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1. Introduction. Let Z, N, Q, P be the sets of integers, positive inte-
gers, rational numbers and odd prime numbers, respectively. Let d ∈ N be
a square free number, and h(d) the class number of the real quadratic field
Q(
√
d), where d satisfies

(1) 1 + 4b2k2n = da2, a, b, k, n ∈ N, k > 1, n > 1.

In [17], Lu proved that if a = b = 1, then

(2) h(d) ≡ 0 (modn).

In [11], Le proved that if b = 1, n > 2, 2kn+a
√
d is the fundamental solution

of Pell’s equation x2−dy2 = −1, and (p, (q−1)q) = 1 for each odd prime di-
visor p |n and q | k, then (2) holds, except (a, d, k, n) = (5, 41, 2, 4). Clearly,
Le’s result cannot imply Lu’s result. In [3], we proved that if b = 1, n > 2,
2kn + a

√
d is the fundamental solution of Pell’s equation x2 − dy2 = −1,

a ≤ kn/2 and 2 - k, then (2) holds. By Lemma 3 of the present paper,
the assumption “2kn + a

√
d is the fundamental solution of Pell’s equation

x2 − dy2 = −1” in [3] can be omitted.
In this paper, we prove the following further results.

Theorem 1. If b = 1, n > 2, and one of the following cases holds,
then (2) holds, except (a, d, k, n) = (5, 41, 2, 4):

Case 1: a |∗ d; the symbol a |∗ d means that every prime divisor of a
divides d;

Case 2: (p, q2 − 1) = 1 for each odd prime divisor p of n and prime
divisor q of a;

Case 3: a ≤ 0.5k0.4226n or a ≤ 0.5k0.5527n and 2 - k.
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Remark. After submitting the paper, we found that a similar, but dif-
ferent as regards Case 2 of Theorem 1, result is contained in the paper of
Ping Zhi Yuan [25]. And Yuan [26] also proved that if the equation

(3) x2 − dy2 = 4q, x, y ∈ Z, (x, y) = 1 or 2,

has a solution for each prime divisor q | b, and a ≤ 0.9b1/2kn/4, then (2)
holds.

Theorem 2. Assume that equation (3) has a solution for each prime
divisor q | b. If n has a prime factor p, and a ≤ 0.5bλ1kλ2n, where λ1 =
2b√pc/(2b√pc+ 1), λ2 = 1 − 1/

√
p, then p |h(d) (the symbol bxc means

greatest integer not greater than x).

Corollary 1. Assume that equation (3) has a solution for each prime
divisor q | b. If a = 1 and b > 1, then (2) holds.

Corollary 2. Assume that equation (3) has a solution for each prime
divisor q | b. If a ≤ 0.5b2/3k0.29n, then (2) holds.

Theorem 3. Assume that equation (3) has a solution for each prime
divisor q | b, and a ≤ 0.5b2/3k0.4226n. If b = q2α1

1 . . . q2αs
s , (αi, qi) ∈ N × P

(i = 1, . . . , s), and one of the following cases holds:

1. s = 1;
2. s ≥ 2, q1 ≡ 5 (mod 8) and qi ≡ 3 (mod 4) (2 ≤ i ≤ s),

then (2) holds, except n = 6, k = 2, b = 32 · 292, a = 985, d = 967441.

Clearly, the results are of importance for some cryptographic problems,
since Buchmann and Williams [2] set up a key exchange cryptosystem in
the class group of a quadratic field.

2. Lemmas. From (1), we see that Pell’s equation

(4) x2 − dy2 = −1, x, y ∈ N,
has solutions. Assume that x0 + y0

√
d is the fundamental solution of (4).

Lemma 1. If (x1, y1) is a solution of (4), and y1 |∗ d, then x1 +y1
√
d =

x0 + y0
√
d is the fundamental solution of (4).

This lemma is a classical result of C. Størmer [22]. Cf. also M. Ward [24]
and L. K. Durst [7]–[9].

Lemma 2. If (x1, y1) is a solution of (4), and x1 > y2
1/2, then x1 +

y1
√
d = x0 + y0

√
d is the fundamental solution of (4).

Proof. Otherwise, we assume y1 > y0. Then

y2
0x

2
1 − x2

0y
2
1 = y2

0x
2
1 − y2

1(dy2
0 − 1) = y2

0(x2
1 − dy2

1) + y2
1 = y2

1 − y2
0 > 0.
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Let
y2

0x
2
1 − x2

0y
2
1 = y2

1 − y2
0 = A ∈ N.

Then

y0x1 + x0y1 = A1, y0x1 − x0y1 = A2, A = A1A2, A1, A2 ∈ N.
Since (A1 − 1)(A2 − 1) ≥ 0, we easily see that

x1 =
A1 + A2

2y0
≤ A+ 1

2y0
=
y2

1 − y2
0 + 1

2y0
≤ 1

2
y2

1 .

