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Ryūta Hashimoto (Nagoya)

1. Introduction. Let d be a non-square positive integer. We denote the
simple continued fraction expansion of

√
d by

√
d = [a0, a1, . . .] = [a0, a1, . . . , al],

where l is the length of the period, that is, the least positive integer such
that ak+l = ak for any k ≥ 1. Define the sequences {Ak}k≥−1 and {Bk}k≥−1

of rational integers by

A−1 = 1, A0 = a0, Ak = akAk−1 + Ak−2 (k ≥ 1),

B−1 = 0, B0 = 1, Bk = akBk−1 +Bk−2 (k ≥ 1).

Throughout the paper, g denotes (1 +
√

5)/2.
Rockett and Szüsz “proved” the following claim which was first an-

nounced in [3].

Claim ([4, Theorem IV.2.3]). The positive integer solutions of x2 − dy2

= N , where 2K1
√
d < |N | < 2K2

√
d and K1 < K2 are positive constants,

have the form

x = cn+1An + cn+2An+1 + . . .+ cn+mAn+m−1,

y = cn+1Bn + cn+2Bn+1 + . . .+ cn+mBn+m−1,

where ck+1’s satisfy 0 ≤ ck+1 ≤ ak+1 for k ≥ 1, 0 ≤ c1 < a1, and ck = 0 if
ck+1 = ak+1. Moreover , m satisfies

1
2 (log(1+2

√
d)(K1)− 1) < m < 1

2 (logg(2K2 + 1) + 3).

Unfortunately, this claim has counterexamples. Two examples are given
below. Example 1 shows that a solution (x, y) does not necessarily have the
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form as above when y is not large enough. Example 2 shows that the upper
bound on m is not large enough.

Example 1. x2−61y2 = 705. The table of the simple continued fraction
expansion of

√
61 is as follows:

√
61 = [7, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14]

k 0 1 2 3 4 5 6 7 8 9 10

Ak 7 8 39 125 164 453 1070 1523 5639 24079 29718

Bk 1 1 5 16 21 58 137 195 722 3083 3805

A solution (x, y) = (407, 52) has the form y = 2B4 + 2B2. But x 6= 2A4 +
2A2 = 406.

Example 2. x2 − 2801y2 = 1225. The table of the simple continued
fraction expansion of

√
2801 is as follows:

√
2801 = [45, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 90]

k 0 1 2 3 4 5 6 7 8 9 10

Ak 45 46 91 137 228 365 593 958 1551 2509 4060

Bk 1 1 2 3 5 8 13 21 34 55 89

Since 1225 < 2K2
√

2801, we can take K2 = 12. Then 1
2 (logg(2K2 + 1) + 3)

< 5. A solution (x, y) = (4197, 92) has the form x = A3 +A10, y = B3 +B10.
So m = 8. Hence m < 1

2 (logg(2K2 + 1) + 3) does not hold.

The aim of this paper is to state and prove a correct version of the
claim by Rockett and Szüsz. Section 2 is devoted to reviewing the concept
of Ostrowski representation. In Section 3 we obtain the following theorem
on the form of the solutions:

Theorem 1. All positive integer solutions of x2 − dy2 = N have the
form

x = cn+1An + cn+2An+1 + . . .+ cn+mAn+m−1 + x′,

y = cn+1Bn + cn+2Bn+1 + . . .+ cn+mBn+m−1,

where cn+1 6= 0, cn+m 6= 0, 0 ≤ ck+1 ≤ ak+1 for k ≥ 1, 0 ≤ c1 < a1, and
ck = 0 if ck+1 = ak+1. In particular , x′ = 0 if y is sufficiently large (say ,
y > |N |/(2ε

√
d), where ε = min(

√
d− a0, 1/(2

√
2), (1 + a0 −

√
d)/
√

2)).

We discuss a “periodicity” of the solutions in Section 4. In Section 5, the
length of the form of a solution is estimated. We obtain
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Theorem 2. Under the same notation as in Theorem 1, assume further
that x′ = 0. Then

1
log(1 + a0) + (log 2)/l

· log
|N |
4
√
d
< m < max

(
3, 3 + logg

√
5 + logg

|N |√
d

)
.

In the final Section 6, we show that the above theorems are useful to
examine whether x2 − dy2 = N has an integer solution.

Throughout this paper, we use the following notations. For a real number
α, bαc denotes the floor of α, that is, the largest integer which is not greater
than α, while dαe denotes the ceiling of α, that is, the least integer which
is not smaller than α.

2. Ostrowski representation of integers. The discussion in this sec-
tion is valid not only for the continued fraction expansion of

√
d but also

for that of an arbitrary real number which is not rational (cf. [4, Chap. I
and II]).

As in [4, Chap. II, §4], every positive integer y can be represented
uniquely as

(1) y =
n∑

k=0

ck+1Bk,

where the coefficients ck+1 satisfy the following

Coefficient Condition (abbrev. CC).

