Note on a paper by Joung Min Song

by
Gérald Tenenbaum (Nancy)

In [3], Joung Min Song established fairly precise estimates for weighted sums of the form

$$
\sum_{\substack{n \leqslant x \\ P(n) \leqslant y}} \frac{h(n)}{n}
$$

where $P(n)$ denotes the largest prime factor of an integer n with the convention that $P(1)=1$, and h is a non-negative multiplicative arithmetic function satisfying the conditions

$$
\begin{equation*}
\sum_{p \leqslant z}\{h(p)-\kappa\} \frac{\log p}{p} \ll(\log z)^{1-\delta} \quad(z \geqslant 2) \tag{1}
\end{equation*}
$$

$$
\sum_{p, \nu \geqslant 2} \frac{h\left(p^{\nu}\right) \log p^{\nu}}{p^{\nu}}<\infty
$$

with suitable constants $\kappa>0, \delta \in] 0,1[$.
Song's proof, which rests on an elegant theorem of Halberstam corresponding to the case $y \geqslant x$, is a nice development of Wirsing's ideas in [5]. A handy feature of this result is that, apart from positivity, only a mild average assumption is made upon the values $h(p)$.

A natural alternative approach to this problem is to first establish the result for some special arithmetic function satisfying $h(p)=\kappa$ for all p, for which much more information is available, and then derive the general statement from a suitable comparison result.

The main purpose of this note is to show that such a strategy is indeed successful. For fixed positive κ, we let $\tau_{\kappa}(n)$ be the coefficient of $1 / n^{s}$ in the Dirichlet series expansion of $\zeta(s)^{\kappa}$, where $\zeta(s)$ denotes the Riemann zeta function. We shall select $n \mapsto \tau_{\kappa}(n)$ to play the rôle of the special function mentioned above. As we shall see, Smida's results in [2] almost

[^0]readily provide the required estimates, and so we shall mainly be concerned with the comparison result.

Put

$$
V_{h}(y):=\prod_{p \leqslant y} \sum_{\nu \geqslant 0} h\left(p^{\nu}\right) / p^{\nu} .
$$

Furthermore, define, as in [3], the function j_{κ} as the continuous solution to the differential-difference equation

$$
u j_{\kappa}^{\prime}(u)-\kappa j_{\kappa}(u)+\kappa j_{\kappa}(u-1)=0 \quad(u>1)
$$

with initial conditions $j_{\kappa}(u):=0(u<0)$ and $j_{\kappa}(u):=\mathrm{e}^{-\gamma \kappa} u^{\kappa} / \Gamma(\kappa+1)$ $(0 \leqslant u \leqslant 1)$, where γ is Euler's constant. We prove the following result.

Theorem. Let h be a non-negative multiplicative arithmetic function. Under assumptions $\left(\Omega_{1}\right)$ and $\left(\Omega_{2}\right)$, we have

$$
\begin{equation*}
\sum_{\substack{n \leqslant x \\ P(n) \leqslant y}} \frac{h(n)}{n}=V_{h}(y) j_{\kappa}(u)\left\{1+O\left(\frac{1}{(\log y)^{\delta}}\right)\right\} \tag{1}
\end{equation*}
$$

uniformly for $x \geqslant y \geqslant 2$ and with $u:=(\log x) / \log y$. Furthermore, the same formula holds for all complex multiplicative functions h satisfying

$$
\begin{equation*}
\sum_{p, \nu \geqslant 2} \frac{\left|h\left(p^{\nu}\right)\right| \log p^{\nu}}{p^{\nu}}<\infty \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{p \leqslant z} \frac{|h(p)-\kappa| \log p}{p} \ll(\log z)^{1-\delta} \quad(z \geqslant 2) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{\nu \geqslant 0} \frac{h\left(p^{\nu}\right)}{p^{\nu}} \neq 0 \quad(p \geqslant 2), \tag{3}
\end{equation*}
$$

for suitable constants $\kappa>0, \delta \in] 0,1[$.
As described above, this result is essentially proved by first showing that it holds for $h=\tau_{\kappa}$ and then extending the formula to the stated hypotheses. However, it should be stressed that Halberstam's theorem mentioned above is crucial for the initial step $x \leqslant y$. Without this, using for instance Wirsing's theorem [5], the method would require slightly stronger hypotheses upon h, e.g. Wirsing's conditions $h\left(p^{\nu}\right) \leqslant \gamma_{1} \gamma_{2}^{\nu}$ with $\gamma_{1}>0,0<\gamma_{2}<2$, and the size of the error term would be regulated by available effective forms of Wirsing's theorem. ${ }^{1}$)