This contradicts our assumption.

Lemma 2 yields

Lemma 3. If a, b, d, k, n satisfy (1), and a < 2
√
b kn/2, then 2bkn+a

√
d

is the fundamental solution of (4).

Lemma 4. If the equation U2 − dV 2 = 4 has an integer solution with
(U, V ) = 1, then the Diophantine equation

(5) 4x2n − dy2 = −1, n > 2,

has no solution in positive integers, except d = 5, x = y = 1.

It is Theorem 1 of [3]. The key to the proof of Lemma 4 is using several
results on the equations x2 + 3 = yn, x2 + 3 = 4yn, 3x2 + 1 = yn and
1 + 3x2 = 4yn.

Proof. Assume that equation (5) has a positive integer solution x, y.
Clearly, the equation U2 − dV 2 = 4 has an integer solution with (U, V ) = 1
if and only if the equation U ′2 − dV ′2 = −4 has an integer solution with
(U ′, V ′) = 1. Let % = (U ′0 + V ′0

√
d)/2 be the fundamental solution of the

equation U ′2 − dV ′2 = −4. It is well known that ε = %3 is the fundamental
solution of (4). Hence, from (5) we have

(6) 2xn =
ε2m+1 + ε2m+1

2
=
%3(2m+1) + %3(2m+1)

2
, m ≥ 0,

where ε, % satisfy εε = %% = −1. From (6),

(7) 4xn = (%2m+1 + %2m+1)((%2m+1 + %2m+1)2 + 3),

where %2m+1 +%2m+1 ∈ N. Since (%2m+1 +%2m+1, (%2m+1 +%2m+1)2 +3) = 1
or 3, the latter occurring only for 3 ‖ (%2m+1 + %2m+1)2 + 3, we see from (7)
that

(8) %2m+1 + %2m+1 = 4xn1 , (%2m+1 + %2m+1)2 + 3 = xn2 , x = x1x2,

or

(9) %2m+1 + %2m+1 = xn1 , (%2m+1 + %2m+1)2 + 3 = 4xn2 , x = x1x2,

or
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(10) %2m+1+%2m+1 = 3n−1 ·4xn1 , (%2m+1+%2m+1)2 +3 = 3xn2 , x= 3x1x2,

or

(11) %2m+1+%2m+1 = 3n−1xn1 , (%2m+1+%2m+1)2+3 = 3 ·4xn2 , x= 3x1x2,

where x1, x2 ∈ N with (x1, x2) = 1. (8) is impossible since Nagell [19] and
then Brown [1] proved that the equation x2 +3 = yn has no integer solutions
with n > 2. Similarly, from Nagell [18], [19] and Ljunggren [14], [15] we know
that the equation x2+3 = 4yn (n > 2) has the only positive integer solutions
x = y = 1 and n = 3, x = 37, y = 7, the equation 3x2 + 1 = yn has no
positive integer solutions with n > 2, and the equation 1+3x2 = 4yn (n > 2)
has the only positive integer solution x = y = 1. Thus (10) and (11) are
impossible, and (9) has the only solution x = 1.

Lemma 5. If l > 1, then the only positive integer solutions of the equa-
tions

x2 − 2y2l = ±1

are 12 − 2 · 12l = −1, 2392 − 2 · 134 = −1.

Proof. It follows from [16], [23] and [4] that the only solutions of the
equation x2−2y4 = −1 in positive integers are (1, 1), (293, 13), the equation
x2 − 2y2l = −1 (2 - l, l > 1) has only the trivial solution x = y = 1 and the
equation x2 − 2y2l = 1 (l > 1) has no solutions in positive integers. Hence
the assertion holds.

Lemma 6. If l > 1 then the Diophantine equation

x2l − 2y2 = ±1

have only the trivial solution x = y = 1.

Lemma 6 follows directly from two general results in [5] and [6].

Let un be the Lucas sequence, i.e. un = (αn − βn)/(α− β), where α, β
are the two roots of the equation

x2 − Px+Q = 0, P,Q ∈ Z, (P,Q) = 1.

The prime p is called a primitive prime factor of un if n is the least positive
integer with p |un.

Lemma 7. Let p be a prime, p - 2Q. Then:

(i) if p is a primitive prime factor of un, then p |um if and only if n |m;
(ii) if p > 2, then p |up−(Dp ), D = P 2− 4Q,

(
D
p

)
is the Legendre symbol.

Proof. See [13], Theorem 1.7.

It is well known that the simple continued fraction of
√
d is periodical; we

denote it by
√
d = [a0, a1, . . . , as], where a0 = [

√
d ], as = 2a0 and ai < 2a0

for i = 0, . . . , s− 1.
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Lemma 8. If |L| <
√
d and (X,Y ) is a positive integer solution of the

equation

(12) X2 − dY 2 = L, X, Y ∈ Z, (X,Y ) = 1,

then X/Y is a convergent of
√
d.

