proved an upper bound for $L^{(n)}(1, \chi)$ for a real nonprincipal χ, which gives a sharp bound in terms of q :

Assume that q is cube-free. Then for $\varepsilon>0$ we have

$$
\left|L^{(n)}(1, \chi)\right| \leq\left(\frac{1}{(k+1) 4^{k+1}} \cdot \frac{L(1+\varepsilon, \chi)}{\zeta(1+\varepsilon)}+\varepsilon\right) \log ^{n+1} q
$$

if $q>q_{0}(\varepsilon)$.
At the first glance, this result seems to contradict with our Theorem 3. But the proof of this result requires that q_{0} is larger than $\exp \left[\frac{1}{1+\varepsilon} n\right]$ to ensure that the function $(\log x)^{n} / x$ is decreasing in the required area of partial summation. Hence Toyoizumi's result is valid only when $\exp \left[\frac{1}{1+\varepsilon} n\right] \ll q_{0}$.

Our proof, whose essential idea is due to Matsuoka ([5] and [6]), is based on the functional equation for Dirichlet L-functions and the saddle point method. We first prove an asymptotic formula for $L^{(n)}(1, \chi)$.

Proposition 1. Let $P(x)=\cos x$ or $\sin x$ according as $\chi(-1)=1$ or -1 and χ be a primitive character modulo q. Then there exists an $n_{0}>e^{q}$ such that for all $n>n_{0}$

$$
\begin{equation*}
(-1)^{n} L^{(n)}(1, \chi)=i^{\alpha} \frac{\tau(\chi)}{q} q^{n / \log n} e^{n \log \log n+H_{q}(n)} \cdot\left[P\left(F_{q}(n)\right)+E_{q, \alpha}(n)\right] \tag{4}
\end{equation*}
$$

where $H_{q}(n)$ and $F_{q}(n)$ are real valued functions satisfying

$$
\begin{aligned}
& H_{q}(n)=-\frac{n \log \log n}{\log n}-\frac{n}{\log n}(\log 2 \pi+1)+O\left(\frac{n(\log \log n)^{2}}{\log ^{2} n}\right), \\
& F_{q}(n)=-\frac{1}{2} \pi \frac{n}{\log n}+O\left(\frac{n \log \log n}{\log ^{2} n}\right)
\end{aligned}
$$

and $E_{q, \alpha}(n)$ is a complex valued function satisfying $E_{q, \alpha}(n)=O(1 / \log n)$. Each O-constant depends only on q.

Theorem 2 is a consequence of this proposition. Note that by the method of [5] one can show a more precise (but more complicated) asymptotic expansion, which, however, is not needed in this paper.

Taking the argument on both sides in (4), it follows that

$$
\arg \frac{(-1)^{n} L^{(n)}(1, \chi)}{i^{\alpha} \tau(\chi)}=\arg \left[P\left(F_{q}(n)\right)+E_{q, \alpha}(n)\right] .
$$

The right side here must be treated carefully. When the oscillating function $P\left(F_{q}(n)\right)$ is small, then $E_{q, \alpha}(n)$ is larger than the "main" term. Hence in Proposition 2, we show that the error terms $E_{q, \alpha}(n)$ are small in most cases.

Proposition 2. Let c be a positive constant, and let m be a sufficiently large positive integer so that $m-c \log m>e^{q}$. Then for all n with $|n-m|<$
$c \log m$, we have

$$
\begin{aligned}
& (-1)^{n} L^{(n)}(1, \chi) \\
& \quad=i^{\alpha} \frac{\tau(\chi)}{q} q^{n / \log n} e^{n \log \log n+H_{q}(n)} \cdot\left[P\left(F_{q}(m)-\frac{1}{2} \pi \frac{n-m}{\log m}\right)+E_{q, \alpha}^{*}(m)\right]
\end{aligned}
$$

where $E_{q, \alpha}^{*}(m)=O(\log \log m /(\log m))$. Here the O-constant depends on c and q.

