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1. Introduction. The motivation for the present work comes from the
following conjecture due to S. Schanuel (see [1], Historical notes of Chap-
ter III):

Conjecture 1. Let l be a positive integer and let y1, . . . , yl ∈ C be
linearly independent over Q. Then

tr.degQQ(y1, . . . , yl, e
y1 , . . . , eyl) ≥ l.

This conjecture is known to be true when l = 1 (Hermite–Lindemann
theorem) and when y1, . . . , yl ∈ Q (Lindemann–Weierstrass theorem), where
Q denotes the algebraic closure of Q in C. There are other evidences for this
conjecture, but the general case is open, including the algebraic indepen-
dence of e and π (take y1 = 1 and y2 = πi).

Here, we will show that this conjecture is equivalent to the following
algebraic statement where the symbol D stands for the derivation:

D =
∂

∂X0
+X1

∂

∂X1

in the field C(X0,X1), and where the height of a polynomial P ∈ C[X0,X1]
is defined as the maximum of the absolute values of its coefficients.

Conjecture 2. Let l be a positive integer , let y1, . . . , yl ∈ C be linearly
independent over Q and let α1, . . . , αl ∈ C×. Moreover , let s0, s1, t0, t1, u be
positive numbers satisfying

(1) max{1, t0, 2t1} < min{s0, 2s1}, max{s0, s1+t1} < u < 1
2 (1+t0+t1).

Assume that , for any sufficiently large positive integer N , there exists a
nonzero polynomial PN ∈ Z[X0,X1] with partial degree ≤ N t0 in X0, partial

2000 Mathematics Subject Classification: 11J82, 11J85.
Research partially supported by NSERC and CICMA.

[183]



184 D. Roy

degree ≤ N t1 in X1 and height ≤ eN which satisfies
∣∣∣(DkPN )

( l∑

j=1

mjyj ,

l∏

j=1

α
mj
j

)∣∣∣ ≤ exp(−Nu),

for any integers k,m1, . . . ,ml ∈ N with k ≤ Ns0 and max{m1, . . . ,ml}
≤ Ns1 . Then tr.degQQ(y1, . . . , yl, α1, . . . , αl) ≥ l.

Note that this arithmetic statement is similar to the present criteria of
algebraic independence (see for example [2] and [3]). It suggests, we hope, a
reasonable approach toward Schanuel’s conjecture. We will show that if it is
true for some positive integer l and some choice of parameters s0, s1, t0, t1, u
satisfying (1), then Schanuel’s conjecture is true for this value of l. This
follows from a general construction of an auxiliary function due to Michel
Waldschmidt (Theorem 3.1 of [4]). Conversely, we will show that, if Con-
jecture 1 is true for some positive integer l, then Conjecture 2 is also true
for the same value of l and for any choice of parameters satisfying (1). In
particular, Conjecture 2 is true in the case l = 1. Moreover, if, for fixed l,
Conjecture 2 is true for at least one choice of parameters satisfying (1), then
it is true for all of them. We prove the reverse implication as a consequence
of the following criterion concerning the values of the exponential function.

Theorem 1. Let (y, α) ∈ C×C×, and let s0, s1, t0, t1, u be positive num-
bers satisfying the inequalities (1). Then the following conditions are equiv-
alent :

(a) there exists an integer d ≥ 1 such that αd = edy;
(b) for any sufficiently large positive integer N , there exists a nonzero

polynomial QN ∈ Z[X0,X1] with partial degree ≤ N t0 in X0, partial degree
≤ N t1 in X1 and height ≤ eN such that

|(DkQN )(my,αm)| ≤ exp(−Nu)

for any k,m ∈ N with k ≤ N s0 and m ≤ Ns1 .

Again the proof that (a) implies (b) follows from Waldschmidt’s con-
struction. To prove the reverse implication, we establish a new interpolation
lemma for holomorphic functions F (z1, z2) of two complex variables. This
interpolation lemma takes into account not only the values of F on a sub-
group of C2 of rank 2, but also the values of its derivatives in the direction
of a nonzero point w = (w1, w2) of C2. The corresponding derivation is
denoted by

Dw = w1
∂

∂z1
+ w2

∂

∂z2
.

To state this result, we need to fix additional notation. We define

B(0, R) = {(z1, z2) ∈ C2 : |z1| ≤ R, |z2| ≤ R}
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for any R > 0. For a continuous function F : B(0, R)→ C, we put

|F |R = sup{|F (z1, z2)| : |z1| = |z2| = R}.
By the maximum modulus principle, when F is holomorphic in the interior
of B(0, R), this coincides with the supremum of |F | on B(0, R).