Proof. See [10], Theorem 10.8.2.

Lemma 9. For any j ∈ Z with j ≥ 0, let pj/qj and rj be the
jth convergent and complete quotient of

√
d respectively , and let kj =

(−1)j−1(p2
j − dq2

j ), ∆j = (−1)j(pj−1pj − dqj−1qj). Then:

(i) kj > 0, ∆j > 0, aj+1 = [(∆j +
√
d)/kj ].

(ii) kj = 1 if and only if aj+1 = 2a0.
(iii) Let f = s− 1 if 2 | s and f = 2s− 1 if 2 - s. Then pf + qf

√
d is the

fundamental solution of the equation

(13) x2 − dy2 = 1, x, y ∈ N.
(iv) For any m ∈ N, kms+i = ki (i = 0, . . . , s− 1).
(v) If 1 < |L| <

√
d, 2d 6≡ 0 (mod |L|) and equation (12) has a solu-

tion (X,Y ), then equation (12) has at least two positive solutions such that
X < pf and Y < qf .

Proof. See [12], Lemma 5.

Lemma 10. If (l, p) ∈ N× P, l > 1, then the Diophantine equation

(14) x2 − 22l−1p2αy2l = 1, x, y, α ∈ N,
has no solutions, except 172 − 25 · 32 · 16 = 1, 1142432 − 23 · 2392 · 134 = 1.

Proof. Assume that equation (14) has a solution. Then

(15) x± 1 = 2y2l
1 , x∓ 1 = 22l−2p2αy2l

2 , y = y1y2,

or

(16) x± 1 = 2p2αy2l
1 , x∓ 1 = 22l−2y2l

2 , y = y1y2,

where y1, y2 ∈ N with (y1, y2) = 1. From (15), we get

y2l
1 − 2(2l−2pαyl2)2 = ±1,

which is impossible by Lemma 6. From (16), we get

(17) (pαyl1)2 − 22l−3y2l
2 = ±1.

If l = 2, then (17) gives p = 239, α = 1, y1 = 1, y2 = 13 by Lemma 5.
This gives a solution l = 2, p = 239, α = 1, x = 114243, y = 13 of
equation (14). If l > 2, then considering the equality (17) mod 8 we obtain
(pαyl1)2 − 22l−3y2l

2 = 1, and so

pαyl1 ± 1 = 2y2l
3 , pαyl1 ∓ 1 = 22l−4y2l

4 , y2 = y3y4,
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where y3, y4 ∈ N with (y3, y4) = 1. Hence,

y2l
3 − 2(2l−3yl4)2 = ±1,

which is impossible, except l = 3, y3 = y4 = 1 by Lemma 6. This gives
another solution of (14): l = 3, p = 3, α = 1, x = 17, y = 1.

Lemma 11. If c, l ∈ N with l > 1, and c is only divisible by primes of
the form 4m+ 3, then the Diophantine equation

(18) x2 − 22l−1c2y2l = 1, x, y ∈ N,
has no solutions, except l = c = 3, x = 17, y = 1 and l = 2, c = 239,
x = 114243, y = 13.

Proof. Assume that equation (18) has a solution. From (18), we have

x± 1 = 2c21y
2l
1 , x∓ 1 = 22l−2c22y

2l
2 , y = y1y2, c = c1c2,

and so

(19) c21y
2l
1 − 22l−3c22y

2l
2 = ±1.

If c2 = 1, then (19) has only two exceptional solutions by the same argument
as in the proof of Lemma 10. If c2 > 1, then from the assumption we know
that (19) gives c21y

2l
1 − 22l−3c22y

2l
2 = 1, and so

(20) c1y
l
1 ± 1 = 2c23y

2l
3 , c1y

l
1 ∓ 1 = 22l−4c24y

2l
4 , y2 = y3y4, c2 = c3c4.

If c1 = 1, then (19) is impossible by Lemma 6. If c1 > 1, then “c1yl1 − 1 =
22l−4c24y

2l
4 ” is impossible. So (20) gives

(21) c23y
2l
3 − 22l−5c24y

2l
4 = −1.

Thus, c4 = 1, l = 3. But by Lemma 5, (21) also is impossible.

3. Proof of Theorem 1. From Lu’s result, we may assume that b = 1,
a > 1. We see from (1) that

(22) (2kn + 1)2 − da2 = 4kn.

