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1. Introduction. Let τ be a positive real parameter, s = σ + it a
complex variable, and Γ (s) and ζ(s) denote the gamma function and the
Riemann zeta-function respectively. In Chapter 15 of his celebrated note-
book [Ra] (see also Berndt [Be]), Ramanujan suggested a way of computing
in exact form the error term of the asymptotic formula

∞∑

n=1

1
en2τ − 1

= R(τ) + o(1)

as τ → +0, where

R(τ) =
π2

6τ
+

1
2

√
π

τ
ζ

(
1
2

)
+

1
4
.

The computation was carried out by Berndt and Evans [BeEv] in terms of
Poisson’s summation device. They showed

(1.1)
∞∑

n=1

1
en2τ − 1

= R(τ) + S(τ),

where

S(τ) =

√
π

2τ

∞∑

n=1

1√
n
· cos(2π

√
πn/τ + π/4)− e−2π

√
πn/τ cos(π/4)

cosh(2π
√
πn/τ)− cos(2π

√
πn/τ)

.

2000 Mathematics Subject Classification: Primary 11M35; Secondary 11M06.
Key words and phrases: Riemann zeta-function, Hurwitz zeta-function, Lerch zeta-

function, multiple zeta-function, theta series, Mellin transform, asymptotic expansion.
The author was supported in part by Grant-in-Aid for Scientific Research (No.

11640038), the Ministry of Education, Science, Sports and Culture of Japan.

[157]



158 M. Katsurada

In view of e−x = coshx− sinhx, the last sum is rewritten as

S(τ) =
1
2

√
π

τ

∞∑

n=1

1√
n

{
sinh(2π

√
πn/τ)− sin(2π

√
πn/τ)

cosh(2π
√
πn/τ)− cos(2π

√
πn/τ)

− 1
}
.

Still another alternative expression of S(τ) was found by Klusch [Kl, p. 60,
2(B)], who also gave its various interesting applications involving arithmeti-
cal functions. A χ-analogue formula of (1.1) was derived by Egami [Ega].
The methods applied by Klusch and Egami are slightly different from each
other, but both based on the Mellin transform technique. It is worth while
noting that this technique has the advantage over heuristic treatments in
studying certain mean values of zeta-functions (see [Ka3], [Ka4]), and power
series and asymptotic series associated with zeta-functions (see [Ka1], [Ka2],
[Ka5], [Ka6]).

It is the purpose of the present paper to generalize the formula (1.1) in
two directions (Theorems 1 and 2 below) by continuing the previous work by
Berndt and Evans [BeEv], Klusch [Kl] and Egami [Ega]. The key method for
our treatment of theta-type series is a Mellin transform technique (see (3.2)
and (4.1)), similar to that of [Ega]. It should be noticed that the functional
properties of the generalized Hurwitz zeta-function (see Theorems 3 and 4
in Section 2) and the Lerch zeta-function (see (2.8)) play important parts
in the proofs.

In order to describe our results we prepare several notations and ter-
minology. Let r be a positive integer, α a positive real parameter, and let
(s)n = Γ (s+ n)/Γ (s) for any integer n be Pochhammer’s symbol. We first
introduce the generalized Hurwitz zeta-function ζr(s, α) defined by

(1.2) ζr(s, α) =
∞∑

n=0

(r)n
n!

(n+ α)−s,

which converges absolutely for Re s > r, since

(1.3)
(r)n
n!

= O(nr−1) (n→∞),

while continues to a meromorphic function over the whole s-plane (see The-
orem 3). Note that (1.2) is a particular case ω = (1, . . . , 1) of Barnes’ multi-
ple zeta-function ζr(s, α |ω) (cf. Barnes [Ba]) and so ζ1(s, α) = ζ(s, α) is the
usual Hurwitz zeta-function, because the number of the r-tuple (n1, . . . , nr)
of non-negative integers satisfying n1 + . . . + nr = n is equal to (r)n/n!.
We next associate with ζr(s, α) Nörlund’s generalized Bernoulli polynomial
B

(r)
k (α) (k = 0, 1, . . .) defined by the Taylor series expansion

(1.4)
(

z

ez − 1

)r
eαz =

∞∑

k=0

B
(r)
k (α)
k!

zk (|z| < 2π)
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(cf. Nörlund [Nö, pp. 145, 77]). Note that B(1)
k (α) = Bk(α) is the usual