Theorem 2. Let {u,w} be a basis of C2, let v ∈ C2 and let a be the
complex number for which v− au ∈ Cw. Then there exists a constant c ≥ 1
which depends only on u, v and w, and which satisfies u,v ∈ B(0, c) and
the following property : For any integer N ≥ 1 with

(2) min{|m+ na| : m,n ∈ Z, 0 < max{|m|, |n|} < N} ≥ 2−N ,

for any pair of real numbers r, R with R ≥ 2r and r ≥ cN , and for any
continuous function F : B(0, R) → C which is holomorphic inside B(0, R),
we have

|F |r ≤
(
cr

N

)N2

max
0≤k<N2

0≤m,n<N

{
1
k!
|Dk

wF (mu + nv)|Nk

}
+
(
cr

R

)N2

|F |R.

The condition (2) is satisfied for infinitely many values of N if a 6∈ Q
(see Lemma 4 below). It can be shown that such a condition is necessary in
the above result. However, for a function F satisfying Dk

wF (mu + nv) = 0
for 0 ≤ k < N2 and 0 ≤ m,n < N , Theorem 2 gives

|F |r ≤
(
cr

R

)N2

|F |R,

and it is not clear that a Diophantine condition like (2) is needed any more.
We refer the reader to Chapter 7 of [5] for related conjectures and results con-
cerning the growth of holomorphic functions vanishing at points of finitely
generated subgroups of Cn.

The organization of this paper is as follows. In Section 2 below, we estab-
lish a first interpolation formula. The proof of Theorem 2 follows in Section 3,
using this formula. Finally, the proof of Theorem 1 and the equivalence be-
tween the two conjectures are established in Sections 4 and 5 respectively.

Acknowledgements. The author thanks Michel Waldschmidt for a very
careful reading of a preliminary version of this paper.

2. A first interpolation formula. We fix a point (a, b) ∈ C2 and
a positive integer N . We put L = N 2 and we assume that a satisfies the
condition (2) in the statement of Theorem 2, that is, |m + na| ≥ 2−N for
any pair (m,n) ∈ Z2 with 0 < max{|m|, |n|} < N .
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For each triple of integers (m,n, k) with 0 ≤ m,n < N and 0 ≤ k < L,
we define

gm,n,k(z, w) = (w − nb)k
∏

(m′,n′)6=(m,n)

z −m′ − n′a
m+ na−m′ − n′a

where the product on the right hand side is over all pairs of integers (m′, n′)
with 0 ≤ m′, n′ < N and (m′, n′) 6= (m,n). By construction, these polyno-
mials have the following interpolation property:

(3)
(
∂

∂w

)k′
gm,n,k(m′ + n′a, n′b) =

{
k! if (m′, n′, k′) = (m,n, k),
0 otherwise.

They also satisfy:

Lemma 1. For each triple (m,n, k) as above, we have

|gm,n,k|N ≤ cL1 ((1 + |b|)N)k

where c1 = 8e(2 + |a|).

Proof. Fix an integer s with 0 ≤ s < N and consider the set

Is = {m+ na−m′ − sa : m′ = 0, 1, . . . , N − 1}.
The elements of Is are N complex numbers which differ from one another by
an integer. Let x0 be an element of Is whose real part has minimal absolute
value. It is possible to order the remaining elements x1, . . . , xN−1 of Is so
that the absolute values of their real parts are respectively bounded from
below by 1/2, 2/2, . . . , (N − 1)/2. Since |x0| ≥ 2−N if x0 6= 0, this implies

∏

x∈Is\{0}
|x| ≥ 2−N

(N − 1)!
2N−1 ≥ 2−Ne−N

(
N

2

)N−1

≥
(
N

8e

)N
.

So, for the denominator of gm,n,k, we get

∏

(m′,n′)6=(m,n)

|m+ na−m′ − n′a| =
N−1∏

s=0

∏

x∈Is\{0}
|x| ≥

(
N

8e

)L
.

Using this lower bound, we deduce

|gm,n,k|N ≤ (N + n|b|)k(2N +N |a|)L−1
(

8e
N

)L

≤ (8e(2 + |a|))L((1 + |b|)N)k.