[^1]Formula (1) is slightly more precise than Song's. Since $j_{\kappa}(u)$ tends very quickly towards 1 , it is significant only in a restricted range for y, certainly included in the domain $u \leqslant \log _{2} y .\left(^{2}\right)$ This is to be expected because the information on h is roughly equivalent to one regarding the corresponding Dirichlet series in a small neighbourhood (of size depending on y) of the point $s=1$ and, as shown by saddle point analysis, a larger range would involve information in the half-plane $\operatorname{Re} s<1$ outside this neighbourhood. In turn, such assumptions essentially amount to controlling averages of the form $\sum_{p \leqslant z} h(p) / p^{\alpha}$ with some $\alpha<1$. When, for instance, $1-\alpha$ is bounded away from 0 , this is equivalent to controlling $\sum_{p \leqslant z} h(p)$.

We finally note that hypothesis $\left(\Omega_{3}^{*}\right)$ is only necessary to fit the specific formulation given in (1). Indeed, without this assumption we obtain

$$
\begin{equation*}
\sum_{\substack{n \leqslant x \\ P(n) \leqslant y}} \frac{h(n)}{n}=V_{h}(y) j_{\kappa}(u)+O\left((\log y)^{\kappa-\delta}\right) \tag{2}
\end{equation*}
$$

Let z_{κ} denote the unique solution of the differential-difference equation

$$
\begin{cases}u z_{\kappa}^{\prime}(u)+\kappa z_{\kappa}(u-1)=0 & (u>1) \tag{3}\\ z_{\kappa}(u)=1 & (0 \leqslant u \leqslant 1) \\ z_{\kappa}(u)=0 & (u<0)\end{cases}
$$

which is continuous on $[0, \infty[$. Then a simple calculation shows that, for all real numbers u, we have

$$
\begin{equation*}
\frac{1}{\Gamma(\kappa)} \int_{0}^{u} v^{\kappa-1} z_{\kappa}(u-v) \mathrm{d} v=\mathrm{e}^{\gamma \kappa} j_{\kappa}(u)=\int_{0}^{u} \varrho_{\kappa}(v) \mathrm{d} v \tag{4}
\end{equation*}
$$

where ϱ_{κ} is the κ th fractional convolution power of the Dickman function precisely defined in Smida's paper [2]. Writing

$$
S_{\kappa}(x):=\sum_{n \leqslant x} \tau_{\kappa}(n)
$$

Smida showed in [2] that, for any fixed $\varepsilon>0$,

$$
\begin{align*}
S_{\kappa}(x, y) & :=\sum_{\substack{n \leqslant x \\
P(n) \leqslant y}} \tau_{\kappa}(n) \tag{5}\\
& =\left\{1+O\left(\frac{1}{L_{\varepsilon}(y)}\right)\right\} x \int_{0-}^{\infty} z_{\kappa}(u-v) \mathrm{d}\left(\frac{S_{\kappa}\left(y^{v}\right)}{y^{v}}\right)
\end{align*}
$$

holds uniformly, with $u:=(\log x) / \log y, L_{\varepsilon}(y):=\mathrm{e}^{(\log y)^{3 / 5-\varepsilon}}$, in the domain

$$
\begin{equation*}
x \geqslant 3, \quad \mathrm{e}^{(\log x)^{2 / 5+\varepsilon}} \leqslant y \leqslant x \tag{6}
\end{equation*}
$$

$\left(^{2}\right)$ Here and throughout the paper, we let $\log _{k}$ denote the k-fold iterated logarithm.