Bernoulli polynomial, and so B
(1)
k (0) = Bk is the usual Bernoulli number

(cf. Erdélyi [Er1, p. 36, 1.13, (2) and (4)]). The properties of ζr(s, α) and
its connection with B

(r)
k (α) were first studied in a more general case of

ζr(s, α |ω) by Barnes [Ba] (see also Theorem 3). We set

(1.5) a(x) = 2π
√
πx, bk(y) =

1
2
π

(
k +

1
2

)
− 2πy

for x, y > 0 and k = 0, 1, . . . , and

fk(x, y) =
cos(a(x) + bk(y))− e−a(x) cos bk(y)

cosh a(x)− cos a(x)
(1.6)

=
sinh a(x) cos bk(y)− sin a(x) sin bk(y)

cosh a(x)− cos a(x)
− cos bk(y),

where the second equality follows from e−a(x) = cosh a(x)− sinha(x). Then
our first main result can be stated as

Theorem 1. Let ζr(s, α) and B
(r)
k (α) be defined as in (1.2) and (1.4)

respectively. Then for any τ > 0, any integer r ≥ 1 and any real α with
0 < α ≤ r, we have the formula

∞∑

n=1

e−αn
2τ

(1− e−n2τ )r
=

1
2

(−1)r+1
r∑

h=0

B2hB
(r)
r−h(α)

(2h)!(r − h)!

(
4π2

τ

)h
(1.7)

+
1
2

√
π

τ
ζr

(
1
2
, α

)
+ Sr(τ ;α),

where

Sr(τ ;α) =
1
τ

√
π

2

r−1∑

k=0

(−1)r−k−1B
(r)
r−k−1(α)

k!(r − k − 1)!(2πτ)k
(1.8)

×
(
τ2 ∂

∂τ

)k{√
τ
∞∑

n=1

1
nk+1/2

fk

(
n

τ
, αn

)}

with the notations in (1.5) and (1.6).

Remark 1. By introducing the new variable t = 1/τ , the iterated dif-
ferentiation on the right-hand side of (1.8) is written in a more convenient
form (τ2∂/∂τ)k = (−∂/∂t)k.

Remark 2. The inner infinite sum on the right-hand side of (1.8) is
regarded as a convergent asymptotic series in the ascending order of τ when
τ is small, since the exact order of each term is

fk(n/τ, αn) = 2e−a(n/τ) cos(a(n/τ) + bk(αn)) +O(e−2a(n/τ))

as τ → +0, with the implied O-constant being absolute.
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The case r = 1 of Theorem 1 reduces to

Corollary 1.1. For any τ > 0 and 0 < α ≤ 1 we have
∞∑

n=1

e−αn
2τ

1− e−n2τ
=
π2

6τ
+

1
2

√
π

τ
ζ

(
1
2
, α

)
+

1
2

(
α− 1

2

)
(1.9)

+

√
π

2τ

∞∑

n=1

1√
n
f0

(
n

τ
, αn

)
.

Remark. The case α = 1 of this corollary implies (1.1).

Let us denote by ζr(s) = ζr(s, r) and B
(r)
k = B

(r)
k (0) (k ≥ 0) the

generalized Riemann zeta-function and the generalized Bernoulli number
respectively. It is readily seen from (1.4) that B

(r)
k (r) = (−1)kB(r)

k for
k = 0, 1, 2, . . . Then the case α = r of Theorem 1 reduces to

Corollary 1.2. For any τ > 0 we have
∞∑

n=1

1
(en2τ − 1)r

=
1
2

r∑

h=0

(−1)h+1B2hB
(r)
r−h

(2h)!(r − h)!

(
4π2

τ

)h

+
1
2

√
π

τ
ζr

(
1
2

)
+ Sr(τ),

where

Sr(τ) =
1
τ

√
π

2

r−1∑

k=0

B
(r)
r−k−1

k!(r − k − 1)!(2πτ)k

×
(
τ2 d

dτ

)k{√
τ
∞∑

n=1

1
nk+1/2

fk

(
n

τ

)}

with the notation fk(x) = fk(x, 0).

