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1. Introduction. Vinogradov’s Mean Value Theorem gives an upper
bound for the integral
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for positive integers k, b and Q. The theorem has many applications in
estimating Weyl sums and in several problems of number theory, such as
Waring’s problem and estimating the value of the Riemann zeta function.

The integral Jk(b,Q) has a particular interpretation: it is the number of
solutions of the system

(2)

x1 + x2 + . . .+ xb = xb+1 + xb+2 + . . .+ x2b,

x2
1 + x2

2 + . . .+ x2
b = x2

b+1 + x2
b+2 + . . .+ x2

2b,

...

xk1 + xk2 + . . .+ xkb = xkb+1 + xkb+2 + . . .+ xk2b,

where the variables x1, . . . , x2b are from the set {1, 2, . . . , Q}.
Vinogradov’s idea was to estimate Weyl sums using the “average” of all

Weyl sums Jk(b,Q), and estimate Jk(b,Q) as the number of solutions of (2).
Both Vinogradov’s theorem and its improvements have the form

(3) Jk(b,Q) < Ck,bQ
2b−k(k+1)/2+δk,b

where the magnitude order of δk,b is 1
2k

2 exp(−cb/k2) and the difference is
only in the constants. (See for example [2] and [3].) The magnitude order of
Ck,b is roughly exp(ck3+ε).

Some lower bounds for Jk(b,Q) have been done by estimating the inte-
grand near the origin. The goal of these considerations was to determine the
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correct exponent of Q, and the results were written as

(4) Jk(b,Q) > ck,bQ
2b−k(k+1)/2

where ck,b � 1/bk.
Hua [1] also proved an asymptotics

Jk(b,Q) = (1 + o(1))dk,bQ2b−k(k+1)/2

for fixed b > (3 + o(1))k2 log k and Q→∞. Recently, Wooley [4] proved the
same for b > (1 + o(1))k2 log k as well.

In this paper we show that the constant ck,b in (4) can be increased to
roughly kck

2
/bk.

2. The new lower bound. The main result is the following theorem.

Theorem 2.1. We have

Jk(b,Q) >
1! · 2! · . . . · k!

(b+ 1)k
Q2b−k(k+1)/2.

Proof. The idea is to use binomial coefficients instead of powers. The
system
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is equivalent to (2), but the terms are smaller.
For arbitrary integers a1, . . . , ak, denote by ψ(a1, . . . , ak) the number of

solutions of the system
(
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Then
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<
k∏

ν=1

(
b

(
Q
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)
+ 1
)
· Jk(b,Q) ≤ (b+ 1)k

1! · 2! · . . . · k!
Qk(k+1)/2Jk(b,Q),

and the proof is complete.

Recently the author has found an expression Hk(b,Q) such that if k
and Q are fixed and b → ∞, then Jk(b,Q) = (1 + o(1))Hk(b,Q). Due to
the length and complicated nature of the argument, it will appear in a
subsequent paper.
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