She also proved that, for fixed $\kappa>0, \varepsilon>0$,

$$
\begin{equation*}
S_{\kappa}(x, y)=x(\log y)^{\kappa-1} \varrho_{\kappa}(u)\left\{1+O\left(\frac{\log (u+1)}{\log y}+\frac{1}{(\log y)^{\kappa}}\right)\right\} \tag{7}
\end{equation*}
$$

uniformly for $x \geqslant 3$, $\mathrm{e}^{\left(\log _{2} x\right)^{5 / 3+\varepsilon}} \leqslant y \leqslant x$.
We shall deduce our theorem mainly from (5) and (7).
To prove (1), we first investigate the case $h=\tau_{\kappa}$. For notational simplicity, we write $V_{\kappa}(y)$ instead of $V_{\tau_{\kappa}}(y)$. We shall show that the estimate

$$
\begin{equation*}
V_{\kappa}(x, y):=\sum_{\substack{n \leqslant x \\ P(n) \leqslant y}} \frac{\tau_{\kappa}(n)}{n}=V_{\kappa}(y) j_{\kappa}(u)\left\{1+O\left(\frac{\log _{3} 8 y}{\log y}\right)\right\} \tag{8}
\end{equation*}
$$

holds uniformly for $x \geqslant y \geqslant 2$, with

$$
\begin{equation*}
V_{\kappa}(y):=\prod_{p \leqslant y}\left(1-\frac{1}{p}\right)^{-\kappa}=\left\{1+O\left(\frac{1}{L_{\varepsilon}(y)}\right)\right\} \mathrm{e}^{\gamma \kappa}(\log y)^{\kappa} \tag{9}
\end{equation*}
$$

We may assume that (6) holds, and indeed that $u \leqslant \log _{2} y$, since otherwise $j_{\kappa}(u)=1+O(1 / \log y)$ and the left-hand side of (8) is a non-decreasing function of u. By partial summation

$$
\begin{equation*}
\sum_{\substack{n \leqslant x \\ P(n) \leqslant y}} \frac{\tau_{\kappa}(n)}{n}=\int_{1}^{x} \frac{S_{\kappa}(t, y)}{t^{2}} \mathrm{~d} t+\frac{S_{\kappa}(x, y)}{x} \tag{10}
\end{equation*}
$$

By (7), the second term on the right is $\ll(\log y)^{\kappa-1}$, and so may be absorbed by the error term in (8). To estimate the first term, we consider two cases, according as $\kappa \geqslant 1$ or not.

When $\kappa \geqslant 1$, we have from (7), in the considered range,

$$
\int_{1}^{x} \frac{S_{\kappa}(t, y)}{t^{2}} \mathrm{~d} t=\left\{1+O\left(\frac{\log _{3} 8 y}{\log y}\right)\right\}(\log y)^{\kappa} \int_{0}^{u} \varrho_{\kappa}(v) \mathrm{d} v
$$

which implies (8) by (4) and (9).
When $0<\kappa<1$, we apply (5) and reverse the order of summations. We obtain

$$
\int_{1}^{x} \frac{S_{\kappa}(t, y)}{t^{2}} \mathrm{~d} t=\left\{1+O\left(\frac{1}{L_{\varepsilon}(y)}\right)\right\} J_{\kappa}(x, y)
$$

with

$$
J_{\kappa}(x, y):=\int_{0-}^{\infty} \mathrm{d}\left(\frac{S_{\kappa}\left(y^{v}\right)}{y^{v}}\right) \int_{1}^{x} z_{\kappa}\left(\frac{\log t}{\log y}-v\right) \frac{\mathrm{d} t}{t}
$$

$$
=(\log y) \int_{0-}^{\infty} \mathrm{d}\left(\frac{S_{\kappa}\left(y^{v}\right)}{y^{v}}\right) \int_{0}^{u} z_{\kappa}(w-v) \mathrm{d} w=(\log y) \int_{0}^{u} z_{\kappa}(u-v) \frac{S_{\kappa}\left(y^{v}\right)}{y^{v}} \mathrm{~d} v
$$

Using the classical estimate

$$
\begin{aligned}
(\log y) \int_{0}^{u} \frac{S_{\kappa}\left(y^{v}\right)}{y^{v}} \mathrm{~d} v & =\sum_{n \leqslant x} \frac{\tau_{\kappa}(n)}{n}-\frac{1}{x} \sum_{n \leqslant x} \tau_{\kappa}(n) \\
& =\frac{(u \log y)^{\kappa}}{\Gamma(\kappa+1)}+O\left(\frac{(u \log y)^{\kappa}}{1+u \log y}\right)
\end{aligned}
$$

valid uniformly for $y \geqslant 2, u \geqslant 0$, we derive from the above and (4) the formula

$$
\begin{align*}
J_{\kappa}(x, y) & =\frac{(\log y)^{\kappa}}{\Gamma(\kappa)} \int_{0}^{u} v^{\kappa-1} z_{\kappa}(u-v) \mathrm{d} v+R \tag{11}\\
& =j_{\kappa}(u) \mathrm{e}^{\gamma \kappa}(\log y)^{\kappa}+R
\end{align*}
$$

with

$$
R=\int_{0}^{u} z_{\kappa}(u-v) \mathrm{d}\left\{O\left(\frac{(v \log y)^{\kappa}}{1+v \log y}\right)\right\}
$$