We next proceed to state our second main result. Let λ be a real param-
eter. The Lerch zeta-function φ(λ, α, s) is defined by

(1.10) φ(λ, α, s) =
∞∑

n=0

e2πiλn(n+ α)−s

for Re s > 1, and its meromorphic continuation over the whole s-plane
(cf. Lerch [Le]). Note that this reduces to the Hurwitz zeta-function ζ(s, α)
if λ is an integer. We set

g0(x, y) =
sin(a(x) + b0(y))− e−a(x) sin b0(y)

cosh a(x)− cos a(x)
(1.11)

=
sinh a(x) sin b0(y) + sin a(x) cos b0(y)

cosh a(x)− cos a(x)
− sin b0(y)

with the notations in (1.5). Then our second main result can be stated as
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Theorem 2. For any τ > 0 and any real α and λ with 0 < α ≤ 1 and
0 < λ ≤ 1, we have the formula

∞∑

n=1

e−αn
2τ

1− e2πiλ−n2τ
= ε(λ)

π2

6τ
+

1
2

√
π

τ
φ

(
λ, α,

1
2

)
− 1

2
φ(λ, α, 0)(1.12)

+ S(τ ;λ, α) + iT (τ ;λ, α),

where ε(λ) is 0 or 1 according as 0 < λ < 1 or λ = 1, and

S(τ ;λ, α) =
1
2

√
π

2τ

{ ∞∑

n=0

1√
n+ λ

f0

(
n+ λ

τ
, α(n+ λ)

)
(1.13)

+
∞∑′

n=0

1√
n+ 1− λ

f0

(
n+ 1− λ

τ
, α(n+ 1− λ)

)}

and

T (τ ;λ, α) =
1
2

√
π

2τ

{ ∞∑

n=0

1√
n+ λ

g0

(
n+ λ

τ
, α(n+ λ)

)
(1.14)

−
∞∑′

n=0

1√
n+ 1− λ

g0

(
n+ 1− λ

τ
, α(n+ 1− λ)

)}

with the notations in (1.6) and (1.11). Here the primed summation symbols
indicate that the terms corresponding to n = 0 are to be omitted if λ = 1.

Remark 1. It is known that φ(λ, α, 0) = 1/(1 − e2πiλ) if λ is not an
integer (cf. Apostol [Ap1, p. 164]), while φ(λ, α, 0) = ζ(0, α) = 1/2− α if λ
is an integer (see (2.2) below).

Remark 2. The case λ = 1 of Theorem 2 implies again Corollary 1.1.

Taking the real and imaginary parts of both sides of (1.12) we immedi-
ately obtain

Corollary 2.1. Under the same assumptions as in Theorem 2 we have
∞∑

n=1

e−αn
2τ (1− e−n2τ cos(2πλ))

1− e−n2τ cos(2πλ) + e−2n2τ

= ε(λ)
π2

6τ
+

1
2

√
π

τ
Reφ

(
λ, α,

1
2

)
− 1

2
Reφ(λ, α, 0) + S(τ ;λ, α)

and
∞∑

n=1

e−(α+1)n2τ sin(2πλ)
1− e−n2τ cos(2πλ) + e−2n2τ

=
1
2

√
π

τ
Imφ

(
λ, α,

1
2

)
− 1

2
Imφ(λ, α, 0) + T (τ ;λ, α).
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We lastly mention that Corollary 2.1 implies Egami’s χ-analogue for-
mula of (1.1). Let q be a positive integer, χ a primitive Dirichlet character
modulo q, and L(s, χ) denote the Dirichlet L-function attached to χ. We
use the notations

E(χ) =
{

1 if χ is principal,
0 otherwise,

W (χ) = iδ(χ)√q g(χ)−1

with δ(χ) = (1−χ(−1))/2, where g(χ) =
∑q
a=1 χ(a)e2πia/q denotes Gauss’s

sum. Then we can show

Corollary 2.2 ([Ega, Theorem]). For any τ > 0 and any primitive
Dirichlet character χ modulo q (≥ 1) we have the formula

q∑

r=1

χ(r)
∞∑

n=1

e−(r/q)n2τ

1− e−n2τ

= E(χ)
qπ2

6τ
− 1

2
L(0, χ) +

1
2

√
qπ

τ
L

(
1
2
, χ

)
+

1
2

√
qπ

τ
W (χ)

×
∞∑

n=1

χ(n)√
n

{
sinh(2π

√
πn/τ)− χ(−1) sin(2π

√
πn/τ)

cosh(2π
√
πn/τ)− cos(2π

√
πn/τ)

− 1
}
.

Remark. Egami stated this formula with the variable qτ instead of τ .

The author would like to thank Professor Aleksandar Ivić for valuable
remarks on the present work. He would also like to thank the referee for
many useful comments on refinement of the earlier version of the present
paper.