Lemma 2. For each (r, s) ∈ N2, define

fr,s(z, w) =
∑

0≤m,n<N
0≤k<L

gm,n,k(z, w)(m+ na)r
(
s

k

)
(nb)s−k.
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Then fr,s(z, w) = zrws whenever max{r, s} < L. Moreover , for any (r, s)
∈ N2,

|fr,s|N ≤ (2c1)L((1 + |a|+ 2|b|)N)r+s.

Proof. For the first assertion, consider the vector subspace V of C[z, w]
consisting of all polynomials of partial degree < L in z and partial degree
< L in w. By virtue of (3), the L2 functions gm,n,k form a basis of V with
the dual basis given by the linear functionals

ϕm,n,k(g) = (1/k!)(∂/∂w)kg(m+ na, nb).

When max{r, s} < L, the polynomial zrws belongs to V and its image under
ϕm,n,k is the same as that of fr,s for 0 ≤ m,n < N and 0 ≤ k < L. So, the
two polynomials must be equal. For the second assertion, we use Lemma 1.
It gives

|fr,s|N ≤
∑

0≤m,n<N
0≤k<L

|gm,n,k|N (m+ n|a|)r
(
s

k

)
(n|b|)s−k

≤ cL1
∑

0≤m,n<N
(m+ n|a|)r((1 + |b|)N + n|b|)s

≤ cL1N2((1 + |a|)N)r((1 + 2|b|)N)s.

The conclusion follows if we use N 2 = L ≤ 2L.

We are now ready to prove:

Proposition 1. Let (a, b), N and L be as above. Let R ≥ 2(1 + |a|
+ 2|b|)N , and let F (z, w) be a complex-valued function which is continuous
on B(0, R) and holomorphic inside. Put

A = max
{

1
k!

∣∣∣∣
∂kF

∂wk
(m+ na, nb)

∣∣∣∣Nk : 0 ≤ m,n < N and 0 ≤ k < L

}
.

Then

|F |N ≤ cL2A+ (c2N/R)L|F |R with c2 = 8(1 + 2c1)(1 + |a|+ 2|b|).

Proof. Define T = {(ξ, ζ) ∈ C2 : |ξ| = |ζ| = R}. For any continuous
function G : T→ C, we put

〈F,G〉 =
1

(2πi)2

�

T

F (ξ, ζ)G(ξ, ζ) dξ dζ.

This integral satisfies |〈F,G〉| ≤ R2|F |R|G|R where |G|R denotes the supre-
mum of |G| on the torus T. On the other hand, Cauchy’s integral formulas
give

F (z, w) =
〈
F,

1
(ξ − z)(ζ − w)

〉
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for any point (z, w) in the interior of B(0, R). For a triple (m,n, k) of integers
with 0 ≤ m,n < N and 0 ≤ k < L, they also give

1
k!
· ∂

kF

∂wk
(m+ na, nb) = 〈F,Dm,n,k〉

where

Dm,n,k(ξ, ζ) :=
1

(ξ −m− na)(ζ − nb)k+1

since (m+ na, nb) belongs to the interior of B(0, R). We claim that

(4)
1

(ξ − z)(ζ − w)
=

∑

0≤m,n<N
0≤k<L

gm,n,k(z, w)Dm,n,k(ξ, ζ) + U(z, w, ξ, ζ)

where the remainder U satisfies |U(z, w, ξ, ζ)| ≤ (c2N)LR−L−2 for any
(z, w, ξ, ζ) ∈ B(0, N) × T. If we take this for granted, then, multiplying
both sides of (4) by F (ξ, ζ) and integrating over T, we get, by linearity of
the integral,

|F |N ≤
∑

0≤m,n<N
0≤k<L

|gm,n,k|N
∣∣∣∣

1
k!
· ∂

kF

∂wk
(m+ na, nb)

∣∣∣∣+
(
c2N

R

)L
|F |R.

Using Lemma 1, we deduce

|F |N ≤ cL1
∑

0≤m,n<N
0≤k<L

(1 + |b|)kA+
(
c2N

R

)L
|F |R ≤ cL2A+

(
c2N

R

)L
|F |R

and the proposition is proved.
To prove the claim, we use the developments

1
(ξ − z)(ζ − w)

=
∑

r,s≥0

zrws

ξr+1ζs+1

and

Dm,n,k(ξ, ζ) =
∑

r,s≥0

(m+ na)r
(
s
k

)
(nb)s−k

ξr+1ζs+1

which converge absolutely and represent these functions whenever (z, w) ∈
B(0, N) and (ξ, ζ) ∈ T. Using Lemma 2, we deduce that the function U
defined by (4) is given by