Theorems 1 and 3 can be deduced from these propositions (see Section 5).
2. Lemmas for Proposition 1. To prove Proposition 1, we employ the saddle point method. The integrand to be investigated is $e^{\Phi_{q}(z)}$ with

$$
\Phi_{q}(z)=z \log q-(n+1) \log z-z \log 2 \pi i+\log \Gamma(z)
$$

In this section, we prove some lemmas on the saddle point of the function $\Phi_{q}(z)$. We omit the details since they are similar to the lemmas in [5].

Lemma 1. Let $z=x+y i$ and $n>\log ^{3} q$ be a sufficiently large positive integer. Then in the region $n^{1 / 2}<x<n, 0<y<x$, the equation

$$
\frac{d}{d z} \Phi_{q}(z)=0
$$

has the unique solution $x+y i=a+b i$.
Proof. Let x be fixed and $h_{q}(y)=\Im\left(z \Phi_{q}^{\prime}(z)\right)$. Then it follows that $h_{q}(y)=0$ has a unique solution in $0<y<x$. Denote this solution y by y_{x} and put $z_{x}=x+y_{x} i$ and $u_{q}(x)=\Re\left(z_{x} \Phi_{q}^{\prime}\left(z_{x}\right)\right)$. Then

$$
\begin{align*}
u_{q}(x)= & x(\log q-\log 2 \pi)-(n+1)+\frac{1}{2} \pi y_{x}+x \log \sqrt{x^{2}+y_{x}^{2}} \tag{5}\\
& -y_{x} \arg \left(x+y_{x}\right)-\frac{1}{2}+\Re\left(z_{x} J^{\prime}\left(z_{x}\right)\right)
\end{align*}
$$

where $J(z)$ is the error term in Stirling's asymptotic formula for $\log \Gamma(z)$ ([9], p. 251), defined by

$$
J(z)=2 \int_{0}^{\infty} \frac{\arctan (t / z)}{e^{2 \pi t}-1} d t \ll|z|^{-1} \quad \text { for } \Re z>0
$$

We have $\frac{\partial}{\partial x} u_{q}(x)>0$ for $n^{1 / 2}<x<n$. Using (5) we obtain $u_{q}\left(n^{1 / 2}\right)<0$ and $u_{q}(n)>0$.

Hence $u_{q}(x)=0$ has the unique solution in $n^{1 / 2}<x<n$. The difference with respect to Matsuoka's Lemma 1 (see [5], p. 49) is that we must add a restriction $\log ^{3} q<n$ to ensure that $u_{q}\left(n^{1 / 2}\right)<0$.

Lemma 2. If $n>e^{q}$, then

$$
\frac{n}{\log n}<a<\frac{n}{\log n}+\frac{2 n \log \log n}{\log ^{2} n}, \quad b=\frac{1}{2} \pi \frac{n}{\log ^{2} n}+O\left(\frac{n \log \log n}{\log ^{3} n}\right)
$$

Proof. We easily see that

$$
\begin{equation*}
n=a \log a q-a \log 2 \pi+O\left(\frac{a}{\log a q}\right) \tag{6}
\end{equation*}
$$

since $a+b i$ is a solution of $\Phi_{q}^{\prime}(z)=0$. This gives the upper bound for a. Now assume $a \leq n / \log n$. Then we have

$$
n<a \log a q \leq \frac{n}{\log n} \log \left(\frac{n}{\log n} q\right)
$$

As $q<\log n$, we have

$$
\frac{n}{\log n} \log \left(\frac{n}{\log n} q\right)<n
$$

which is a contradiction. Consequently, we have $a>n / \log n$. The estimate for b is proved similarly.

Note that above estimations are independent of q, as we assumed $q<$ $\log n$.