This quantity may be estimated by partial summation, admitting for the moment that, still for $0<\kappa<1$,

$$
\begin{equation*}
z_{\kappa}^{\prime}(v) \leqslant 0 \quad(v>0, v \neq 1) \tag{12}
\end{equation*}
$$

Indeed, we obtain, conditionally to (12), for $u \geqslant 1$,

$$
R \ll(\log y)^{\kappa-1}-(\log y)^{\kappa-1} \int_{0}^{u} z_{\kappa}^{\prime}(u-v) v^{\kappa-1} \mathrm{~d} v \ll(\log y)^{\kappa-1}
$$

where the last integral has been estimated by differentiating (4).
It remains to establish (12). We first note that (3) implies

$$
\left\{u^{\kappa} z_{\kappa}(u)\right\}^{\prime}=\kappa u^{\kappa-1}\left\{z_{\kappa}(u)-z_{\kappa}(u-1)\right\} \quad(u>0, u \neq 1)
$$

and so, for all $u \geqslant 1$,

$$
u^{\kappa} z_{\kappa}(u)=\kappa \int_{0}^{u-1}\left\{v^{\kappa-1}-(v+1)^{\kappa-1}\right\} z_{\kappa}(v) \mathrm{d} v+\kappa \int_{u-1}^{u} v^{\kappa-1} z_{\kappa}(v) \mathrm{d} v
$$

This plainly implies that $z_{\kappa}(u) \geqslant 0$ for all u and (12) follows in view of (3). This completes the proof of (8).

We now prove the first assertion of our theorem. Let $V_{h}(x, y)$ denote the sum on the left-hand side of (1). As in Song's paper, we introduce

$$
T_{h}(x, y):=\int_{1}^{x} V_{h}(t, y) \frac{\mathrm{d} t}{t}=\sum_{\substack{n \leqslant x \\ P(n) \leqslant y}} \frac{h(n)}{n} \log \left(\frac{x}{n}\right)
$$

Wirsing's functional equation for $V_{h}(x, y)$ stated and proved in Lemma 2 of [3] readily provides (see equation (4.12) of [3])

$$
\begin{equation*}
V_{h}(x, y) \log x=(\kappa+1) T_{h}(x, y)-\kappa T_{h}(x / y, y)+O\left((\log y)^{\kappa+1-\delta}\right) \tag{13}
\end{equation*}
$$

We consider y as fixed and introduce

$$
\lambda_{h}(u):=T_{h}(x, y) /(\log y)^{\kappa+1}=T_{h}\left(y^{u}, y\right) /(\log y)^{\kappa+1}
$$

This function of u is differentiable except perhaps when $y^{u} \in \mathbb{N}$. At these points, we define $\lambda_{h}^{\prime}(u)$ by right continuity, so that $\lambda_{h}^{\prime}(u)=V_{h}\left(y^{u}, y\right) /(\log y)^{\kappa}$ for all u. Then (13) can be rewritten as

$$
u \lambda_{h}^{\prime}(u)=(\kappa+1) \lambda_{h}(u)-\kappa \lambda_{h}(u-1)+O\left(\frac{1}{(\log y)^{\delta}}\right) \quad(u \geqslant 1)
$$

