Diophantine inequalities for the non-Archimedean line $\mathbb{F}_q((1/T))$

by

CHIH-NUNG HSU (Taipei)

1. Introduction. In 1946, Davenport and Heilbronn [3] adapted the Hardy–Littlewood method to prove that if λ_i (i = 1, ..., K) are non-zero real numbers, not all of the same sign, and if λ_1/λ_2 is irrational, then the values of

$$\lambda_1 x_1^k + \ldots + \lambda_K x_K^k$$

as x_i 's run independently through all natural numbers, are everywhere dense on the real line provided that $K \ge 2^k + 1$. In the case k = 1, Baker [1] (see also [11] and [13]) showed that for any positive integer n there exist infinitely many primes p_1 , p_2 , p_3 satisfying the inequality

$$|\lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3| < (\ln p)^{-n},$$

where p denotes the maximum of p_1 , p_2 , p_3 . More recently, Harman [5] showed that if α is a real number, then there are infinitely many ordered triples of primes p_1 , p_2 , p_3 for which

$$|\alpha + \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3| < (\max_i p_j)^{-1/5+\varepsilon}.$$

In the case $k \geq 2$, Ramachandra [11] (see also [12]) showed that when $K \geq 2^k + 1$ if $1 \leq k \leq 11$ and $K \geq 2[2k^2 \ln k + k^2 \ln \ln k + 2.5k^2] - 1$ if $k \geq 12$, the values of

$$\lambda_1 p_1^k + \ldots + \lambda_K p_K^k$$

as the p_j 's run independently through all primes, are everywhere dense on the real line. The key to the Hardy–Littlewood method on the real line is

²⁰⁰⁰ Mathematics Subject Classification: Primary 11D75, 11J25.

Key words and phrases: Hardy–Littlewood method, Diophantine inequalities, Hua's lemma.

the integral

(1)
$$\int_{-\infty}^{\infty} \exp(xy) \left(\frac{\sin \pi x}{\pi x}\right)^2 dx = \max\{1 - |y|, 0\}.$$

In this paper, we study the Hardy–Littlewood method for the completion $\mathbf{K}_{\infty} = \mathbb{F}_q((1/T))$ of the rational function field $\mathbf{K} = \mathbb{F}_q(T)$ at the infinite place, where \mathbb{F}_q denotes the finite field with q elements. We have a natural discrete valuation $|\cdot|$ on \mathbf{K}_{∞} defined by

$$|f| = q^{\deg f},$$

where deg f denotes the degree of $f \in \mathbf{K}_{\infty}$ at T, and set deg $0 = -\infty$. Since \mathbf{K}_{∞} is complete under the non-Archimedean valuation $|\cdot|$ and the Pontryagin (self) duality $\hat{\mathbf{K}}_{\infty} = \mathbf{K}_{\infty}$ holds (cf. Section 2), we have the following basic analogy:

$$\mathbb{F}_q[T] \sim \mathbb{Z}, \quad \mathbf{K} \sim \mathbb{Q}, \quad \mathbf{K}_{\infty} \sim \mathbb{R}.$$

Let p be the characteristic of \mathbb{F}_q , let $\lambda_1, \ldots, \lambda_D$ be non-zero elements in \mathbf{K}_{∞} satisfying $\lambda_1/\lambda_2 \notin \mathbf{K}$ and

$$\operatorname{sgn}\lambda_1 + \ldots + \operatorname{sgn}\lambda_D = 0,$$

where sgn $f \in \mathbb{F}_q$ denotes the leading coefficient of $f \in \mathbf{K}_{\infty}$. We show that if $p > d \ge 1$ and

$$D \ge \begin{cases} 1+2^d & \text{if } 2 \le d < 11, \\ 2[2d^2 \ln d + d^2 \ln \ln d + 2d^2 - 2d] + 1 & \text{if } d \ge 11, \end{cases}$$

then the values of the sum

$$\lambda_1 P_1^d + \ldots + \lambda_D P_D^d,$$

as the P_i 's run independently through all monic irreducible polynomials in $\mathbb{F}_q[T]$, are everywhere dense on the "non-Archimedean" line \mathbf{K}_{∞} . In fact, we obtain a more explicit inequality in Theorem 2.1. In the proof of Theorem 2.1, the integral (cf. Lemma 2.2)

$$\int_{\mathbf{K}_{\infty}} E(af)\chi_n(a) \, da = \begin{cases} 1 & \text{if } \deg f < n, \\ 0 & \text{if } \deg f \ge n, \end{cases}$$

plays a role entirely analogous to the integral (1) on the real line.

We studied the case d = 1, D = 3 in [8]. In the present paper, we attack this problem in the case when $d \ge 2$. In this situation, we need more additive theory of monic irreducible polynomials in $\mathbb{F}_q[T]$ (see, e.g., Theorems 4.3, 4.4, and 2.4).