We prepare several necessary properties of ζr(s, α) and φ(λ, α, s) in the
next section. Theorems 1 and 2 are proved in Sections 3 and 4 respectively.
The final section is devoted to showing Corollary 2.2.

2. Properties of ζr(s, α) and φ(λ, α, s). Several basic properties of
ζr(s, α) and φ(λ, α, s) are summarized in this section. We first give some
functional properties of ζr(s, α) in the following Theorems 3 and 4.

Theorem 3. For any α > 0 the zeta-function ζr(s, α), defined by (1.2),
continues to a meromorphic function over the whole s-plane, having the
only singularities at s = h (h = 1, . . . , r), which are all simple poles with the
residues

(2.1) Ress=h ζr(s, α) =
(−1)r−hB(r)

r−h(α)

(h− 1)!(r − h)!
(h = 1, . . . , r),

where B(r)
k (α) is defined by (1.4). Moreover the particular values of ζr(s, α)
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at non-positive integers are given by

(2.2) ζr(−j, α) =
(−1)rj!B(r)

r+j(α)

(r + j)!
(j = 0, 1, 2, . . .).

Let λ be a real parameter, and ψ(λ, s) denote the exponential zeta-
function defined by

ψ(λ, s) =
∞∑

n=1

e2πiλnn−s (= e2πiλφ(λ, 1, s))

for Re s > 1, and its meromorphic continuation over the whole s-plane.

Theorem 4. For any real α with 0 < α ≤ r the zeta-function ζr(s, α)
satisfies the functional equation

ζr(1− s, α) =
r−1∑

k=0

(−1)r−k−1B
(r)
r−k−1(α)

k!(r − k − 1)!
· Γ (s+ k)

(2π)s+k
(2.3)

× {e−πi(s+k)/2ψ(α, s+ k) + eπi(s+k)/2ψ(−α, s+ k)}.
Remark 1. Theorem 3 was originally proved in a more general setting

by Barnes [Ba]; however, it seems that the functional equation (2.3) has not
appeared in the literature. For convenience of the reader we give complete
proofs of Theorems 3 and 4.

Remark 2. The existence of the functional equation for ζr(s, α) was
kindly suggested by the late Professor Takayoshi Mitsui as his comment to
the author’s talk, which was given at the annual meeting of the Mathemat-
ical Society of Japan held in the autumn of 1990.

Proof of Theorems 3 and 4. Suppose first that Re s > r. Then multiply-
ing both sides of

(n+ α)−s =
1

Γ (s)

∞�

0

e−(n+α)xxs−1 dx (n ≥ 0)

by (r)n/n! and summing over n = 0, 1, 2, . . . , we obtain

(2.4) ζr(s, α) =
1

Γ (s)

∞�

0

e−αxxs−1

(1− e−x)r
dx.

Here the inversion of the order of summation and integration is justified by
Lebesgue’s Lemma together with (1.3) and (1 − e−x)−r ∼ x−r (x → +0).
Next let C be the contour which starts from infinity, proceeds along the
positive real axis to a small δ (0 < δ < 2π), rounds the origin counter-
clockwise, and returns to infinity along the positive real axis. Then by a
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standard argument, (2.4) can be further transformed as

(2.5) ζr(s, α) =
1

Γ (s)(e2πis − 1)

�

C

e−αzzs−1

(1− e−z)r dz,

where arg z varies from 0 to 2π round C. Here we used the fact that the
integrand in (2.5) is of order O(|z|σ−r−1) as z → 0 and O(e−αRe z |z|σ−1) as
Re z → ∞ respectively. Since the integral in (2.5) converges absolutely for
all complex s, it defines an entire function of the variable s. The formula
(2.5) therefore provides the meromorphic continuation of ζr(s, α) over the
whole s-plane.

We now compute the residues and particular values of ζr(s, α). Let I(s)
denote the integral on the right-hand side of (2.5) (without the factor on
the left of the integral). Then for any integer h it follows from (1.4) that

I(h) =





2πi
(−1)r−hB(r)

r−h(α)

(r − h)!
if h ≤ r,

0 if h > r.

The only singularities of ζr(s, α) are thus at s = h (h = 1, . . . , r), which are
all simple poles with residues (2.1). It is also seen that the particular values
of ζr(s, α) at non-positive integers are given by (2.2).