We apply this for both functions h and τ_{k}, multiply the second equation by

$$
C_{\kappa}(h):=\prod_{p}\left(1-\frac{1}{p}\right)^{\kappa} \sum_{\nu \geqslant 0} \frac{h\left(p^{\nu}\right)}{p^{\nu}}
$$

and subtract. Writing $\mu(u):=\lambda_{h}(u)-C_{\kappa}(h) \lambda_{\tau_{\kappa}}(u)$, we get

$$
\begin{equation*}
u \mu^{\prime}(u)=(\kappa+1) \mu(u)-\kappa \mu(u-1)+O\left(\frac{1}{(\log y)^{\delta}}\right) \quad(u \geqslant 1) \tag{14}
\end{equation*}
$$

which can be rewritten as

$$
\frac{\mathrm{d}}{\mathrm{~d} u}\left\{\frac{\mu(u)}{u^{\kappa+1}}\right\}=-\kappa \frac{\mu(u-1)}{u^{\kappa+2}}+O\left(\frac{1}{u^{\kappa+2}(\log y)^{\delta}}\right) \quad(u \geqslant 1)
$$

from which we infer that, for $1 \leqslant u \leqslant v \leqslant u+1$,

$$
\begin{equation*}
\frac{|\mu(v)|}{v^{\kappa+1}} \leqslant \frac{|\mu(u)|}{u^{\kappa+1}}+\kappa \int_{u}^{v} \frac{|\mu(w-1)|}{w^{\kappa+2}} \mathrm{~d} w+O\left(\frac{1}{v^{\kappa+2}(\log y)^{\delta}}\right) \tag{15}
\end{equation*}
$$

We now observe that Halberstam's theorem stated and proved in [3] (Theorem A), implies

$$
\begin{equation*}
\mu(u) \ll 1 /(\log y)^{\delta} \tag{16}
\end{equation*}
$$

for $0 \leqslant u \leqslant 1$. Thus, by a routine induction, (15) yields that (16) remains true for bounded u. Let $q:] 0, \infty[\rightarrow \mathbb{R}$ be the solution defined in [1] to the adjoint equation corresponding to (14), namely

$$
\begin{equation*}
u q^{\prime}(u)+(\kappa+2) q(u)-\kappa q(u+1)=0 \quad(u>0) \tag{17}
\end{equation*}
$$

Then $q(u) \sim 1 / u^{2}$ as $u \rightarrow \infty$. Moreover, from (14) and (17) we get

$$
\frac{\mathrm{d}}{\mathrm{~d} u}\left\{u \mu(u) q(u)-\kappa \int_{u-1}^{u} \mu(v) q(v+1) \mathrm{d} v\right\} \ll \frac{q(u)}{(\log y)^{\delta}} \quad(u \geqslant 1)
$$

We integrate this over the range $[1, u]$ and use (16) for $0 \leqslant u \leqslant 1$. We obtain

$$
u \mu(u) q(u)=\kappa \int_{u-1}^{u} \mu(v) q(v+1) \mathrm{d} v+O\left(\frac{1}{(\log y)^{\delta}}\right) \quad(u \geqslant 1)
$$

We use this formula in the form that, for a suitable constant $A>0$, we have

$$
\begin{equation*}
u|\mu(u) q(u)| \leqslant \kappa \int_{u-1}^{u}|\mu(v) q(v+1)| \mathrm{d} v+\frac{A}{(\log y)^{\delta}} \quad(u \geqslant 1) . \tag{18}
\end{equation*}
$$

We are now in a position to conclude the argument. Let $u_{0}>8 \kappa+1$ be such that $\frac{1}{2} \leqslant q(u) u^{2} \leqslant 2$ for $u \geqslant u_{0}$, and let B denote a constant exceeding $4 A$ and such that

$$
|\mu(u)| \leqslant B u /(\log y)^{\delta} \quad\left(1 \leqslant u \leqslant u_{0}\right) .
$$

Define u_{1} as the greatest lower bound of values of u with $|\mu(u)|>B u /(\log y)^{\delta}$. Then, trivially, $u_{1} \geqslant u_{0}$. Moreover, if u_{1} is finite, then by (18) we have

$$
\frac{1}{2} B \leqslant 2 \kappa B / u_{1}+A .
$$

This in turn implies $\frac{1}{2}-2 \kappa / u_{1} \leqslant A / B \leqslant \frac{1}{4}$, whence $u_{1} \leqslant 8 \kappa$, a contradiction. Thus, u_{1} is not finite and we have

$$
|\mu(u)| \leqslant B u /(\log y)^{\delta} \quad(u \geqslant 1) .
$$

Inserting back in (14), using (8) and the fact that

$$
C_{\kappa}(h)=\prod_{p \leqslant y}\left(1-\frac{1}{p}\right)^{\kappa} \sum_{\nu \geqslant 0} \frac{h\left(p^{\nu}\right)}{p^{\nu}}\left\{1+O\left(\frac{1}{(\log y)^{\delta}}\right)\right\},
$$