Lemma 3. Let $g_{q}(y)=\Re \Phi_{q}(a+y i), f_{q}(y)=\Im \Phi_{q}(a+y i)$. Then

$$
\begin{equation*}
g_{q}(y) \text { is strictly increasing in } 0 \leq y \leq b \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& g_{q}(y) \text { is strictly decreasing in } b \leq y \leq a \tag{8}\\
& g_{q}^{\prime \prime}(b)=-\frac{\log a q}{a}+\frac{\log 2 \pi-1}{a}+O\left(\frac{1}{a \log a q}\right) \tag{9}\\
& f_{q}^{\prime \prime}(b)=\frac{\pi}{a}+O\left(\frac{1}{a \log a q}\right) \tag{10}\\
& g_{q}(b)-g_{q}(b+\Delta)>\frac{1}{3}(\log a q)^{3} \tag{11}\\
& g_{q}(b)-g_{q}(b-\Delta)>\frac{1}{3}(\log a q)^{3} \tag{12}
\end{align*}
$$

where $\Delta=a^{1 / 2} \log a q$.
Proof. The proof follows the similar argument of Matsuoka's Lemma 3 (see [5], p. 52).
3. Proof of Proposition 1. We expand $L(s, \chi)$ into the Taylor series at $s=1$:

$$
L(s, \chi)=\sum_{n=0}^{\infty} \frac{L^{(n)}(1, \chi)}{n!}(s-1)^{n}
$$

Putting $s=1-z$, we have

$$
(-1)^{n} L^{(n)}(1, \chi)=\frac{n!}{2 \pi i} \int_{C} \frac{1}{z^{n+1}} L(1-z, \chi) d z
$$

where C is the counter-clockwise circular path with center $z=0$ and radius $\varrho>0$. Next we deform C into C^{\prime}, the rectangular path with corners $(c \pm$ $R i),(-R \pm R i)$ where R and c are positive numbers to be chosen later. If $n-c+1 / 2>0$, the contribution of the horizontal segments and the left side of the rectangle tend to 0 as $R \rightarrow \infty$. As a result,

$$
\begin{align*}
& (-1)^{n} L^{(n)}(1, \chi) \tag{13}\\
& \quad=\frac{n!}{2 \pi i} \int_{E_{1}} \frac{1}{z^{n+1}} L(1-z, \chi) d z+\frac{n!}{2 \pi i} \int_{E_{2}} \frac{1}{z^{n+1}} L(1-z, \chi) d z \\
& \quad=H_{1}+H_{2}
\end{align*}
$$

where E_{1} is a vertical path from $c+0 i$ to $c+\infty i$ and E_{2} is a path from $c-\infty i$ to $c-0 i$. Now we use the functional equation. Suppose first that $\chi(-1)=1$. Then

$$
H_{1}=\frac{n!}{2 \pi i} \int_{E_{1}} \frac{1}{z^{n+1}} \cdot \frac{\tau(\chi)}{q}\left(\frac{q}{2 \pi}\right)^{z} 2 \cos \frac{1}{2} \pi z \cdot \Gamma(z) L(z, \bar{\chi}) d z
$$

Writing $\cos \frac{1}{2} \pi z=\left(e^{\frac{1}{2} \pi z i}+e^{-\frac{1}{2} \pi z i}\right) / 2$, we will see later that the contribution from the term $e^{\frac{1}{2} \pi z i}$ is an error term. Next we have $L(c+y i, \bar{\chi})=1+$ $\sum_{k=2}^{\infty} \bar{\chi}(k) / k^{c+y}$. The contribution from $\sum_{k=2}^{\infty} \bar{\chi}(k) / k^{c+y}$ is small, since we will take the real part c of the path E_{1} large. Hence we expect the main term to be

$$
\frac{n!}{2 \pi i} \cdot \frac{\tau(\chi)}{q} \int_{E_{1}} \frac{1}{z^{n+1}}\left(\frac{q}{2 \pi}\right)^{z} e^{-\frac{1}{2} \pi z i} \Gamma(z) d z
$$

We write the integrand as $e^{\Phi_{q}(z)}$ where

$$
\Phi_{q}(z)=z \log q-(n+1) \log z-z \log 2 \pi i+\log \Gamma(z)
$$

The saddle point $a+b i$ of $e^{\Phi_{q}(z)}$, and of $\Phi_{q}(z)$, is estimated in Lemma 1. Henceforth we set $c=a$.