2. The main theorem and definition. Let \mathbb{F}_q be the finite field with q elements. Let p be its characteristic and let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ be the subfield of

 \mathbb{F}_q with p elements. Let $\psi_0:\mathbb{F}_p\to\mathbb{C}^\times$ be the canonical additive character defined by

$$\psi_0([c]) = \exp\left(\frac{2\pi i \cdot c}{p}\right),$$

where [c] denotes the canonical image of c in \mathbb{F}_p . Let $\psi : \mathbb{F}_q \to \mathbb{C}^{\times}$ be the additive character defined by $\psi(x) = \psi_0(\operatorname{Tr}(x))$ for all $x \in \mathbb{F}_q$ where Tr is the trace map from \mathbb{F}_q to \mathbb{F}_p . Let $\mathbf{A} = \mathbb{F}_q[T]$ (resp. $\mathbf{K} = \mathbb{F}_q(T)$) be the polynomial ring (resp. rational function field) with coefficients in \mathbb{F}_q . Let \mathbf{A}_+ denote the subset of \mathbf{A} consisting of all monic polynomials. Let $\mathbf{K}_{\infty} = \mathbb{F}_q((1/T))$ denote the completion of \mathbf{K} at the infinite place; in other words, for every $a \in \mathbf{K}_{\infty}$, if $a \neq 0$, then a can be expressed as

$$a = \sum_{i=d}^{-\infty} c_i T^i,$$

where $c_i \in \mathbb{F}_q$ and $c_d \neq 0$. The sign, degree, and absolute value of a are defined by sgn $a = c_d$, deg a = d, and $|a| = q^d$. The residue of a at the infinite place is denoted by $\operatorname{Res}_{\infty} f = c_{-1}$. The exponential map $E : \mathbf{K}_{\infty} \to \mathbb{C}^{\times}$ is defined by

$$E(a) = \psi(\operatorname{Res}_{\infty} a).$$

The exponential map E is a non-trivial additive character from \mathbf{K}_{∞} to \mathbb{C}^{\times} and the Pontryagin (self) duality $\widehat{\mathbf{K}}_{\infty} = \mathbf{K}_{\infty}$ is deduced by the bilinear map

$$\mathbf{K}_{\infty} \times \mathbf{K}_{\infty} \to \mathbb{C}^{\times}, \quad (a, f) \mapsto E(a \cdot f).$$

In this paper, the Haar integral for \mathbf{K}_{∞} is defined to satisfy

$$\int_{\deg a \le -1} 1 \, da = 1.$$

This implies that

$$\int_{\mathbf{K}_{\infty}} f(a) \, d(ba) = |b| \int_{\mathbf{K}_{\infty}} f(a) \, da$$

for all $b \in \mathbf{K}_{\infty}$ and continuous functions f (with compact support). With these properties, we have the following basic analogy:

 $\mathbf{A} \sim \mathbb{Z}, \quad \mathbf{K} \sim \mathbb{Q}, \quad \mathbf{K}_{\infty} \sim \mathbb{R}, \quad E \sim \exp.$

The main theorem of this paper is

THEOREM 2.1. Suppose that d, D, m are positive integers and $\lambda, \lambda_1, \ldots$ \ldots, λ_D are non-zero elements in \mathbf{K}_{∞} satisfying $\lambda_1/\lambda_2 \notin \mathbf{K}, 2 \leq d < p$,

(2)
$$\deg \lambda_1 = \ldots = \deg \lambda_D = 0,$$

and

$$\operatorname{sgn}\lambda_1 + \ldots + \operatorname{sgn}\lambda_D = 0.$$

Then if

$$D \ge \begin{cases} 1+2^d & \text{if } 2 \le d < 11, \\ 2[2d^2 \ln d + d^2 \ln \ln d + 2d^2 - 2d] + 1 & \text{if } d \ge 11, \end{cases}$$

then there exist infinitely many positive integers N for which there are

$$\gg \frac{q^{(D-d)N}}{N^{D+m}}$$

D-tuples (P_1, \ldots, P_D) of monic irreducible polynomials with $\deg(\lambda_i P_i) = N$ and

$$\deg(\lambda + \lambda_1 P_1^d + \ldots + \lambda_D P_D^d) < -m \ln N + 1,$$

where the implied constant depends only on \mathbf{A} , λ , λ_i , d, D, and m, but not on N.

REMARK 1. The complete proof of Theorem 2.1 is given in Section 5. In fact, if we define the value of $I_j(a)$ in (3) to be

$$I_j(a) = I(aT^{\Lambda - \deg \lambda_j} \lambda_j),$$

where

$$\Lambda = \max_{1 \le j \le D} \{ \deg \lambda_j \},\,$$

then without the condition (2), the statement of Theorem 2.1 is also true.

2. The choice of N depends on $\lambda_1/\lambda_2 \in \mathbf{K}_{\infty}/\mathbf{K}$ and this condition is used only in Lemmas 4.2 and 4.6. Combining this theorem and [8], Theorem 1.2, we obtain

CONSEQUENCE 1. Under the hypothesis of Theorem 2.1, suppose $p > d \ge 1$ and

$$D \ge \begin{cases} 1+2^d & \text{if } d < 11, \\ 2[2d^2\ln d + d^2\ln\ln d + 2d^2 - 2d] + 1 & \text{if } d \ge 11. \end{cases}$$

Then the values of the sum

$$\lambda_1 P_1^d + \ldots + \lambda_D P_D^d$$

as the P_i 's run independently through all monic irreducible polynomials in $\mathbb{F}_q[T]$, are everywhere dense on the non-Archimedean line $\mathbb{F}_q((1/T))$.