We next proceed to prove Theorem 4. Let N be a positive integer, and CN
the contour which starts from infinity, proceeds along the positive real axis
to (2N + 1)π, encircles the origin counter-clockwise, and returns to infinity
along the positive real axis. Let IN (s) be the integral obtained by replacing
the contour C of I(s) by CN . Then the difference IN (s) − I(s) is equal to
2πi times the sum of the residues of the poles at z = ±2πin (n = 1, . . . , N)
of the integrand. It follows from (1.4) that

(2.6) Resz=±2πin
e−αzzs−1

(1− e−z)r

= e∓2πiαn(−1)r−1
r−1∑

k=0

(1− s)kB(r)
r−k−1(α)

k!(r − k − 1)!
(2πe(1∓ 1

2 )πin)s−k−1

for n = 1, 2, . . . The order of the integrand in IN (s) is O(e−αRe z|z|σ−1)
if Re z ≥ 0 and O(e(r−α) Re z |z|σ−1) if Re z ≤ 0 respectively, and hence
limN→∞ IN (s) = 0 for 0 < α ≤ r, provided Re s < 0. This with (2.6) shows

−I(s) = 2πi(−1)r−1
r−1∑

k=0

(1− s)kB(r)
r−k−1(α)

k!(r − k − 1)!
(2πeπi)s−k−1

× {eπi(s−k−1)/2ψ(α, 1− s+ k) + e−πi(s−k−1)/2ψ(−α, 1− s+ k)}
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for Re s < 0 and 0 < α ≤ r. Hence from (2.5), noting

(2.7) (z)kΓ (z) = Γ (z + k) (k = 0, 1, 2, . . .),

we arrive at the functional equation (2.3) with the variable s instead of
1 − s. The temporary assumption Re s < 0 is removed by the analytic
continuations of ψ(±α, s). The proof of Theorems 3 and 4 is now complete.

An argument similar to the preceding proof yields the functional equation
of the Lerch zeta-function φ(λ, α, s), which asserts that, for 0 < λ ≤ 1 and
0 < α ≤ 1,

φ(λ, α, 1− s) =
Γ (s)
(2π)s

{eπis/2−2πiαλφ(−α, λ, s)(2.8)

+ e−πis/2+2πiα(1−λ)φ(α, 1− λ, s)}
(cf. Lerch [Le]). Here the latter Lerch zeta-function φ(α, 1 − λ, s) on the
right-hand side is to be regarded as ψ(α, s) if λ = 1.

In the remainder of this section the vertical behaviours of φ(λ, α, s) and
ζr(s, α) are considered. We first show

Lemma 1. Define

µ(σ;λ, α) = lim sup
t→±∞

log |φ(λ, α, σ + it)|
log |t| .

Then for any α and λ with 0 < α ≤ 1 and 0 < λ ≤ 1 we have the bounds

(2.9) µ(σ;λ, α) ≤





1/2− σ if σ ≤ 0,
(1− σ)/2 if 0 ≤ σ ≤ 1,
0 if σ ≥ 1.

Proof. The upper bounds for the first and third cases except the points
σ = 0 and 1 follow respectively from the functional equation (2.8) and the
series representation (1.10). Since µ(σ;λ, α) is continuous with respect to σ
(cf. Titchmarsh [Ti1, p. 299, 9.41 (1) below]), it is seen that the bounds in
(2.9) are also valid for σ = 0 and 1. To treat the remaining range, we use
the formula

(2.10) φ(λ, α+ 1, s)− φ(λ, α, s) = −s
1�

0

φ(λ, α+ x, s+ 1) dx,

which is obtained for Re s > 1 by integrating both sides of (1.10), and then
for all s by analytic continuation. This and the relation

e2πiλφ(λ, α+ 1, s) = φ(λ, α, s)− α−s

show that φ(λ, α, s) is of finite order (cf. [Ti1, p. 298, 9.4]) in the strip
0 ≤ σ ≤ 1 if 0 < λ < 1. When λ = 1 we integrate by parts the right-hand
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side of (2.10) to obtain

−α−s = −sζ(s+ 1, α) + s(s+ 1)
1�

0

(1− x)ζ(s+ 2, α+ x) dx,

which shows that ζ(s, α) is of finite order for 0 ≤ σ ≤ 1. The convexity
principle (cf. [Ti1, p. 299, 9.41 (1)]) therefore yields the bound for the second
case of Lemma 1.