U(z, w, ξ, ζ) =
∑

max{r,s}≥L

zrws − fr,s(z, w)
ξr+1ζs+1
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for (z, w, ξ, ζ) ∈ B(0, N)×T. For those values of (z, w, ξ, ζ), we get

|U(z, w, ξ, ζ)| ≤
∑

max{r,s}≥L

Nr+s + |fr,s|N
Rr+s+2

≤
(

1 + (2c1)L

R2

) ∑

max{r,s}≥L

(
(1 + |a|+ 2|b|)N

R

)r+s

≤ 8
(

1 + (2c1)L

R2

)(
(1 + |a|+ 2|b|)N

R

)L
,

since (1 + |a| + 2|b|)N/R ≤ 1/2. This proves the claim and thus completes
the proof of the proposition.

3. Proof of Theorem 2. We first prove:

Lemma 3. Let L be a positive integer , let r0, r and R be positive numbers
with r ≥ r0 and R ≥ 2r, and let F (z, w) be a complex-valued function which
is continuous on B(0, R) and holomorphic inside. Then

|F |r ≤
(
L+ 1

2

)(
r

r0

)L
|F |r0 + (2L+ 4)

(
r

R

)L
|F |R.

Proof. Since r < R, the Taylor expansion of F around (0, 0) converges
normally in B(0, r) and we get

|F |r ≤
∑

j,k≥0

1
j!k!

∣∣∣∣
∂j+kF

∂zj∂wk
(0, 0)

∣∣∣∣rj+k.

Using Cauchy’s inequalities, we deduce

|F |r ≤
∑

j+k<L

(
r

r0

)j+k
|F |r0 +

∑

j+k≥L

(
r

R

)j+k
|F |R.

The conclusion follows using
∑
j+k≥L 2L−j−k = 2L+4. Note that a sharper

inequality with the factor 2L+4 replaced by
√
L+1 follows from Lemma 3.4

of [4].

Proof of Theorem 2. Let T : C2 → C2 be the linear map for which
T (1, 0) = u and T (0, 1) = w, and let (a, b) be the point of C2 for which
T (a, b) = v. Let c3, c4 be positive constants such that c3‖z‖ ≤ ‖T (z)‖ ≤
c4‖z‖ for any z ∈ C2, where ‖ ‖ denotes the maximum norm. Assume
that N is a positive integer satisfying the condition (2) in the statement of
Theorem 2. Choose real numbers r and R with

R ≥ 2r and r ≥ max{c3, (1 + |a|+ 2|b|)c4}N.
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Choose also a continuous function F : B(0, R)→ C which is holomorphic in
the interior of B(0, R). Put L = N 2 and G = F ◦ T . Then G is defined and
continuous on B(0, R/c4). It is holomorphic in the interior of this ball and
satisfies

(5) |F |c3N ≤ |G|N and |G|R/c4 ≤ |F |R.
On the other hand, T (m + na, nb) = mu + nv for any (m,n) ∈ Z2. Since
T (0, 1) = w, this implies

(6)
∂kG

∂wk
(m+ na, nb) = Dk

wF (mu + nv) for any integer k ≥ 0.

Let B be the maximum of the numbers |Dk
wF (mu + nv)|Nk/k! with 0 ≤

k < L and 0 ≤ m,n < N . For any choice of integers k,m, n in the same
intervals, the relation (6) implies

1
k!

∣∣∣∣
∂kG

∂wk
(m+ na, nb)

∣∣∣∣Nk ≤ B.

By Proposition 1, we deduce

|G|N ≤ cL2B +
(
c2c4N

R

)L
|G|R/c4

where c2 depends only on |a| and |b|. Combining this with (5) and applying
Lemma 3 with r0 = c3N , we deduce

|F |r ≤
(
L+ 1

2

)(
r

c3N

)L[
cL2B +

(
c2c4N

R

)L
|F |R

]
+ (2L+ 4)

(
r

R

)L
|F |R,

which proves Theorem 2 for a suitable constant c depending only on c2, c3, c4.

4. Proof of Theorem 1. We will need the following special case of
Theorem 3.1 of [4]:

Theorem 3 (M. Waldschmidt). Let ∆, r, T0, T1, U be positive numbers.
Assume U ≥ 3,

log ((T0 + 1)(T1 + 1)) +∆+ T0 log (er) + erT1 ≤ U
and (8U)2 ≤ ∆T0T1. Then there exists a nonzero polynomial P ∈ Z[X0,X1]
with partial degree ≤ T0 in X0, partial degree ≤ T1 in X1 and height ≤ e∆

such that the function f(z) = P (z, ez) satisfies |f |r ≤ e−U .