Treating H_{2} similarly, we see that the main term in the estimate for H_{2} is given by

$$
\frac{n!}{2 \pi} \int_{0}^{\infty} e^{\Phi_{q}(a+y i)} d y
$$

Hence it follows that

$$
\begin{equation*}
(-1)^{n} L^{(n)}(1, \chi)=\frac{n!}{\pi} \cdot \frac{\tau(\chi)}{q}\left(\Re \int_{0}^{\infty} e^{\Phi_{q}(a+y i)} d y+V_{1}\right) \tag{14}
\end{equation*}
$$

where V_{1} is an error term which we will estimate later.

Next we split the integral in (14) into

$$
\Re \int_{0}^{\infty} e^{\Phi_{q}(a+y i)} d y=\Re \int_{b-\Delta}^{b+\Delta} e^{\Phi_{q}(a+y i)} d y+V_{2}
$$

where V_{2} is the integral along the remainder of the path. We take $\Delta=$ $a^{1 / 2} \log a q$, which will ensure that V_{2} is small. From now on, we denote by $V_{i}(i=1,2, \ldots)$ the expected error terms.

By using Taylor's formula, there exists $\eta(b-\Delta<\eta<b+\Delta)$ such that

$$
\Phi_{q}(a+y i)=\Phi_{q}(a+b i)-\frac{W}{2}(y-b)^{2}+O\left(\lim _{y \rightarrow \eta} \frac{d^{3}}{d y^{3}} \Phi_{q}(a+y i) \Delta^{3}\right)
$$

where W is defined by

$$
W=-\lim _{y \rightarrow b} \frac{d^{2}}{d^{2} y} \Phi_{q}(a+y i)=\lim _{z \rightarrow a+b i} \frac{d^{2}}{d^{2} z} \Phi_{q}(x+y i)
$$

Here the second equality is justified since

$$
\frac{d}{d z} \Phi_{q}(z)=-i \frac{\partial}{\partial y} \Re \Phi_{q}(x+y i)+\frac{\partial}{\partial y} \Im \Phi_{q}(x+y i)
$$

by the Cauchy-Riemann equations. (We do not use a notation like $\Phi^{\prime \prime}(a+b i)$ to avoid confusion.) Then it follows that

$$
\begin{align*}
\exp \left[O\left(\lim _{y \rightarrow \eta} \frac{d^{3}}{d y^{3}} \Phi_{q}(a+y i) \Delta^{3}\right)\right] & =1+O\left(\frac{\log a q}{a^{2}} \Delta^{3}\right) \tag{15}\\
& =1+O\left(\frac{\log ^{4} a q}{a^{1 / 2}}\right)
\end{align*}
$$

Hence we have

$$
\begin{equation*}
\Re \int_{b-\Delta}^{b+\Delta} e^{\Phi_{q}(a+y i)} d y=\Re\left(e^{\Phi_{q}(a+b i)} \int_{b-\Delta}^{b+\Delta} e^{-(W / 2)(y-b)^{2}} d y+V_{3}\right) \tag{16}
\end{equation*}
$$

where V_{3} is an error term to be treated later. Finally we write the integral in (16) as

$$
\Re e^{\Phi_{q}(a+b i)}\left(\int_{-\infty}^{\infty}-\int_{b+\Delta}^{\infty}-\int_{-\infty}^{b-\Delta} e^{-(W / 2)(y-b)^{2}} d y\right)=M+V_{4}+V_{5}
$$

where M is the desired main term

$$
M=\Re\left(e^{\Phi_{q}(a+b i)} \sqrt{\frac{2}{W}} \pi^{1 / 2}\right)=\frac{\sqrt{2 \pi} e^{g_{q}(b)}}{|W|^{1 / 2}} \cos \left(f_{q}(b)-\frac{1}{2} \arg W\right)
$$