Let \mathfrak{M} be the subring of \mathbf{K}_{∞} consisting of $a \in \mathbf{K}_{\infty}$ with deg $a \leq -1$ and let χ_0 be the characteristic function of \mathfrak{M} ; in other words, $\chi_0 : \mathbf{K}_{\infty} \to \mathbb{R}$ satisfies

$$\chi_0(a) = \begin{cases} 1 & \text{if } a \in \mathfrak{M}, \\ 0 & \text{otherwise.} \end{cases}$$

Given any integer n, the function $\chi_n : \mathbf{K}_{\infty} \to \mathbb{R}$ is defined by

$$\chi_n(a) = q^n \chi_0(aT^n) \quad \text{for } a \in \mathbf{K}_\infty$$

LEMMA 2.2. We have

$$\int_{\mathbf{K}_{\infty}} E(af)\chi_n(a) \, da = \begin{cases} 1 & \text{if } \deg f < n, \\ 0 & \text{if } \deg f \ge n. \end{cases}$$

Proof. See [6], Theorem 3.5. \blacksquare

Let $p > d \ge 2$, N be fixed positive integers. We define functions

$$S(a) = \sum_{\deg P=N}' E(aP^{d}), \quad I(a) = \frac{1}{N} \int_{y \in T^{N} + T^{N}\mathfrak{M}} E(ay^{d}) \, dy,$$

(3) $S_{j}(a) = S(a\lambda_{j}), \quad I_{j}(a) = I(a\lambda_{j}), \quad j = 1, \dots, D,$
 $F(a) = \prod_{j=1}^{D} S_{j}(a), \quad H(a) = \prod_{j=1}^{D} I_{j}(a),$

where \sum' denotes the sum over monic irreducible polynomials in **A**. Let π_N denote the number of monic irreducible polynomials in **A** of degree N. The prime number theorem for **A** is

(4)
$$q^N/N - q^{N/2} < \pi_N \le q^N/N.$$

As deg $\lambda_j = 0$, by the definition of E we have

(5)
$$I_j(a) = \begin{cases} q^N/N & \text{if } \deg a < -dN - 1, \\ (q^N/N)\psi(\operatorname{sgn}(a\lambda_j)) & \text{if } \deg a = -dN - 1, \end{cases}$$

and

(6)
$$S_j(a) = \begin{cases} \pi_N & \text{if } \deg a < -dN - 1, \\ \pi_N \psi(\operatorname{sgn}(a\lambda_j)) & \text{if } \deg a = -dN - 1. \end{cases}$$

LEMMA 2.3. If deg $a \ge -dN$, then $I_j(a) = 0$.

Proof. Since deg $\lambda_j = 0$, it suffices to show that I(a) = 0 for deg $a \ge -dN$. Let deg a = -dN + l for some integer $l \ge 0$ and let

$$a = a_l T^{-dN+l} + \ldots + a_{-1} T^{-dN-1} + a' \in \mathbf{K}_{\infty},$$

where $a_j \in \mathbb{F}_q$, $a_l \neq 0$, and $\deg a' \leq -dN - 2$. Let

$$y = T^N + \sum_{j=1}^{\infty} b_{-j} T^{N-j} \in T^N + T^N \mathfrak{M},$$

where $b_{-j} \in \mathbb{F}_q$. Then we have

(7)
$$y^d = T^{dN} + \sum_{j=1}^{\infty} (db_{-j} + c_{-j}(b_{-1}, \dots, b_{-(j-1)}))T^{dN-j},$$

C. N. Hsu

for some $c_{-j}(x_1, ..., x_{j-1}) \in \mathbb{F}_q[x_1, ..., x_{j-1}]$ and $c_{-1} = 0$. Since $E(a'y^d) = 1$, we have

(8)
$$E(ay^d) = E((a-a')y^d) = \psi\Big(a_{-1} + \sum_{j=0}^l a_j b'_{-(j+1)}\Big),$$

where

$$b'_{-j} = db_{-j} + c_{-j}(b_{-1}, \dots, b_{-(j-1)}).$$

By (7), since $2 \le d < p$, we know that the *d*th power mapping

$$F: T^N + T^N \mathfrak{M} \to T^{dN} + T^{dN} \mathfrak{M}, \quad y \mapsto y^d$$

is bijective and satisfies

(9)
$$F(y + T^{N-(l+1)}\mathfrak{M}) = y^{dN} + T^{dN-(l+1)}\mathfrak{M}.$$

By (8), (9), since ψ is a non-trivial additive character of \mathbb{F}_q , and $a_l \neq 0$, we obtain

$$\begin{split} I(a) &= \frac{1}{N} \int_{y \in T^N + T^N \mathfrak{M}} E(ay^d) \, dy = \frac{1}{N} \int_{y \in T^N + T^N \mathfrak{M}} E((a - a')y^d) \, dy \\ &= \frac{1}{N} \int_{z \in T^{N - (l+1)} \mathfrak{M}} \sum_{c \in \mathbb{F}_q} q^l \cdot \psi(c) \, dz = 0. \quad \bullet \end{split}$$