We divide the proof of Theorem 1 into two propositions. Each proves
one implication but assumes a weaker condition than (1) on the parameters
s0, s1, t0, t1 and u.
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Proposition 2. Let (y, α) ∈ C×C× and let s0, s1, t0, t1, u be positive
numbers satisfying

max{1, s0, t0, s1 + t1} < u < 1
2 (1 + t0 + t1).

Assume that αe−y is a root of unity. Then, the condition (b) of Theorem 1
holds for the pair (y, α).

Proof. Write α = ζey with ζ ∈ C×. By hypothesis, ζd = 1 for some
integer d ≥ 1. Choose ε with

0 < ε < min
{

1, t0, t1, 1
5 (1 + t0 + t1 − 2u)

}
.

Then, for any sufficiently large integer N , the conditions of Theorem 3
are satisfied with ∆ = N1−ε, r = Ns1+ε, T0 = N t0−ε, T1 = N t1−ε and
U = Nu+ε. Fix such an integer N and choose a nonzero polynomial PN ∈
Z[X0,X1] with the properties corresponding to this choice of parameters.
Then

QN (X0,X1) =
d−1∏

k=0

PN (X0, ζ
kX1)

is also a nonzero polynomial with integral coefficients. If N is sufficiently
large, its partial degree in Xj is ≤ dTj ≤ N tj for j = 0, 1, and its height is ≤
((T0+1)(T1+1)e∆)d ≤ eN . We define entire functions fN,k(z) = PN (z, ζkez)
for k = 0, . . . , d− 1 and

gN (z) = QN (z, ez) =
d−1∏

k=0

fN,k(z).

By construction, |fN,0|r ≤ e−U , while, for k = 1, . . . , d − 1, a direct
estimate gives

|fN,k|r ≤ (T0 + 1)(T1 + 1) exp(∆+ T0 log(r) + rT1) ≤ exp(Nu)

provided that N is large enough. From these inequalities we deduce, if N is
sufficiently large,

|gN |r ≤ exp(−Nu+ε + (d− 1)Nu) ≤ exp(−2Nu).

On the other hand, gN (z) = QN (z, ζmez) for any m ∈ Z and any z ∈ C.
For fixed m, we deduce

dkgN
dzk

(z) = (DkQN )(z, ζmez) and so
dkgN
dzk

(my) = (DkQN )(my,αm)

for any integer k ≥ 0. Suppose that N is large enough so that N s1 |y|+1 ≤ r
and Ns0 log(Ns0) ≤ Nu. Then, for any pair of integers (k,m) with 0 ≤ k ≤
Ns0 and 0 ≤ m ≤ Ns1 , Cauchy’s inequalities give the estimate

|(DkQN )(my,αm)| =
∣∣∣∣
dkgN
dzk

(my)
∣∣∣∣ ≤ k!|gN ||my|+1 ≤ exp(Nu)|gN |r.
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Since |gN |r ≤ exp(−2Nu) when N is large enough, the sequence of polyno-
mials (QN )N≥N0 has the required properties for a suitable choice of N0.

For the next proposition, we will need the following fact:

Lemma 4. Let a be an irrational complex number. Then there are in-
finitely many positive integers N such that

(7) min{|m+ na| : m,n ∈ Z, 0 < max{|m|, |n|} < N} ≥ 1/(2N).

Proof. Assume on the contrary that, for any integer N larger than some
constant N0, there are integers m(N) and n(N) such that

0 < max{|m(N)|, |n(N)|} < N and |m(N) + n(N)a| < 1/(2N).

For N > N0, these conditions imply n(N) 6= 0 and we find

|m(N)n(N + 1)−m(N + 1)n(N)|
≤ |m(N) + n(N)a| · |n(N + 1)|+ |m(N + 1) + n(N + 1)a| · |n(N)| < 1,

and so the integer m(N)n(N + 1)−m(N + 1)n(N) is zero. This shows that
the ratio m(N)/n(N) is a constant r ∈ Q. Since

|r + a| = |m(N) + n(N)a|/|n(N)| < 1/(2N)

for any N > N0, we deduce that a = −r in contradiction with the hypothesis
a 6∈ Q.

Proposition 3. Let (y, α) ∈ C×C×, and let s0, s1, t0, t1, u be positive
numbers such that

max{1, t0, 2t1} < min{s0, 2s1} < u.