Using the properties of the real quadratic field Q(
√
d) (e.g. see Nagell [20]

where the same idea is used in the case of imaginary quadratic fields, or
Lemma 8.9 in Narkiewicz’s book [21]), we deduce from (22) that

(23) n = Z1t,
2kn + 1 + a

√
d

2
= η

(
X1 + Y1

√
d

2

)t
, t ∈ N,

where η is some unit of Q(
√
d), t is the maximal positive integer T such that

the ideal generated by (2kn + 1 + a
√
d)/2 is the T th power of a principal

ideal, X1, Y1, Z1 are non-zero integers with

(24) X2
1 − dY 2

1 = 4kZ1 , (X1, Y1) = 1, Z1 ∈ N, h(d) ≡ 0 (modZ1).
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Lemma 4 implies that ε, the fundamental solution of Pell’s equation
x2 − dy2 = −1, is the fundamental unit (except the case d = 5 which is
excluded by the assumption k > 1 in (1)) of Q(

√
d) and thus η = ±ε2s,

s ∈ Z. (23) gives

(25)
2kn + 1 + a

√
d

2
= ±ε2s

(
X1 + Y1

√
d

2

)t
.

If t = 1, then the theorem is proved. Otherwise, t > 1. If 2 | t, then t = 2t1,
t1 ∈ N. Define the integers U, V by

εs
(
X1 + Y1

√
d

2

)t1
=
U + V

√
d

2
, εs

(
X1 − Y1

√
d

2

)t1
=
U − V

√
d

2
,

where ε = x0 − y0
√
d with εε = −1. Clearly, U, V satisfy

(26) U2 − dV 2 = (−1)s4kZ1t1 = (−1)s4kn/2, (U, V ) = 1.

So, by (25), we get

(27)
1 + 2kn + a

√
d

2
=
(
U + V

√
d

2

)2

=
(U2 + dV 2)/2 + UV

√
d

2
.

From (26) and (27), we have 1 + 2kn = U2 − (−1)s2kn/2, and so

(28) (kn/2)2 + (kn/2 + (−1)s)2 = U2.

From (28), we know that (kn/2, kn/2 +(−1)s, |U |) is a primitive Pythagorean
triple such that

(29) kn/2 = 2AB, kn/2 + (−1)s = A2 −B2, |U | = A2 +B2,

or

(30) kn/2 = A2 −B2, kn/2 + (−1)s = 2AB, |U | = A2 +B2,

where A,B ∈ N, A > B, 2 |AB and (A,B) = 1. (29) gives

(A+B)2 − 2A2 = −(−1)s, (A−B)2 − 2B2 = (−1)s,

and A = k
n/2
1 or B = k

n/2
1 since kn/2 = 2AB, (A,B) = 1. Hence

(A+B)2 − 2k2·n/2
1 = −(−1)s, or (A−B)2 − 2k2·n/2

1 = (−1)s.

This implies that (29) is impossible, except A = 2, B = 1, n = 4, k = 2,
|U | = 5, by Lemma 5. So (a, d, k, n) = (5, 41, 2, 4) is an exception. For (30),
we have

(A−B)2 − 2B2 = −(−1)s,

and A−B = k
n/2
1 from kn/2 = (A−B)(A+B), (A−B,A+B) = 1. Hence,

k
2·n/2
1 − 2B2 = −(−1)s.

This implies that (30) is impossible by Lemma 6.
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If 2 - t, then t has an odd prime factor p. We first consider the proof
of Case 3. When a ≤ 0.5kλn, λ = 1 − 1/

√
p, we can prove from (23)

and (24) that no prime p can divide t (for a similar argument see the
proof of Lemma 12 later). Hence, a > 0.5kλn, λ = 1 − 1/

√
p. Notice that

((X1 + Y1
√
d )/2)p ∈ Z[

√
d ] when p = 3 and 2 - k, and (25) is impossible

if ((X1 + Y1
√
d )/2)p ∈ Z[

√
d ]. Thus, we have λ > 0.4226 since p ≥ 3 and

λ > 0.5527 if 2 - k. This contradicts our assumption.
Now, we consider the proof of Cases 1 and 2. Since p is an odd prime,

there exist u, v ∈ Z with

(31) 2s = up+ v, |v| < p/2.

Let

(32) % = ±εu
(
X1 + Y1

√
d

2

)t/p
, % = ±εu

(
X1 − Y1

√
d

2

)t/p
.

Then there exist X,Y ∈ Z with

(33) % = (X + Y
√
d)/2, % = (X − Y

√
d)/2,

and

(34) X2 − dY 2 = (−1)u4kn/p, (X,Y ) = 1.

Hence, (25) gives

(35) 2kn + 1 + a
√
d = 2εv%p, 2kn + 1− a

√
d = 2εv%p.

First, we prove

Conclusion 1. If Case 1 holds, then (35) is impossible.

Proof. From Lemma 1, ε = 2kn + a
√
d. Hence we see from (35) that

(36) 2kn + 1 ≡ 2(2kn)v%p (mod a).