Let a positive integer l satisfy $l \leq N/2$ and let y be a monic element in \mathbf{K}_{∞} of degree N. Let $\pi_N(y, l)$ denote the number of monic irreducible polynomials $P \in \mathbf{A}_+$ of degree N with $\deg(P-y) < N-l$. In [7], Corollary 2.6, or [2], Theorem 1.4, we have

(10)
$$\pi_N(y,l) = \frac{q^{N-l}}{N} + O(q^{N/2}),$$

where the implied constant depends only on A. Given

$$x = \sum_{i=-dN+l-1}^{-\infty} a_i T^i \in \mathbf{K}_{\infty}, \quad f = T^{dN} + \sum_{j=dN-1}^{0} f_j T^j \in \mathbf{A},$$

where $a_i, f_j \in \mathbb{F}_q$, $a_{-dN+l-1} \neq 0$, and setting $f_{dN} = 1$, we have

(11)
$$\operatorname{Res}_{\infty}(xf) = \sum_{k=0}^{l} a_{-dN+k-1} f_{dN-k}.$$

Let $\pi_{N,d}(f,l)$ be the number of monic irreducible polynomials P of degree N with $\deg(P^d - f) < dN - l$. By (7), since $2 \leq d < p$, there exists a monic element $y \in \mathbf{K}_{\infty}$ of degree N satisfying $\deg(y^d - f) < dN - l$ and $\pi_{N,d}(f,l) = \pi_{N,d}(y^d,l) = \pi_N(y,l)$. Thus by (10) we get

(12)
$$\pi_{N,d}(f,l) = \frac{q^{N-l}}{N} + O(q^{N/2}),$$

where the implied constant depends only on **A**. If P is a monic irreducible polynomial of degree N satisfying $\deg(P^d - f) < dN - l$, then by (11), $\operatorname{Res}_{\infty}(xP^d) = \operatorname{Res}_{\infty}(xf)$. Hence combining (12), (11), and $a_{-dN+l-1} \neq 0$, we get

(13) #{monic irreducibles
$$P \mid \deg P = N$$
, $\operatorname{Res}_{\infty}(xP^d) = c$ }
= $q^{l-1}\left(\frac{q^{N-l}}{N} + O(q^{N/2})\right) = \frac{q^{N-1}}{N} + O(q^{l+N/2})$

for any $c \in \mathbb{F}_q$. Since

$$E(xP^d) = \exp\left(\frac{2\pi i \operatorname{Tr}(\operatorname{Res}_{\infty}(xP^d))}{p}\right)$$

and Tr is a surjective \mathbb{F}_p -linear mapping from \mathbb{F}_q onto \mathbb{F}_p , by (13) we obtain

$$|S(x)| = \left|\sum_{\deg P=N}' E(xP^d)\right| = O(q^{l+N/2}).$$

Therefore we have

THEOREM 2.4. Let m be an integer satisfying $0 \le m < N/2$. Then $|S(x)| = O(q^{m+N/2})$

for all $x \in \mathbf{K}_{\infty}$ with deg x = -dN + m, where the implied constant depends only on **A**.

REMARK. If $m \ge N/2$, then the result of Theorem 2.4 is trivial.

3. The major arcs

LEMMA 3.1. Let n be a positive integer and let $-dN \le m \le -dN + N/4$. Then

$$\int_{\deg a \le m} |F(a) - H(a)| \chi_{-n}(a) \, da = o\left(\frac{q^{(D-d)N - N/2 - n}}{N^D}\right),$$

as $N \to \infty$.

Proof. Using (5), (6), $\operatorname{sgn} \lambda_1 + \ldots + \operatorname{sgn} \lambda_D = 0$, $\chi_{-n}(a) \leq q^{-n}$, Lemma 2.3, and (4), we obtain

$$\int_{\deg a \le m} |F(a) - H(a)| \chi_{-n}(a) \, da$$

$$\leq q^{-n} \int_{\deg a \leq -dN-1} |\pi_N^D - q^{DN}/N^D| \, da + q^{-n} \sum_{i=-dN}^m \int_{\deg a=i} |F(a)| \, da$$

$$\leq O\left(\frac{q^{(D-d)N-N/2-n}}{N^{D-1}}\right) + q^{-n} \sum_{i=-dN}^m \int_{\deg a=i} |F(a)| \, da,$$

where the implied constant depends only on **A**. Since $S_j(a) = S(a\lambda_j)$ and $\deg(a\lambda_j) = \deg a$, by Theorem 2.4, we obtain

$$|S_j(a)| = O(q^{dN+m+N/2})$$

for $-dN \leq \deg a \leq m$, where the implied constant depends only on **A**. As $d \geq 2$ and $D \geq 1 + 2^d \geq 5$, we obtain

$$q^{-n} \sum_{i=-dN}^{m} \int_{\deg a=i} |F(a)| \, da = O\left(q^{-n} \sum_{i=-dN}^{m} \int_{\deg a=i} q^{dDN+DN/2+Dm} \, da\right)$$
$$= O(q^{-n} \cdot q^m \cdot q^{dDN+DN/2+Dm})$$
$$= O(q^{(dD+D/2)N+(D+1)m-n})$$
$$= O\left(\frac{q^{(D-d)N-N/2-n}}{N^{D-1}}\right),$$

where the implied constant depends only on \mathbf{A} .