which easily follows from $\left(\Omega_{1}\right)$ and $\left(\Omega_{2}\right)$, we obtain (1).
We now prove the second part of our theorem. A standard convolution argument yields (1) from (8) under assumptions $\left(\Omega_{j}^{*}\right)(1 \leqslant j \leqslant 3)$. Indeed, writing $h=\tau_{\kappa} * g$, we deduce in turn from (Ω_{1}^{*}) and (Ω_{2}^{*}) that

$$
\sum_{p, \nu \geqslant 2}\left|g\left(p^{\nu}\right)\right| / p^{\nu}<\infty, \quad \sum_{m \geqslant 1}|g(m)| / m<\infty
$$

and that

$$
\begin{align*}
\sum_{P(n) \leqslant y} \frac{|g(n)| \log n}{n} & \leqslant \sum_{P(m) \leqslant y} \frac{|g(m)|}{m} \sum_{p \leqslant y, \nu \geqslant 1} \frac{\left|g\left(p^{\nu}\right)\right|}{p^{\nu}} \log p^{\nu} \tag{19}\\
& \ll(\log y)^{1-\delta} .
\end{align*}
$$

Now

$$
\sum_{\substack{n \leqslant x \\ P(n) \leqslant y}} \frac{h(n)}{n}=\sum_{\substack{d \leqslant x \\ P(d) \leqslant y}} \frac{g(d)}{d} V_{\kappa}(x / d, y)
$$

and, using the fact that $j_{\kappa}(u)=j_{\kappa}(1) u^{\kappa}$ for $0 \leqslant u \leqslant 1$, we deduce from (8) and classical estimates for $V_{\kappa}(y, y)$ that

$$
V_{\kappa}(x / d, y)=j_{\kappa}(u) V_{\kappa}(y)\left\{1+O\left(\frac{\log _{3} 8 y+\log d}{\log y}\right)\right\}
$$

uniformly for $x \geqslant y \geqslant 2, d \geqslant 1$. Taking (19) into account, we thus obtain

$$
\begin{aligned}
& \sum_{\substack{n \leqslant x \\
P(n) \leqslant y}} \frac{h(n)}{n}=V_{\kappa}(y) \sum_{\substack{d \leqslant x \\
P(d) \leqslant y}} \frac{g(d)}{d} j_{\kappa}(u)\left\{1+O\left(\frac{\log _{3} 8 y+\log d}{\log y}\right)\right\} \\
& =V_{\kappa}(y) j_{\kappa}(u)\left\{\sum_{P(d) \leqslant y} \frac{g(d)}{d}+O\left(\sum_{P(d) \leqslant d} \frac{|g(d)|\left(\log _{3} 8 y+\log d\right)}{d \log y}\right)\right\} \\
& =V_{h}(y) j_{\kappa}(u)\left\{1+O\left(\frac{1}{(\log y)^{\delta}}\right)\right\}
\end{aligned}
$$

This completes the proof of (1).

References

[1] H. Iwaniec, Rosser's sieve, Acta Arith. 36 (1980), 171-202.
[2] H. Smida, Valeur moyenne des fonctions de Piltz sur les entiers sans grand facteur premier, ibid. 63 (1993), 21-50.
[3] J. M. Song, Sums of nonnegative multiplicative functions over integers without large prime factors I, this issue, 329-351.
[4] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Stud. Adv. Math. 46, Cambridge Univ. Press, 1995.
[5] E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen, Math. Ann. 143 (1961), 75-102.

Institut Élie Cartan
Université Henri Poincaré-Nancy 1
BP 239
54506 Vandœeuvre Cedex, France
E-mail: tenenb@ciril.fr

[^0]: 2000 Mathematics Subject Classification: Primary 11N37; Secondary 11N25, 11N60.

[^1]: $\left(^{1}\right)$ For instance the effective form of Karamata's theorem given in [4], Theorem II.7.9, would give an error factor $1+O\left(1 / \log _{2} 2 y\right)$. This is much weaker than desired, but Karamata's theorem is "too" general a tool for this application: it deals with Dirichlet series whose coefficients need not be multiplicative. Following Wirsing, Halberstam's proof strongly exploits multiplicativity and the calculations required to obtain the sharp effective estimate are comparatively simple.