Suppose that αe−y is not a root of unity. Then the condition (b) of Theo-
rem 1 does not hold for the pair (y, α).

Proof. Choose λ ∈ C such that eλ = α. The ratio a = (λ − y)/(2πi) is
by hypothesis an irrational number. Therefore there exist infinitely many
positive integers N which satisfy the condition (7) of Lemma 4. Fix such an
integer N . Put s = min{s0/2, s1}, and let M denote the smallest positive
integer for which N ≤M s. Choose also a nonzero polynomial Q ∈ Z[X0,X1]
with partial degree ≤ M t0 in X0, partial degree ≤ M t1 in X1 and height
≤ eM . We will show that, if N is sufficiently large, the number

A = max
0≤k≤Ms0

0≤n≤Ms1

|(DkQ)(ny, αn)|

satisfies A > exp(−Mu). This will prove the proposition.
To this end, we consider the entire function F : C2 → C given by

F (z, w) = Q(z, ew), and the vectors

u = (0, 2πi), v = (y, λ), w = (1, 1).
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The differential operator Dw = ∂/∂z + ∂/∂w satisfies (Dk
wF )(z, w) =

(DkQ)(z, ew) for any integer k ≥ 0 and any (z, w) ∈ C2. In particular,
we get

(Dk
wF )(mu + nv) = (DkQ)(ny, αn)

for any k ∈ N and any (m,n) ∈ Z2. Since N2 ≤ Ms0 and N ≤ Ms1 , this
implies

max
0≤k<N2

0≤m,n<N

{
1
k!
|Dk

wF (mu + nv)|Nk

}
≤ A

∞∑

k=0

Nk

k!
= AeN .

Let c be the constant of Theorem 2 associated with the present choice of
u,v,w. Because of the choice of N , the condition (2) of this theorem is
satisfied. Thus, if we put r = cN and R = ecr, Theorem 2 gives

|F |r ≤ c2N
2
eNA+ e−N

2 |F |R.
Since max{1, t0, s+ t1} < 2s, we find

|F |R ≤ (M t0 + 1)(M t1 + 1) exp(M +M t0 log(R) +RM t1) ≤ eN2
/2

provided that N is large enough. On the other hand, since Q is a nonzero
polynomial with integral coefficients, we have

1 ≤ H(Q) ≤ |Q|1 ≤ |F |π ≤ |F |r
if r ≥ π. Since 2s < u, we conclude that when N is sufficiently large we have

A ≥ 1
2c
−2N2

e−N > exp(−Mu),

as required.

5. Equivalence of the two conjectures

1◦ Under the hypotheses of Conjecture 2, Theorem 1 shows that there
exists an integer d ≥ 1 such that αdj = edyj for j = 1, . . . , l. Since dy1, . . . , dyl
are linearly independent over Q, Schanuel’s conjecture, if it is true, implies

tr.degQQ(dy1, . . . , dyl, α
d
1, . . . , α

d
l ) ≥ l.

Thus Conjecture 1 implies Conjecture 2.
2◦ Conversely, let l and y1, . . . , yl be as in Conjecture 1. Put αj = eyj for

j = 1, . . . , l and choose real numbers s0, s1, t0, t1, u satisfying the condition
(1) from Conjecture 2. We apply Theorem 3 with ∆ = N , r = 1 + cN s1 ,
T0 = N t0 , T1 = N t1 and U = 2Nu where c = |y1|+ . . .+ |yl|. For sufficiently
large N , this theorem ensures the existence of a nonzero polynomial PN ∈
Z[X0,X1] with partial degree ≤ Tj in Xj for j = 0, 1 and height ≤ eN

such that the function fN (z) = PN (z, ez) satisfies |fN |r ≤ e−U . For any
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k,m1, . . . ,ml ∈ N with k ≤ N s0 and max{m1, . . . ,ml} ≤ Ns1 , we find
∣∣∣(DkPN )

( l∑

j=1

mjyj ,
l∏

j=1

α
mj
j

)∣∣∣ =
∣∣∣d
kfN
dzk

( l∑

j=1

mjyj

)∣∣∣

≤ k!|fN |r ≤ exp(−Nu)

if N is sufficiently large. Assuming that Conjecture 2 is true, this implies

tr.degQQ(y1, . . . , yl, e
y1 , . . . , eyl) ≥ l.

Thus Conjecture 2 implies Conjecture 1.
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