LEMMA 3.2. Let n be a positive integer and let $\lambda \in \mathbf{K}_{\infty}$. Then if $m \geq -dN$ and $dN > \deg \lambda$, we have

$$\int_{\deg a \le m} H(a) E(a\lambda) \chi_{-n}(a) \, da = \frac{q^{(D-d)N-n}}{N^D}.$$

Proof. By Lemma 2.3 and the definition of H, we have H(a) = 0 if deg $a \ge m \ge -dN$. Thus

(14)
$$\int_{\deg a \ge m} H(a)E(a\lambda)\chi_{-n}(a)\,da = 0.$$

By the definitions of H, E and Lemma 2.3, we have

By the definition of $\chi_{-n}(a)$ and since deg a < -dN, the above is

$$\frac{q^{-n}}{N^D} \int_{T^N + T^N \mathfrak{M}} \cdots \int_{T^N + T^N \mathfrak{M}} \int_{\deg a < -dN} E\left(a\left(\lambda + \sum_{j=1}^D \lambda_j y_j^d\right)\right) da \, dy_1 \dots dy_D.$$

Given any $y_1, \ldots, y_D \in T^N + T^N \mathfrak{M}$, set

$$f = \lambda + \lambda_1 y_1^d + \ldots + \lambda_D y_D^d.$$

Since $dN > \deg \lambda$, $\deg \lambda_j = 0$, and $\operatorname{sgn} \lambda_1 + \ldots + \operatorname{sgn} \lambda_D = 0$, we have $\deg f < dN$. This implies

$$\int_{\deg a < -dN} E(af) \, da = \int_{\deg a < -dN} 1 \, da = q^{-dN}.$$

Therefore

$$\int_{\mathbf{K}_{\infty}} H(a)E(a\lambda)\chi_{-n}(a)\,da = \frac{q^{-n}}{N^{D}} \cdot q^{DN} \cdot q^{-dN} = \frac{q^{(D-d)N-n}}{N^{D}}$$

Combining these with (14), we complete the proof.

4. The minor arcs. We recall Dirichlet's theorem for A in

THEOREM 4.1. Given any $\alpha \in \mathbf{K}_{\infty}$ and a positive integer N, there exists a unique monic polynomial Q and a polynomial a in **A** satisfying (Q, a)= 1, deg $Q \leq N$, and deg $(\alpha - a/Q) \leq -(\deg Q + N + 1)$.

Proof. See [6].

For any $x \in \mathbf{K}_{\infty}$, define

$$V(x) = \min\{|S_1(x)|, |S_2(x)|\}.$$

LEMMA 4.2. Suppose $p > d \ge 2$ and that positive numbers ε , D_1 , and σ_0 satisfy $d - 6\varepsilon < 2D_1 < d$. Then there exist infinitely many positive integers N such that

$$V(x) \ll q^N / N^{\sigma_0}$$
 for all $x \in \mathbf{K}_{\infty}$ with $-(d-\varepsilon)N \leq \deg x \leq D_1 N$,

where the implied constant depends only on d, ε , D_1 and σ_0 .

Proof. Since $\lambda_1/\lambda_2 \in \mathbf{K}_{\infty} \setminus \mathbf{K}$, by Theorem 4.1 there exist infinitely many monic polynomials Q and polynomials a in \mathbf{A} such that (Q, a) = 1 and

(15)
$$\deg(\lambda_1/\lambda_2 - a/Q) < -2\deg Q.$$

For a fixed pair (Q, a), let N be the least integer satisfying $2 \deg Q \leq dN$ and write

(16)
$$\frac{\lambda_1}{\lambda_2} = \frac{a}{Q} + f$$
 for some $f \in \mathbf{K}_{\infty}$ with deg $f < -2 \deg Q$.

Throughout the proof of this lemma, assume that $(d - 2D_1)N \ge 6d$. Given any $x \in \mathbf{K}_{\infty}$ satisfying $-(d - \varepsilon)N \le \deg x \le D_1N$, let *m* denote the least integer satisfying $(5d + 2D_1)N/6 \le m$. For any j = 1, 2, again by Theorem 4.1 there exist monic polynomials Q_1 , Q_2 and polynomials a_1 , a_2 such that

(17)
$$\deg(x\lambda_j - a_j/Q_j) < -\deg Q_j - m, \quad j = 1, 2,$$

where $(Q_j, a_j) = 1$ and $\deg Q_j \leq m$. Since $\deg \lambda_j = 0$, $\deg(x\lambda_j) = \deg x \geq -(d-\varepsilon)N$. Combining this with (17) and $m > (d-\varepsilon)N$ because $d-6\varepsilon < 2D_1$, we have $a_j \neq 0$ and we can write

$$x\lambda_j = \frac{a_j}{Q_j} + \frac{f_j}{Q_j} = \frac{a_j}{Q_j} \left(1 + \frac{f_j}{a_j}\right) \quad \text{for some } f_j \in \mathbf{K}_{\infty} \text{ with } \deg f_j < -m.$$