We next show

Lemma 2. Define

(2.11) νr(σ;α) = lim sup
t→±∞

log |ζr(σ + it, α)|
log |t| .

Then for any positive integer r and any α > 0 we have the bounds

νr(σ;α) ≤




r − 1/2− σ if σ ≤ 0,
(1− 1/(2r))(r − σ) if 0 ≤ σ ≤ r,
0 if σ ≥ r.

Proof. The upper bounds for the first and third cases follow respectively
from (2.3) and (1.2), together with the continuity of νr(σ;α). It is seen from
(2.3) and Lemma 1 that ζr(s, α) is of finite order for 0 ≤ σ ≤ r (see the
definition of ψ(λ, s)). The convexity principle therefore yields the bound for
the second case of Lemma 2.

3. Proof of Theorem 1. We set

Θr(τ ;α) =
∞∑

n=1

e−αn
2τ

(1− e−n2τ )r

for τ > 0, a positive integer r and 0 < α ≤ r. Then this is transformed by
applying the Mellin inversion formula

(3.1) e−(α+m)n2τ =
1

2πi

�

(σ0)

Γ (s)((α+m)n2τ)−s ds

for m ≥ 0 and n > 0, where σ0 is a constant satisfying σ0 > r and (σ0)
denotes the vertical straight line from σ0− i∞ to σ0 + i∞. Multiplying both
sides of (3.1) by (r)m/m! and summing up with m = 0, 1, 2, . . . , we get

e−αn
2τ

(1− e−n2τ )r
=

1
2πi

�

(σ0)

Γ (s)ζr(s, α)(n2τ)−s ds,

where the interchange of the order of summation and integration is justified
by absolute convergence (see (1.3)). We further sum up both sides of this
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equality for n = 1, 2, . . . to obtain the formula

(3.2) Θr(τ ;α) =
1

2πi

�

(σ0)

Γ (s)ζr(s, α)ζ(2s)τ−s ds,

which is the key to the following derivation.
Let σ1 be a constant satisfying σ1 < 0 and ε a small positive number.

Then we can move the path of integration in (3.2) from (σ0) to (σ1), since
the integrand is of order O(e−π|t|/2|t|σ−1/2+νr(σ;α)+ν1(2σ;1)+ε) as t → ±∞
(see Lemma 2). Collecting the residues of the poles at s = h (h = 0, 1, . . . , r)
and 1/2 of the integrand, noting (2.1) and

(3.3) ζ(2h) =
(−1)h+1(2π)2h

2(2h)!
B2h (h = 0, 1, 2, . . .)

(cf. [Er1, pp. 34–35, 1.12 (18) and (21)]), we obtain the first assertion (1.7)
of Theorem 1 with

(3.4) Sr(τ ;α) =
1

2πi

�

(σ1)

Γ (s)ζr(s, α)ζ(2s)τ−s ds.

The second assertion (1.8) can be derived as follows. We change the
variable s into 1/2− s/2 in the integral on the right-hand side of (3.4), and
then substitute the functional equation for ζr(1/2− s/2, α) (see (2.3)) and

(3.5) ζ(1− s) = 2(2π)−s cos(πs/2)Γ (s)ζ(s)

(cf. [Ti2, p. 16, Chapter II, (2.1.8)]). Noting the facts (2.7) and

(3.6) Γ (1/2− s/2)Γ (1/2 + s/2) =
π

cos(πs/2)
,

we obtain

(3.7) Sr(τ ;α) =
r−1∑

k=0

(−1)r−k−1B
(r)
r−k−1(α)

k!(r − k − 1)!
Xk,

where

Xk =
(2π)1/2−k

4πi
√
τ

×
�

(σ2)

(s/2 + 1/2)kΓ (s)ζ(s){e−πi(s/2+1/2+k)/2ψ(α, s/2 + 1/2 + k)

+ eπi(s/2+1/2+k)/2ψ(−α, s/2 + 1/2 + k)}((2π)3/2τ−1/2)−s ds

with the constant σ2 = 1 − 2σ1 (> 1). The integral on the right-hand
side is further modified by substituting the series representations ζ(s) =∑∞
m=1m

−s and ψ(±α, s/2 + 1/2 + k) =
∑∞
n=1 e

±2πinαn−s/2−1/2−k (both of
which converge absolutely on the line Re s = σ2), and by changing the order
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of summation and integration. Hence

Xk =
(2π)1/2−k

2
√
τ

(3.8)

×
{
e−πi(k+1/2)/2

∞∑

m,n=1

e2πinα

nk+1/2
Fk((2π)3/2eπi/4m(n/τ)1/2)

+ eπi(k+1/2)/2
∞∑

m,n=1

e−2πinα

nk+1/2
Fk((2π)3/2e−πi/4m(n/τ)1/2)

}

for k = 0, 1, . . . , r − 1, where

(3.9) Fk(z) =
1

2πi

�

(σ2)

(s/2 + 1/2)kΓ (s)z−s ds (|arg z| < π/2).