By (9), (10) and Lemma 2 we have $\arg W=O\left(\log ^{-1} n\right)$. We denote $1 /|W|^{1 / 2}$
by W_{n}. Then it is easily seen that

$$
W_{n}=\frac{n^{1 / 2}}{\log n}\left[1+O\left(\left(\frac{\log \log n}{\log n}\right)^{1 / 4}\right)\right]
$$

We write $F_{q}(n)$ instead of $f_{q}(b)$ to indicate that $f_{q}(b)$ is a function of n. We then have

$$
\begin{equation*}
M=\sqrt{2 \pi} e^{g_{q}(b)} W_{n} \cdot\left[\cos F_{q}(n)+O\left(\log ^{-1} n\right)\right] \tag{17}
\end{equation*}
$$

It remains to estimate the error terms V_{i}. The term V_{1} can be split into $V_{1}=\sum_{j=1}^{2} \frac{1}{2}\left(I_{j}+I_{j}^{\prime}\right)$ where

$$
\begin{aligned}
& I_{1}=\int_{0}^{\infty} \frac{1}{(a+y i)^{n+1}}\left(\frac{q}{2 \pi}\right)^{a+y i} e^{\frac{1}{2} \pi(a+y i) i} \Gamma(a+y i) L(a+y i, \bar{\chi}) d y \\
& I_{2}=\int_{0}^{\infty} \frac{1}{(a+y i)^{n+1}}\left(\frac{q}{2 \pi}\right)^{a+y i} e^{-\frac{1}{2} \pi(a+y i) i} \Gamma(a+y i) \sum_{k=2}^{\infty} \bar{\chi}(k) / k^{a+y i} d y, \\
& I_{1}^{\prime}=\int_{-\infty}^{0} \frac{1}{(a+y i)^{n+1}}\left(\frac{q}{2 \pi}\right)^{a+y i} e^{-\frac{1}{2} \pi(a+y i) i} \Gamma(a+y i) L(a+y i, \bar{\chi}) d y, \\
& I_{2}^{\prime}=\int_{-\infty}^{0} \frac{1}{(a+y i)^{n+1}}\left(\frac{q}{2 \pi}\right)^{a+y i} e^{\frac{1}{2} \pi(a+y i) i} \Gamma(a+y i) \sum_{k=2}^{\infty} \bar{\chi}(k) / k^{a+y i} d y .
\end{aligned}
$$

For I_{1} we have

$$
I_{1} \ll \int_{0}^{\infty} \frac{1}{\left(a^{2}+y^{2}\right)^{(1 / 2)(n-a+3 / 2)}}\left(\frac{q}{2 \pi}\right)^{a} e^{-\frac{1}{2} \pi y-y \arg (a+y i)} d y
$$

by using Stirling's formula for $\log \Gamma(z)$ ([9], p. 251). The right-hand side is

$$
\ll q^{a}(2 \pi e)^{-a} a^{-(n-a+1 / 2)} \ll \exp \left[g_{q}(0)+\log a\right]
$$

since $g_{q}(0)=a \log q-(n-a+3 / 2) \log a-a(\log 2 \pi+1)+O(1)$. Thus we have

$$
I_{1} \ll e^{g_{q}(b)} \exp \left[-\frac{(\log a q)^{3}}{3}+\log a\right] \ll e^{g_{q}(b)}\left(\frac{\log n}{n}\right)^{1 / 3}
$$

by using Lemma 3.
For I_{2} it follows that

$$
I_{2} \ll e^{g_{q}(b)}\left(\frac{\log n}{n}\right)^{1 / 3} e^{-\frac{1}{10} \cdot \frac{n}{\log n}}
$$