Thus

$$\frac{\lambda_1}{\lambda_2} = \frac{x\lambda_1}{x\lambda_2} = \frac{Q_2 a_1}{Q_1 a_2} \left(1 + \frac{f_1}{a_1}\right) \left(1 + \frac{f_2}{a_2}\right)^{-1}$$

Since deg $\lambda_1 = \text{deg } \lambda_2 = 0$, we have deg $(Q_2 a_1) = \text{deg}(Q_1 a_2)$. We may write

$$\frac{\lambda_1}{\lambda_2} = \frac{Q_2 a_1}{Q_1 a_2} + f_3 \quad \text{for some } f_3 \in \mathbf{K}_{\infty} \text{ with } \deg f_3 < -m.$$

By (16), and since $0 < m \le d(N-1)$ because $(d-2D_1)N \ge 6d$, we have

$$\deg\left(\frac{a}{Q} - \frac{Q_2 a_1}{Q_1 a_2}\right) < -m$$

This implies

$$\deg(a_2Q_1a - Q_2a_1Q) < dN/2 - m + \deg(Q_1a_2).$$

If $a_2Q_1a - Q_2a_1Q \neq 0$, then $\deg(Q_1a_2) > -dN/2 + m$. If $a_2Q_1a - Q_2a_1Q = 0$, then

$$\frac{a}{Q} = \frac{Q_2 a_1}{Q_1 a_2}.$$

Since (Q, a) = 1 and $d \ge 2$, $\deg(Q_1 a_2) \ge \deg Q > d(N-1)/2 \ge -dN/2 + m$ because $(d-2D_1)N \ge 6d$. Thus we always have $\deg(Q_1 a_2) > -dN/2 + m$. Since $\deg(x\lambda_2 - a_2/Q_2) < -\deg Q_2 - m$, $-(d-\varepsilon)N \le \deg x \le D_1N$, $\deg \lambda_2 = 0$, and $m > (d-\varepsilon)N$, we have $D_1N \ge \deg x = \deg x\lambda_2 = \deg(a_2/Q_2)$. Combining these, we have

$$\deg(Q_1Q_2) = \deg(Q_1a_2) + \deg(Q_2/a_2) > -dN/2 + m - D_1N.$$

This implies that $\max\{\deg Q_1, \deg Q_2\} > -dN/4 + (m - D_1N)/2$. Without loss of generality, assume that $\deg Q_1 > -dN/4 + (m - D_1N)/2$. By the definition of m, we have

$$\deg Q_1 + m > -\frac{dN}{4} + \frac{m - D_1 N}{2} + m \ge dN.$$

Combining this with (17), we obtain

$$S_1(x) = S(x\lambda_1) = S(a_1/Q_1).$$

Set $\sigma = (dN - m)/\ln N$. Since $m - 1 < (5d + 2D_1)N/6$ and $d > 2D_1$, we have

$$\sigma > \frac{(d - 2D_1)N - 6}{6\ln N} \ge d2^{6d}(\sigma_0 + 1)$$

for large N. Since

$$\sigma \ln N = dN - m < \deg Q_1 \le m = dN - \sigma \ln N,$$

by Theorem 4.3 below, we obtain

$$|S_1(x)| = |S(x\lambda_1)| = |S(a_1/Q_1)| \ll q^N / N^{\sigma_0}$$

for large N. Thus there exist infinitely many positive integers N such that

$$V(x) \ll q^N / N^{\sigma_0}$$
 for all $-(d-\varepsilon)N \le \deg x \le D_1 N$.

Now we recall three theorems proved in [9]. They are used in the proof of Lemma 4.6 and in the proofs of polynomial Waring and polynomial Waring–Goldbach problems (cf. [4] and [9]).

THEOREM 4.3. Let $2 \leq d < p$ and let $\sigma_0 \geq 0$. Suppose that (Q, a) = 1, $\sigma \ln N \leq \deg Q \leq dN - \sigma \ln N$. Then, if $\sigma \geq d2^{6d}(\sigma_0 + 1)$, we have

$$|S(a/Q)| \ll q^N / N^{\sigma_0},$$

where the implied constant depends only on d, σ_0 , and q.

Proof. See [9], Theorem 11.8. \blacksquare

THEOREM 4.4 (Hua's lemma). Suppose that $1 \le d < p$. Then

(18)
$$\int_{\mathfrak{M}} \left| \sum_{x \in \mathbf{A}_+, \deg x = N} E(x^d a) \right|^{2^d} da \ll N^C q^{N(2^d - d)}$$

for some C, where the implied constant and the constant C depend on d and \mathbf{A} , but not on N. In other words, the number of solutions of

$$x_1^d + \ldots + x_{2^{d-1}}^d = y_1^d + \ldots + y_{2^{d-1}}^d$$

with $x_i, y_i \in \mathbf{A}_+$ and $\deg x_i = \deg y_i = N$ is $\ll N^C q^{N(2^d - d)}$.