Let %p = (Xp + Yp
√
d)/2. Clearly, Xp, Yp ∈ Z, (Xp, Yp) = 1. We deduce

from (36) that 0 ≡ (2kn)v · Yp (mod a), and so

(37) a |Yp
since (2k, a) = 1. Notice that

%p − %p
%− % =

1
2p−1

((
p

1

)
Xp−1 +

(
p

3

)
Xp−3(Y

√
d)2 + . . .

)
(38)

≡ p

2p−1X
p−1 (mod d).

Thus ((%p − %p)/(%− %), d) = 1 or p. So

(39)
(
%p − %p
%− % , a

)
= 1 or p

since a |∗ d. If p | a, then from (38) we see that p‖(%p − %p)/(%− %). Hence
from (37), (39) and Yp = Y (%p − %p)/(% − %) we get |Y | ≥ a/c, with c = 1
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if p - a or c = p if p | a. So

(40)
|X|+ |Y |

√
d

2
>
a
√
d

2c
.

If v ≤ 0, then from (35) we have % > |%| and so X > 0, Y > 0. Hence,
from (40), the first equality of (35), and (31), we get

a
√
d

2c
< % =

(
ε−v(1 + ε)

2

)1/p

< (ε(p−1)/2 · ε)1/p = ε1/2+1/(2p)(41)

< (4kn + 1)1/2+1/(2p).

Also, by (1) (notice b = 1), we have

(42) kn/c <
√

1 + 4k2n/(2c) = a
√
d/(2c).

From (41) and (42), we get kn < c(4kn + 1)1/2+1/(2p). Then we have

(43) (4kn + 1)1/2+1/(2p)((4kn + 1)1/2−1/(2p) − 4c) < 1.

Clearly, (43) is impossible, except k = 2, n = p = 3, if c = 1. When k = 2,
n = p = 3, from (1) and b = 1 we get d = 257, a = 1. This contradicts
our assumption a > 1. If c = p, then from (1) we have p ≡ 1 (mod 4) since
p | a. Hence, we see that (43) is impossible if n > p or p > 5 or k > 3. But
n = p = 5, k = 2 and n = p = 5, k = 3 do not satisfy (1) (b = 1) and p | a.

If v > 0, then from (35) we find that % < 1 and |%| = (|X|+ |Y |
√
d)/2.

Hence, from (40), the second equality of (35), and (31), we also get (41).
Thus (35) is impossible.

Next, we prove

Conclusion 2. If Case 2 holds, then (35) is impossible.

Proof. It is well known that

(44) 2kn + a
√
d = εl, 2 - l ∈ N,

since (2kn, a) is a solution of Pell’s equation x2−dy2 = −1. Hence, from (35),
we have

(45) 1 + εl = 2εv%p, 1 + εl = 2εv%p.

In (45), if p | l, then from (44) we have

(46) a =
ε′p − ε′p
ε′ − ε′ · y

′
0,

where
x′0 + y′0

√
d = ε′ = εl/p, x′0 − y′0

√
d = ε′ = εl/p.

Clearly, every prime factor q 6= p of (ε′p − ε′p)/(ε′ − ε′) is a primitive prime
factor of (ε′p − ε′p)/(ε′ − ε′). From Lemma 7(ii), we see that q |uq−(Dq ),
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D = 4dy′20 . Hence, from Lemma 7(i), we get p | q−
(
D
q

)
. But q 6= p, p - q2−1,

a contradiction. Therefore, from (46), we have

(47)
ε′p − ε′p
ε′ − ε′ = 1 or p

since if p | (ε′p − ε′p)/(ε′ − ε′) then p ‖ (ε′p − ε′p)/(ε′ − ε′). However, (47) is
impossible.

If p - l, then there are s, t ∈ Z such that

(48) v = sp+ tl, |t| < p/2.

Let

%1 = εs% =
X ′ + Y ′

√
d

2
, %1 = εs% =

X ′ − Y ′
√
d

2
,

where X ′, Y ′ ∈ Z with

(49) X ′2 − dY ′2 = (−1)s+u4kn/p, (X ′, Y ′) = 1.

And let ε1 = εl, ε1 = εl. Then from (45) we get

(50) 1 + ε1 = 2εt1%
p
1, 1 + ε1 = 2εt1%

p
1.

By the same argument as in the proof for Conclusion 1, (50) gives

a

∣∣∣∣Y ′
%p1 − %p1
%1 − %1

,

and we see that every prime factor q 6= p of a satisfies q - (%p1 − %p1)/(%1 − %1)
since p - q2 − 1. Hence, it can be shown that |Y ′| ≥ a/c, with c = 1 if p - a
or c = p if p | a. So (50) is impossible by a similar method as in the proof of
Conclusion 1.

So Theorem 1 is proved.

4. Proof of Theorem 2. From (1), we have

(51) (2bkn + 1)2 − da2 = 4bkn.