A simple expression for Fk(z) is given by

Lemma 3. For any complex z, we have

Fk(z) =
(
−1

2

)k
z2k+1

(
d

zdz

)k
e−z

z
(k = 0, 1, 2, . . .).

Proof. By substituting the duplication formula

Γ (s) = 2s−1π−1/2Γ (s/2)Γ (s/2 + 1/2)

(cf. [Er1, p. 5, 1.2 (15)]) into the integral in (3.9) while noting (2.7), it is
seen that

Fk(z) =
1

2
√
π
· 1

2πi

�

(σ2)

Γ (s/2)Γ (s/2 + 1/2 + k)(z/2)−s ds

=
2√
π

(
1
2
z

)k+1/2

Kk+1/2(z)

for |arg z| < π/2, where Kν(z) denotes the modified Bessel function of the
third kind (cf. [Er2, p. 5, 7.2.2 (13)]). Here the second equality follows from
the fact that the pair

xνKν(x), 2s+ν−2Γ (s/2)Γ (s/2 + ν) (Re s > max(0, 2ν))

is a pair of Mellin transforms (see [Ti3, p. 197, Chapter VII, (7.9.12)]). The
assertion is then a consequence of the formula

Kk+1/2(z) = (−1)k
√

π

2z
zk+1

(
d

zdz

)k
e−z

z
(k = 0, 1, 2, . . .)

for any complex z (cf. [Er2, p. 10, 7.2.6 (43)]). The proof of Lemma 3 is
complete.
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We write c± = (2π)3/2e±πi/4 for simplicity. Then for the variable z =
c±mn1/2τ−1/2 it is seen that

d

zdz
= −2(c±mn1/2)−2τ2 d

dτ
,

and hence from Lemma 3,

Fk(c±mn1/2τ−1/2) = τ−k−1/2
(
τ2 d

dτ

)k√
τ exp(−c±mn1/2τ−1/2)

for k = 0, 1, 2, . . . and m,n = 1, 2, . . . This equality allows us to sum up the
infinite sums on the right-hand side of (3.8) for m = 1, 2, . . . , and therefore

Xk =
1
2

(2π)1/2−kτ−k−1
(
τ2 d

dτ

)k{√
τ
∞∑

n=1

1
nk+1/2

(X−k,n +X+
k,n)

}
,

where

X±k,n =
exp
(
−c±n1/2τ−1/2 ∓ 1

2πi
(
k + 1

2

)
± 2πiαn

)

1− exp(−c±n1/2τ−1/2)

=
exp(−2a(n/τ)e±πi/4 ∓ bk(αn))

1− exp(−2a(n/τ)e±πi/4)

with the notations in (1.5). Here the inversion of the order of summation
and differentiation is ensured by absolute convergence. Noting the fact

X±k,n =
exp(−a(n/τ)e±πi/4 ∓ bk(αn))

2 sinh(a(n/τ)e±πi/4)

and using the identity

2 sinh z sinhw = cosh(z + w)− cosh(z − w),

we find that X−k,n + X+
k,n is equal to the first expression for fk(n/τ, αn)

in (1.6). The assertion (1.8) of Theorem 1 is thus deduced from (3.7). The
proof of Theorem 1 is complete.

4. Proof of Theorem 2. The skeleton of the proof of Theorem 2 is
the same as that of the preceding proof, so the details are omitted in what
follows.