Proof. See [9], Theorem 4.2. \blacksquare

REMARK. In [4], Theorem 8.13, the right-hand side of (18) is $q^{N(2^d-d+\varepsilon)}$. Following Hua's idea (cf. [10], Theorem 4), we improve this to the form of Theorem 4.4. THEOREM 4.5. Suppose $d \ge 9$ and $s \ge 2d^2 \ln d + d^2 \ln \ln d + 2d^2 - 2d$. Then

$$\int_{\mathfrak{M}} \left| \sum_{x \in \mathbf{A}_+, \deg x = N} E(x^d a) \right|^{2s} da \ll q^{N(2s-d)},$$

where the implied constant depends only on d, s, and q. In other words, the number of solutions of

$$x_1^d + \ldots + x_s^d = y_1^d + \ldots + y_s^d$$

with $x_i, y_i \in \mathbf{A}_+$ and $\deg x_i = \deg y_i = N$ is $\ll q^{N(2s-d)}$.

Proof. See [9], Theorem 7.5. \blacksquare

LEMMA 4.6. Let D, n be positive integers and let d, ε , D_1 and N be as in Lemma 4.2. Then, if $D_1N \ge n$ and

$$D \ge \begin{cases} 1+2^d & \text{if } 2 \le d < 11, \\ 2[2d^2\ln d + d^2\ln\ln d + 2d^2 - 2d] + 1 & \text{if } d \ge 11, \end{cases}$$

we have

$$\int_{-(d-\varepsilon)N \le \deg a} |F(a)| \chi_{-n}(a) \, da \ll q^{(D-d)N} / N^{\sigma_0}$$

for any positive number σ_0 , where the implied constant depends only on D, d, ε , D_1 , σ_0 , and the constant C of Theorem 4.4.

Proof. By the definition of χ_{-n} , we know that $\chi_{-n}(a) = 0$ if deg $a \ge n$. Thus $\chi_{-n}(a) = 0$ if deg $a \ge D_1 N$. Thus

$$\int_{-(d-\varepsilon)N \le \deg a} |F(a)|\chi_{-n}(a)\,da = \int_{-(d-\varepsilon)N \le \deg a \le D_1N} |F(a)|\chi_{-n}(a)\,da.$$

If $V(a) = \min\{|S_1(a)|, |S_2(a)|\}$, then

$$|F(a)| \le V(a) \Big(\Big| S_1(a) \prod_{j=3}^D S_j(a) \Big| + \Big| S_2(a) \prod_{j=3}^D S_j(a) \Big| \Big).$$

This implies

$$|F(a)| \le V(a) \Big(\sum_{j=1}^{D} |S_j(a)|^{D-1}\Big).$$

Since

$$D \ge \begin{cases} 1+2^d & \text{if } 2 \le d < 11, \\ 2[2d^2 \ln d + d^2 \ln \ln d + 2d^2 - 2d] + 1 & \text{if } d \ge 11, \end{cases}$$

and deg $\lambda_j = 0$, $|S_j(a)| \le q^N$, we have

(19)
$$\int_{\mathbf{K}_{\infty}} |S_{j}(a)|^{D-1} \chi_{-n}(a) \, da$$
$$\leq \begin{cases} q^{N(D-1-2^{d})} \int_{\mathbf{K}_{\infty}} |S(a)|^{2^{d}} \chi_{-n}(a) \, da & \text{if } 2 \leq d < 11, \\ q^{N(D-2s-1)} \int_{\mathbf{K}_{\infty}} |S(a)|^{2s} \chi_{-n}(a) \, da & \text{if } d \geq 11, \end{cases}$$

where $s = [2d^2 \ln d + d^2 \ln \ln d + 2d^2 - 2d]$. By Lemma 2.2, the last integral is equal to the number of monic irreducible 2s-tuples (P_1, \ldots, P_{2s}) such that deg $P_i = N$ and

$$\deg\left(\sum_{i=1}^{s} (P_i^d - P_{s+i}^d)\right) < -n.$$

Since n > 0, this integral is equal to the number of monic irreducible 2stuples (P_1, \ldots, P_{2s}) such that deg $P_i = N$ and

$$\sum_{i=1}^{s} (P_i^d - P_{s+i}^d) = 0.$$

Using (19) and Theorems 4.4 and 4.5, we obtain

$$\int_{\mathbf{K}_{\infty}} |S_j(a)|^{D-1} \chi_{-n}(a) \, da \ll \begin{cases} N^C q^{N(D-d-1)} & \text{if } 2 \le d < 11, \\ q^{N(D-d-1)} & \text{if } d \ge 11. \end{cases}$$

Combining these with Lemma 4.2 (substitute $\sigma_0 + C$ for σ_0), we obtain

$$\int_{-(d-\varepsilon)N \le \deg a} |F(a)|\chi_{-n}(a) \, da$$

$$\leq \int_{-(d-\varepsilon)N \le \deg a \le D_1 N} V(a) \sum_{j=1}^D |S_j(a)|^{D-1} \chi_{-n}(a) \, da$$

$$\ll \frac{q^N}{N^{\sigma_0+C}} \cdot N^C q^{N(D-d-1)} = \frac{q^{(D-d)N}}{N^{\sigma_0}}. \quad \blacksquare$$