Using the properties of the real quadratic field Q(
√
d), we deduce from (51)

that

(52)
[

2bkn + 1 + a
√
d

2

][
2bkn + 1− a

√
d

2

]
= [b][k]n,

and the ideals [(2bkn + 1 + a
√
d)/2] and [(2bkn + 1− a

√
d)/2] are coprime.

Our assumption about the solvability of (3) implies that each prime divisor
of the ideal [b] is a principal ideal. So we infer from (52) that

(53)
[

2bkn + 1 + a
√
d

2

]
=
[
x1 + y1

√
d

2

]
An
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by unique factorization of ideals in Q(
√
d), where x1, y1 ∈ Z satisfy

x2
1 − dy2

1 = 4b, (x1, y1) = 1 or 2,

AA = [k], A is the conjugate ideal of A. Let z1 be the least positive integer
such that Az1 is a principal ideal. We have

(54) h(d) ≡ 0 (mod z1), n = z1t, t ∈ N.
Clearly, it suffices to prove the following

Lemma 12. No prime p satisfying the assumption of Theorem 2 can
divide t.

Proof. Assume that p | t. Let Az1t/p = [(X1 + Y1
√
d)/2], where X1, Y1 ∈Z

satisfy

(55) X2
1 − dY 2

1 = ±4kn/p, (X1, Y1) = 1 or 2.

Since Pell’s equation

(56) x2 − dy2 = −1, x, y ∈ N,
has a solution by (1), we see from (55) that the equations

(57) X2 − dY 2 = 4kn/p, X, Y ∈ N, (X,Y ) = 1 or 2,

and

(58) X2 − dY 2 = −4kn/p, X, Y ∈ N, (X,Y ) = 1 or 2,

have solutions X,Y respectively. Without loss of generality, we may assume
that X1, Y1 is a solution of (57). Let ε be the fundamental solution of Pell’s
equation (56), and let

(
X1 + Y1

√
d

2

)i
=
Ui + Vi

√
d

2li
, i = 1, . . . , r,

and

ε

(
X1 + Y1

√
d

2

)i
=
U ′i + V ′i

√
d

2li
, i = 1, . . . , r,

where Ui, Vi, U ′i , V
′
i ∈ Z with

U2
i − dV 2

i = 4likin/p, (Ui, Vi) = 1, li = 0 or 1,

and
U ′2i − dV ′2i = −4likin/p, (U ′i , V

′
i ) = 1, li = 0 or 1.

Since a ≤ 0.5bλ1kλ2n, from (1) we have
√
d > 2bkn/a ≥ 4b1−λ1kn(1−λ2). So

4lrkrn/p ≤ 4krn/p ≤ 4kn(1−λ2) < 4b1−λ1kn(1−λ2) <
√
d for r = bp(1− λ2)c.

By Lemmas 8 and 9(v),
√
d has 4r convergents p

s
(j)
i
/q
s
(j)
i

(j = 1, . . . , 4,
i = 1, . . . , r) such that

k
s
(j)
i

= 4likin/p, 2 - s(j)
i , 0 < s

(j)
i < f, j = 1, . . . , 4, i = 1, . . . , r,
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where f = 2s − 1, 2 - s since Pell’s equation (56) has a solution. From
Lemma 9(iv), we know that

√
d has 2r convergents p

t
(j)
i
/q
t
(j)
i

(j = 1, 2, i =
1, . . . , r) such that

k
t
(j)
i

= 4likin/p, 2 - t(j)i , 0 < t
(j)
i < s, j = 1, 2, i = 1, . . . , r.

Therefore, by Lemma 9(i), we have

a
t
(j)
i +1 =

⌊∆
t
(j)
i

+
√
d

k
t
(j)
i

⌋
>

√
d

4likin/p
, j = 1, 2, i = 1, . . . , r.

Since ε is the fundamental solution of Pell’s equation (56), we have ε =
ps−1 +qs−1

√
d. Notice that p0 = a0, p1 = a0a1 +1, and pj+2 = aj+2pj+1 +pj

for j ≥ 0. We have

ps−1 >
s−1∏

j=0

aj ≥ a0

r∏

i=1

2∏

j=1

a
t
(j)
i +1 > a0

( r∏

i=1

√
d

4likin/p

)2

(59)

≥ a0d
r

24rkr(r+1)n/p
> a0 ·

(4b1−λ1kn(1−λ2))2r

24rkr(r+1)n/p

= a0b
2r(1−λ1)kn(2r(1−λ2)−r(r+1)/p).

Since a0 = b
√
dc, n(1 − λ2) > 1, we have a0 >

√
d − 1 > 2b1−λ1kn(1−λ2).