We set

Θ(τ ;λ, α) =
∞∑

n=1

e−αn
2τ

1− e2πiλ−n2τ

for τ > 0, 0 < α ≤ 1 and 0 < λ ≤ 1. The Mellin transform formula for
Θ(τ ;λ, α) is obtained by multiplying both sides of (3.1) by e2πiλm, summing
up over m = 0, 1, 2, . . . , and then summing up the resulting expression for
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n = 1, 2, . . . This yields

(4.1) Θ(τ ;λ, α) =
1

2πi

�

(σ0)

Γ (s)φ(λ, α, s)ζ(2s)τ−s ds,

where σ0 is a constant satisfying σ0 > 1. Let σ1 be a constant satisfy-
ing σ1 < 0 and ε a small positive number. Then we can move the path
of integration in (4.1) from (σ0) to (σ1), since the integrand is of order
O(e−π|t|/2|t|σ−1/2+µ(σ;λ,α)+µ(2σ;1,1)+ε) as t → ±∞ (see Lemma 1). Collect-
ing the residues of the poles at s = 1, 1/2 and 0 of the integrand, noting (3.3)
for h = 0, 1 and Ress=1 φ(λ, α, s) = ε(λ), we obtain

Θ(τ ;λ, α) = ε(λ)
π2

6τ
+

1
2

√
π

τ
φ

(
λ, α,

1
2

)
− 1

2
φ(λ, α, 0) + U(τ ;λ, α),

where

(4.2) U(τ ;λ, α) =
1

2πi

�

(σ1)

Γ (s)φ(λ, α, s)ζ(2s)τ−s ds.

This establishes the first assertion (1.12) of Theorem 2.
We next proceed to prove the second assertion (1.13) and (1.14). The

integral in (4.2) is transformed by changing the variable s into 1/2 − s/2,
applying the functional equations (2.8) and (3.5) while noting (3.6), and
hence

U(τ ;λ, α)

=
1

2πi

√
π

2τ

�

(σ2)

Γ (s)ζ(s){eπi(s+1)/4−2πiαλφ(−α, λ, s/2 + 1/2)

+ e−πi(s+1)/4+2πiα(1−λ)φ(α, 1− λ, s/2 + 1/2)}((2π)3/2τ−1/2)−s ds,

where σ2 = 1 − 2σ1 (> 1). We substitute the series representations for
ζ(s), φ(−α, λ, s/2 + 1/2) and φ(α, 1 − λ, s/2 + 1/2) (all of which converge
absolutely on the line Re s = σ2) into the integrand above, change the order
of summation and integration, and then evaluate the resulting expression
for each term by applying Lemma 3 with k = 0. This yields

U(τ ;λ, α)

=
1
2

√
π

2τ

∞∑

n=0

1√
n+ λ

· exp
{
−2a

(
n+λ
τ

)
e−πi/4 + b0(α(n+ λ))

}

1− exp
{
−2a

(
n+λ
τ

)
e−πi/4

}

+
1
2

√
π

2τ

∞∑′

n=0

1√
n+ 1− λ

· exp
{
−2a

(
n+1−λ

τ

)
eπi/4−b0(α(n+ 1−λ))

}

1− exp
{
−2a

(
n+1−λ

τ

)
eπi/4

}

with the notations of (1.5). The second assertion (1.13) and (1.14) of The-



An asymptotic formula of Ramanujan 171

orem 2 is thus deduced from this formula and the relations
exp(−2a(x)e∓πi/4 + b0(y))

1− exp(−2a(x)e∓πi/4)
= f0(x, y)± ig0(x, y).

The proof of Theorem 2 is complete.

5. Proof of Corollary 2.2. To prove Corollary 2.2 we first note the
equality

q∑

r=1

χ(r)e2πinr/q = χ(n)g(χ)

for any integer n and any primitive character χ modulo q (cf. [Ap2, p. 171,
8.10, Theorem 8.19]). This immediately implies

q∑

r=1

χ(r) cos b0

(
nr

q

)
=
iδ(χ)
√

2
χ(−n)g(χ),

q∑

r=1

χ(r) sin b0

(
nr

q

)
=
iδ(χ)
√

2
χ(n)g(χ),

which gives
q∑

r=1

χ(r)f
(
n

τ
,
nr

q

)

=
iδ(χ)
√

2
g(χ)χ(−n)

{
sinh a(n/τ)− χ(−1) sin a(n/τ)

cosh a(n/τ)− cos a(n/τ)
− 1
}
.

We use this equality and the well-known relation

L(s, χ) = q−s
q∑

r=1

χ(r)ζ(s, r/q)

(cf. [Ap2, p. 249, 12.1]) to sum up both sides of (1.9) with α = r/q (r =
1, . . . , q) multiplied by χ(r). This, together with the facts ζ(0, α) = 1/2− α
and
√
qW (χ) = iδ(χ)χ(−1)g(χ), establishes Corollary 2.2.
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