We have the same estimates for I_{1}^{\prime} and I_{2}^{\prime}. Summing up, we have

$$
V_{1} \ll e^{g_{q}(b)}\left(\frac{\log n}{n}\right)^{1 / 3}
$$

For V_{3}, (15) and Lemma 3 give the bound

$$
\begin{aligned}
V_{3} & \ll e^{g_{q}(b)} \int_{b-\Delta}^{b+\Delta} e^{\frac{1}{2} g_{q}^{\prime \prime}(b)(y-b)^{2}} \frac{\log ^{4} a q}{a^{1 / 2}} d y \ll e^{g_{q}(b)} \Delta \frac{\log ^{4} a q}{a^{1 / 2}} \\
& =e^{g_{q}(b)} \log ^{5} a q .
\end{aligned}
$$

Hence it follows that

$$
V_{3} \ll e^{g_{q}(b)} \log ^{5} n .
$$

The terms V_{2}, V_{4} and V_{5} are $\ll e^{g_{q}(b)}((\log n) / n)^{1 / 3}$. We omit the details, since the proofs are straightforward. Hence we see that

$$
\begin{equation*}
\sum_{i=1}^{5} V_{i} \ll e^{g_{q}(b)} \log ^{5} n \tag{18}
\end{equation*}
$$

Combining (17) and (18), we obtain

$$
\begin{aligned}
(-1)^{n} L^{(n)}(1, \chi) & =\frac{n!}{\pi} \cdot \frac{\tau(\chi)}{q}\left(M+\sum_{i=1}^{5} V_{i}\right) \\
& =\frac{n!}{\pi} \cdot \frac{\tau(\chi)}{q}\left(\sqrt{2 \pi} e^{g_{q}(b)} W_{n} \cdot\left[\cos F_{q}(n)+O\left(\frac{1}{\log n}\right)\right]+\sum_{i=1}^{5} V_{i}\right) \\
& =\sqrt{\frac{2}{\pi}} \cdot \frac{\tau(\chi)}{q} n!e^{g_{q}(b)} W_{n} \cdot\left[\cos F_{q}(n)+E_{q}(n)\right]
\end{aligned}
$$

where $E_{q}(n) \ll \log ^{-1} n$. Proposition 1 for $\chi(-1)=1$ easily follows from this formula by using Stirling's formula for n !.

In the case $\chi(-1)=-1$ the result follows by a similar argument.
4. Proof of Proposition 2. Proposition 2 is equivalent to Matsuoka's Theorem 1 in [6], p. 281, and its proof is similar. The proof depends on the following lemma:

Lemma 4. Let c be a positive constant, and let m be a sufficiently large positive integer so that $m-c \log m>e^{q}$. Then for all n with $|n-m|<c \log m$, we have

$$
F_{q}(n)=F_{q}(m)-\frac{1}{2} \pi \frac{n-m}{\log m}+O\left(\frac{\log \log m}{\log m}\right)
$$

where the O-constant depends on c and q.
Proof. This can be proved as in [6], p. 281, since we may regard the conductor q as a constant.

5. Proof of theorems. We first show the following:

Lemma 5. For arbitrary $\mu>0$ and any number λ satisfying $0<\lambda<1$ there exists an $m_{0}(\mu, \lambda)$ such that for all $m>m_{0}$,

$$
\begin{align*}
& S_{\mu}^{+}(m+4 \log m)-S_{\mu}^{+}(m)=2 \log m+O\left(\log ^{1-\lambda} m\right) \tag{19}\\
& S_{\mu}^{-}(m+4 \log m)-S_{\mu}^{-}(m)=2 \log m+O\left(\log ^{1-\lambda} m\right) \tag{20}
\end{align*}
$$