Hence, (59) gives

(60) ps−1 > 2b(2r+1)(1−λ1)kn((2r+1)(1−λ2)−r(r+1)/p) = 2b(2r+1)(1−λ1)kng(r),

where g(r) = (2r + 1)(1 − λ2) − r(r + 1)/p. Clearly, g(r) ≥ p(1 − λ2)2

since r = bp(1 − λ2)c. We have g(r) ≥ 1 and (2r + 1)(1 − λ1) = 1 since
λ2 = 1 − 1/

√
p, and so from (60) we conclude that ps−1 > 2bkn. On the

other hand, by (1), we see that 2bkn ≥ ps−1, a contradiction.

5. Proof of corollaries. Clearly, it suffices to prove Corollary 2. We
deduce from (54) that if t = 1 then Corollary 2 holds. Now, we assume that
t > 1, and so there is a prime p such that p | t. The proof of Lemma 12
shows that if a ≤ 0.5bλ1kλ2n, then “p | t” is impossible. Also, λ1 ≥ 2/3,
λ2 > 0.29 since p ≥ 2. Hence, if a ≤ 0.5b2/3k0.29n then (2) holds. The proof
is complete.

6. Proof of Theorem 3. From (52), we get

(61)
[

2bkn + 1 + a
√
d

2

]
=
[
x2 + y2

√
d

2

]2

An,

and (54), where x2, y2 ∈ Z with

(62) x2
2 − dy2

2 = 4
√
b, (x2, y2) = 1 or 2.
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Let Az1 = [(X2 + Y2
√
d)/2], where X2, Y2 ∈ Z satisfy

(63) X2
2 − dY 2

2 = ±4kz1 , (X2, Y2) = 1 or 2.

We deduce from (61) that

(64)
2bkn + 1 + a

√
d

2
= η

(
x2 + y2

√
d

2

)2(
X2 + Y2

√
d

2

)t
, t ∈ N,

where η is some unit of Q(
√
d) with N(η) = 1. Since Pell’s equation (56) has

a solution, we have η = ±ε2m
1 , where ε1 is the fundamental unit of Q(

√
d)

with N(ε1) = −1, m ∈ Z. Hence, (64) gives

(65)
2bkn + 1 + a

√
d

2
= ±ε2m

1

(
x2 + y2

√
d

2

)2(
X2 + Y2

√
d

2

)t
.

If t = 1, then the theorem is proved. If 2 | t, then t = 2t1, t1 ∈ N. Assume
that

εm1

(
x2 + y2

√
d

2

)(
X2 + Y2

√
d

2

)t1
=
U + V

√
d

2
,

where U, V ∈ Z satisfy

(66) U2 − dV 2 = (−1)m(±1)t14
√
b kz1t1 = (−1)m

′
4
√
b kn/2,

(U, V ) = 1 or 2.

So from (65) we get

(67)
1 + 2bkn + a

√
d

2
=
(
U + V

√
d

2

)2

=
(U2 + dV 2)/2 + UV

√
d

2
.

From (66) and (67), we have

1 + 2bkn = U2 − (−1)m
′
2
√
b kn/2,

and so

(68) (
√
b kn/2)2 + (

√
b kn/2 + (−1)m

′
)2 = U2.

From (68), we know that (
√
b kn/2,

√
b kn/2 + (−1)m

′
, |U |) is a primitive

Pythagorean triple such that

(69)
√
b kn/2 = 2AB,

√
b kn/2 + (−1)m

′
= A2 −B2, |U | = A2 +B2,

or

(70)
√
b kn/2 = A2 −B2,

√
b kn/2 + (−1)m

′
= 2AB, |U | = A2 +B2,

where A,B ∈ N, A > B, 2 |AB and (A,B) = 1.
First, we consider (69). We have

(71) (A+B)2 − 2A2 = −(−1)m
′
, (A−B)2 − 2B2 = (−1)m

′
.
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If A = k
n/2
1 , k1 ∈ N, then (71) gives

(A+B)2 − 2k2·n/2
1 = −(−1)m

′
.

This implies that 2 |m′, n = 4, k1 = 13, A + B = 239 by Lemma 5. So
A = 169, B = 70. This implies

√
b k2 = 22 ·5 ·7 ·132 and |U | = 33461. Hence,

from (67) we see that a = UV ≥ 33461. But 33461 > 0.5 · 354/3 · 260.4226·4,
a contradiction.

If 2B = k
n/2
2 , k2 ∈ N, then (71) gives 2 |m′ and

(72) (A−B)2 − 2(2l−1(k2/2)l)2 = 1, l = n/2 > 1.

Clearly, (72) gives

(A−B)± 1 = 2u2, (A−B)∓ 1 = 4v2, uv = 2l−2(k2/2)l,

where u, v ∈ N with (u, v) = 1. And so

u2 − 2v2 = ±1, u = ul1, v = 2l−2vl1, k2 = 2u1v1,

i.e.
u2l

1 − 2(2l−2vl1)2 = ±1.