5. Completion of the proof of the main theorem. We conclude the proof of Theorem 2.1 by collecting the above results. First of all, Lemma 3.2 with $\varepsilon > 0$ and a positive integer n gives

$$\int_{\deg a \le -(d-\varepsilon)N} H(a)E(a\lambda)\chi_{-n}(a)\,da = q^{(D-d)N-n}/N^D,$$

as $dN > \deg \lambda$. Combining this with Lemma 3.1, when $0 < \varepsilon < 1/4$ and $n = [m \ln N]$, we have

(20)
$$\int_{\deg a \leq -(d-\varepsilon)N} F(a)E(a\lambda)\chi_{-[m\ln N]}(a)\,da \gg q^{(D-d)N}/N^{D+m},$$

as $N \to \infty$. In Lemmas 4.2 and 4.6, if ε , D_1 , d, D, n and σ_0 satisfy $d - 6\varepsilon < 2D_1 < d$, $2 \le d < p$, $\sigma_0 = D + m + 1$, $n = [m \ln N]$, $D_1 N \ge n$, and

$$D \ge \begin{cases} 1+2^d & \text{if } 2 \le d < 11, \\ 2[2d^2 \ln d + d^2 \ln \ln d + 2d^2 - 2d] + 1 & \text{if } d \ge 11, \end{cases}$$

then there are infinitely many positive integers N (note that these N come from $\lambda_1/\lambda_2 \in \mathbf{K}_{\infty}/\mathbf{K}$) such that

(21)
$$\int_{-(d-\varepsilon)N \le \deg a} F(a)E(a\lambda)\chi_{-[m\ln N]}(a)\,da \ll q^{(D-d)N}/N^{D+m+1}$$

Therefore, taking $\varepsilon = 1/6$, $D_1 = d/2 - 1/4$ and combining (20) and (21), we see that for any positive integer m,

$$\int_{\mathbf{K}_{\infty}} \sum_{\deg P_1 = N}' \dots \sum_{\deg P_D = N}' E\left(a\left(\lambda + \sum_{i=1}^{D} \lambda_i P_i^d\right)\right) \chi_{-[m \ln N]}(a) \, da$$
$$= \int_{\mathbf{K}_{\infty}} F(a) E(a\lambda) \chi_{-[m \ln N]}(a) \, da \gg q^{(D-d)N} / N^{D+m}.$$

It follows from Lemma 2.2 that there exist infinitely many positive integers N for which there are $\gg q^{(D-d)N}/N^{D+m}$ D-tuples (P_1, \ldots, P_D) of monic irreducible polynomials with deg $P_i = N$ and

$$\deg(\lambda + \lambda_1 P_1^d + \ldots + \lambda_D P_D^d) < -m \ln N + 1.$$

This completes the proof of Theorem 2.1. \blacksquare

References

- A. Baker, On some diophantine inequalities involving primes, J. Reine Angew. Math. 228 (1967), 166–181.
- [2] M. Car, Distribution des polynômes irréductibles dans $\mathbb{F}_q[T]$, Acta Arith. 88 (1999), 141–153.
- H. Davenport and H. Heilbronn, On indefinite quadratic forms in five variables, J. London Math. Soc. 21 (1946), 185–193.
- [4] G. W. Effinger and D. R. Hayes, Additive Number Theory of Polynomials Over a Finite Field, Clarendon Press, Oxford, 1991.
- [5] G. Harman, Diophantine approximation by prime numbers, J. London Math. Soc.
 (2) 44 (1991), 218–226.
- [6] D. R. Hayes, The expression of a polynomial as a sum of three irreducibles, Acta Arith. 11 (1966), 461–488.
- [7] C. N. Hsu, The distribution of irreducible polynomials in $\mathbb{F}_q[t]$, J. Number Theory 61 (1996), 85–96.
- [8] —, Diophantine inequalities for polynomial rings, ibid. 78 (1999), 46–61.
- [9] —, On polynomial Waring–Goldbach problem, preprint.
- [10] L. K. Hua, Additive Theory of Prime Numbers, Amer. Math. Soc., Providence, RI, 1965.

- [11] K. Ramachandra, On the sums $\sum_{j=1}^{K} \lambda_j f_j(p_j)$, J. Reine Angew. Math. 262–263 (1973), 158–165.
- W. Schwarz, Über die Lösbarkeit gewisser Ungleichungen durch Primzahlen, ibid. 212 (1963), 150–157.
- [13] R. C. Vaughan, Diophantine approximation by prime numbers II, Proc. London Math. Soc. (3) 28 (1974), 385–401.

Department of Mathematics National Taiwan Normal University 88 Sec. 4 Ting-Chou Road Taipei, Taiwan E-mail: maco@math.ntnu.edu.tw

```
Received on 25.10.1999
and in revised form on 19.6.2000 (3704)
```