Proof. Denote by $[x]$ the greatest integer not exceeding x and $\{x\}=$ $x-[x]$. Using Proposition 2 and setting $\left\{F_{q}(m) /(2 \pi)\right\}=\theta_{m}$, we have

$$
\begin{aligned}
& (-1)^{n} L^{(n)}(1, \chi) \\
& =i^{\alpha} \frac{\tau(\chi)}{q} q^{n / \log n} e^{n \log \log n+H_{q}(n)} \cdot\left[P\left(2 \pi\left(\theta_{m}-\frac{1}{4} \cdot \frac{n-m}{\log m}\right)\right)+E_{q, \alpha}^{*}(m)\right]
\end{aligned}
$$

for all n in the interval $(m, m+4 \log m]$. Setting $n-m=k$, we have

$$
\theta_{m}-\frac{1}{4} \cdot \frac{n-m}{\log m}=\theta_{m}-\frac{1}{4} \cdot \frac{1}{\log m} k \quad(k=1,2, \ldots,[4 \log m])
$$

Suppose first $\chi(-1)=1$. Then

$$
P\left(2 \pi\left(\theta_{m}-\frac{1}{4} \cdot \frac{n-m}{\log m}\right)\right)=\cos \left(2 \pi\left\{\theta_{m}-\frac{1}{4} \cdot \frac{1}{\log m} k\right\}\right)
$$

The right-hand side is greater than $\sin (\pi \varepsilon / 2)$, provided

$$
\begin{gather*}
0 \leq\left\{\theta_{m}-\frac{1}{4} \cdot \frac{1}{\log m} k\right\}<\frac{1}{4}-\frac{1}{4} \varepsilon \quad \text { or } \tag{21}\\
\frac{3}{4}+\frac{1}{4} \varepsilon<\left\{\theta_{m}-\frac{1}{4} \cdot \frac{1}{\log m} k\right\}<1 .
\end{gather*}
$$

If we take $\varepsilon=\log ^{-\lambda} m$ where λ is fixed number satisfying $0<\lambda<1$, then $\sin \frac{1}{2} \pi \varepsilon>\log ^{-\lambda} m$.

The number of integers $k=1,2, \ldots,[4 \log m]$ satisfying

$$
\cos \left(2 \pi\left(\theta_{m}-\frac{1}{4} \cdot \frac{k}{\log m}\right)\right)>\frac{1}{\log ^{\lambda} m}
$$

is $2 \log m-2 \log ^{1-\lambda} m+O(1)$. Thus

$$
\left|\arctan \left(\frac{\Im E_{q, \alpha}^{*}(m)}{\cos \left(2 \pi\left\{\theta_{m}-\frac{k}{4 \log m}\right\}\right)+\Re E_{q, \alpha}^{*}(m)}\right)\right| \leq A \frac{\log \log m}{\log ^{1-\lambda} m}
$$

for k satisfying (21), where A is a constant depending only on q. Hence we have

$$
\begin{equation*}
S_{\mu}^{+}(m+4 \log m)-S_{\mu}^{+}(m) \geq 2 \log m-2 \log ^{1-\lambda} m+O(1) \tag{22}
\end{equation*}
$$

if we choose m large enough such that

$$
A \frac{\log \log m}{\log ^{1-\lambda} m}<\mu
$$

Analogously, we obtain

$$
\begin{equation*}
S_{\mu}^{-}(m+4 \log m)-S_{\mu}^{-}(m) \geq 2 \log m-2 \log ^{1-\lambda} m+O(1) \tag{23}
\end{equation*}
$$