This implies that u1 = 2l−2v1 = 1 by Lemma 6. So l = 2, k2 = 2, A−B = 3,
B = 2. This implies

√
b k2 = 22 ·5 and |U | = 29. Hence n = 4, a = 29, b = 25,

k = 2. But 29 > 0.5 · 252/3 · 20.4226·4, a contradiction.
By a similar method, if 2A = k

n/2
1 or B = k

n/2
2 , then from (71) and the

assumption of the theorem, we also get a contradiction.
If 2λA 6= k

n/2
1 and 2λB 6= k

n/2
2 , where λ = 0 or 1, notice (71); then from

2AB = qα1
1 . . . qαss kn/2 we get

(73)
2λA = (qα1

1 )1−λ(qα2
2 . . . qαss )λkn/21 ,

21−λB = (qα1
1 )λ(qα2

2 . . . qαss )1−λkn/22 ,

k = k1k2, k1, k2 ∈ N, λ = 0 or 1.

Clearly, if λ = 0, then (71) and (73) give 2 |m′ and

(74) (A−B)2 − 2(2l−1qα2
2 . . . qαss (k2/2)l)2 = 1, l = n/2 > 1.

By Lemmas 10 and 11, we infer from (74) that

(75) l = 2, qα2
2 . . . qαss = 239, A−B = 114243, k2 = 26

or

(76) l = 3, qα2
2 . . . qαss = 3, A−B = 17, k2 = 2.

From (73) and (75), we see that B = 80782, A = 52 · 29 · 269 = qα1
1 kl1, which

is impossible. From (76) and (73), we find that n = 6, k = 2, b = 32 · 292,
and a = 985, d = 967441. This is an exceptional case.

If λ = 1, then (71) and (73) give 2 -m′ and

(A+B)2 − 2(2l−1qα2
2 . . . qαss (k1/2)l)2 = 1, l = n/2 > 1.
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This implies that

(77) l = 2, qα2
2 . . . qαss = 239, A+B = 114243, k1 = 26

or

(78) l = 3, qα2
2 . . . qαss = 3, A+B = 17, k1 = 2.

From (73) and (77), we get A = 80782, B = 33461, and so n = 4, k = 26,
b = (33461 · 239)2, |U | = 7645370045, 76453700452 + 4 · 33461 · 239 · 262 =
dV 2. Since a = UV by (67), we have a = 7645370045|V |. If |V | = 1, then
from Corollary 2 we know that (2) holds since 7645370045 < 0.5 · (33461 ·
239)4/3 · 260.29·4. If |V | > 1, then |V | ≥ 29 since 5 - dV 2, 13 - dV 2, 17 - dV 2.
But a ≥ 7645370045 ·29 > 0.5 · (33461 ·239)4/3 ·260.4226·4, which contradicts
our assumption.

Next, we consider (70). We have

(79) (A−B)2 − 2B2 = −(−1)m
′
, (A+B)2 − 2A2 = (−1)m

′
.

From
√
b kn/2 = (A−B)(A+B), (A−B,A+B) = 1, we get

A−B = b1k
n/2
1 , A+B = b2k

n/2
2 ,

√
b = b1b2, k = k1k2,

where b1, b2, k1, k2 ∈ N with (b1, b2) = (k1, k2) = 1. Substituting these
into (79), we have

b21k
2l
1 − 2B2 = −(−1)m

′
, b22k

2l
2 − 2A2 = (−1)m

′
, l = n/2 > 1,

which is impossible since q1 | bi (i = 1 or 2) and the Legendre symbol
(±2
q1

)

equals −1.
Now, if 2 - t and t > 1, then there is an odd prime p such that p | t. From

the proof of Lemma 12, we get a > 0.5bλ1kλ2n, where λ1 ≥ 2/3, λ2 > 0.4226
since p ≥ 3. This contradicts our assumption.
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[22] C. Størmer, Quelques théorèmes sur l’équation de Pell x2 − Dy2 = ±1 et leurs

applications, Videnskabs-Selskabets Skrifter 1897, no. 2, 1–48; Nyt Tidsskrift for
Mat. 19 B (1908), 1–7.

[23] —, L’équation m arctan 1
x + n arctan 1

y = k π4 , Bull. Soc. Math. France 27 (1899),
160–170.

[24] M. Ward, The intrinsic divisors of Lehmer numbers, Ann. of Math. (2) 62 (1955),
230–236.

[25] Ping Zhi Yuan, The divisibility of the class numbers of real quadratic fields, Acta
Math. Sinica 41 (1998), 525–530.

[26] P. Yuan, Some basic problems in Diophantine equations, Ph.D. thesis, Sichuan Uni-
versity, 1997.

Department of Mathematics
Harbin Institute of Technology
Harbin 150001, P.R. China
E-mail: zfcao@hope.hit.edu.cn

Received on 23.11.1998
and in revised form on 19.7.2000 (3520)