Noting that

$$
\begin{align*}
{[4 \log m]-\left(S_{\mu}^{\mp}(m+4 \log m)-S_{\mu}^{\mp}(\right.} & m)) \tag{24}\\
& \geq S_{\mu}^{ \pm}(m+4 \log m)-S_{\mu}^{ \pm}(m)
\end{align*}
$$

we see that (19) and (20) follow from (22)-(24).
Proof of Theorem 1. Set $N_{0}=N, N_{1}+4 \log N_{1}=N_{0}, \ldots, N_{i}+4 \log N_{i}$ $=N_{i-1}$. Then it follows from Lemma 5 that

$$
S_{\mu}^{ \pm}\left(N_{i-1}\right)-S_{\mu}^{ \pm}\left(N_{i}\right)=2 \log N_{i}+O\left(\log ^{1-\lambda} N_{i}\right)
$$

provided N_{i} is sufficiently large. For sufficiently large l, we have

$$
N_{l}=N^{1 / 2}+A(N) \log N
$$

where $A(N)$ is a function of N satisfying $0 \leq A(N) \leq 1$ and therefore

$$
\begin{aligned}
& \sum_{i=1}^{l}\left(S_{\mu}^{ \pm}\left(N_{i-1}\right)-S_{\mu}^{ \pm}\left(N_{i}\right)\right) \\
&=\frac{1}{2}\left(N-N^{1 / 2}-A(N) \log N\right)+\sum_{i=1}^{l} O\left(\log ^{1-\lambda} N_{i}\right)
\end{aligned}
$$

We see that

$$
\sum_{i=1}^{l} O\left(\log ^{1-\lambda} N_{i}\right) \ll \log ^{-\lambda} N_{l} \sum_{i=1}^{l} \log N_{i} \leq A_{1} \frac{N}{\log ^{\lambda} N}
$$

where A_{1} is an absolute constant since N_{l} is chosen sufficiently large, which depends on λ and μ. Hence Theorem 1 for the case $\chi(-1)=1$ follows immediately.

The case $\chi(-1)=-1$ is proved likewise.
Proof of Theorems 2 and 3. Theorem 2 follows from Proposition 1. To show Theorem 3, we take $n=m+\left[4 \theta_{m} \log m\right]-\alpha \log m$. Then by Proposition 2 ,

$$
\begin{aligned}
& (-1)^{n} L^{(n)}(1, \chi) \\
& \quad=i^{\alpha} q^{n / \log n} \frac{\tau(\chi)}{q} e^{n \log \log n+H_{q}(n)} \cdot\left[1+O\left(\frac{1}{\log ^{2} m}\right)+E_{q, \alpha}^{*}(m)\right]
\end{aligned}
$$

The expression in brackets is close to 1 for infinitely many m. Hence, Theorem 3 follows.

References

[1] A. Berger, Sur une sommation de quelques séries, Nova Acta Reg. Soc. Sci. Ups. (3) 12 (1883), 31 pp .
[2] C. Deninger, On the analogue of the formula of Chowla and Selberg for real quadratic fields, J. Reine Angew. Math. 351 (1984), 172-191.
[3] K. Dilcher, Generalized Euler constants for arithmetical progressions, Math. Comp. 59 (1992), 259-282.
[4] S. Kanemitsu, On evaluation of certain limits in closed form, in: Théorie des nombers (Quebec, PQ, 1987), J.-M. De Koninck and C. Levesque (eds.), de Gruyter, 1989, 459-474.
[5] Y. Matsuoka, On the power series coefficients of the Riemann zeta function, Tokyo J. Math. 12 (1989), 49-58.
[6] -, Generalized Euler constants associated with the Riemann zeta function, in: Number Theory and Combinatorics, World Sci., 1985, 279-295.
[7] A. Selberg and S. Chowla, On Epstein's zeta-function, J. Reine Angew. Math. 227 (1967), 86-110.
[8] M. Toyoizumi, On the size of $L^{(k)}(1, \chi)$, J. Indian Math. Soc. 60 (1994), 145-149.
[9] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, 1927.

Graduate School of Science and Technology
Niigata University
Niigata, 950-2181, Japan
E-mail: isikawah@qed.sc.niigata-u.ac.jp

[^0]: 2000 Mathematics Subject Classification: Primary 11M06.