• 0 ≤ ck+1 ≤ ak+1 for k ≥ 1, 0 ≤ c1 < a1;
• if ck+1 = ak+1, then ck = 0.

This representation was used by Ostrowski in [1]. Hence it is natural to
call (1) with CC the Ostrowski representation of y with respect to

√
d.

We define sequence {Dk}k≥−1 of real numbers, by

Dk = Bk
√
d− Ak.

We set
ζk = [ak, ak+1, . . .].

We have the following lemma on Dk’s:

Lemma 1. (i) Dk = akDk−1 +Dk−2 for k ≥ 1.
(ii) Dk = (−1)k/(ζk+1Bk +Bk−1) for k ≥ 0.

(iii) D2k−1 < D2k+1 < 0 and 0 < D2k+2 < D2k for k ≥ 0.
(iv) 1/(Bk+1+Bk) < |Dk| < 1/Bk+1 for k ≥ 0. In particular , |Dk| < 1/2

for k ≥ 1.

Proof. See [4, Chap. I, §4].
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The following lemma is a more precise version of Lemma II.4.1 in [4],
and plays an important role in the discussion of Sections 3 and 5.

Lemma 2. Assume that ck+1’s satisfy CC. Suppose that integers n0 and
n1 satisfy 0 ≤ n0 ≤ n1 and cn0+1 6= 0. Then we have:

(i) If n0 is odd , then

(cn0+1 − 1)Dn0 −Dn0+1 >

n1∑

k=n0

ck+1Dk > cn0+1Dn0 −Dn0+1,(2)

− 1
Bn0+2 +Bn0+1

>

n1∑

k=n0

ck+1Dk > −
1
Bn0

,(3)

0 >
n1∑

k=n0

ck+1Dk >

{
−1/2 if n0 > 1,
−(
√
d− a0) if n0 = 1.

(4)

(ii) If n0 is even, then

(cn0+1 − 1)Dn0 −Dn0+1 <

n1∑

k=n0

ck+1Dk < cn0+1Dn0 −Dn0+1,(5)

1
Bn0+2 +Bn0+1

<

n1∑

k=n0

ck+1Dk <
1
Bn0

,(6)

0 <
n1∑

k=n0

ck+1Dk <

{
1/2 if n0 > 0,
1− (

√
d− a0) if n0 = 0.

(7)

Proof. We prove (i); (ii) can be proved similarly. So suppose that n0 is
odd. Since the case n0 = n1 is easy, we consider the case where n0 < n1.

By Lemma 1, we have

(cn0+1 − 1)Dn0 −Dn0+1 < −Dn0+1 < −
1

Bn0+2 +Bn0+1
< 0,

cn0+1Dn0 −Dn0+1 > an0+1Dn0 −Dn0+1 = −Dn0−1 > −
1
Bn0

,

and

cn0+1Dn0 −Dn0+1 > −Dn0−1

{
> −1/2 if n0 > 1,
= −(

√
d− a0) if n0 = 1.

Hence it is enough to show (2).
Let n′1 be n1 if n1 is even, and n1− 1 if n1 is odd. By Lemma 1 and CC,

we have
n1∑

k=n0

ck+1Dk ≤ cn0+1Dn0 + cn0+2Dn0+1 + cn0+4Dn0+3 + . . .+ cn′1+1Dn′1
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≤ cn0+1Dn0 + (an0+2 − 1)Dn0+1 + an0+4Dn0+3 + . . .+ an′1+1Dn′1

= cn0+1Dn0 −Dn0+1 + (Dn0+2 −Dn0)

+ (Dn0+4 −Dn0+2) + . . .+ (Dn′1+1 −Dn′1−1)

= (cn0+1 − 1)Dn0 −Dn0+1 +Dn′1+1 < (cn0+1 − 1)Dn0 −Dn0+1.

Next, reset n′1 = n1 if n1 is odd, and n1 − 1 if n1 is even. By Lemma 1 and
CC again, we have

n1∑

k=n0

ck+1Dk ≥ cn0+1Dn0 + cn0+3Dn0+2 + cn0+5Dn0+4 + . . .+ cn′1+1Dn′1

≥ cn0+1Dn0 + an0+3Dn0+2 + an0+5Dn0+4 + . . .+ an′1+1Dn′1

= cn0+1Dn0 + (Dn0+3 −Dn0+1)

+ (Dn0+5 −Dn0+3) + . . .+ (Dn′1+1 −Dn′1−1)

= cn0+1Dn0 −Dn0+1 +Dn′1+1 > cn0+1Dn0 −Dn0+1.

Thus we complete the proof.

3. Form of the solutions. Assume that positive integers x and y sat-
isfy x2 − dy2 = N . We have the Ostrowski representation of y with respect
to
√
d:

y = cn+1Bn + cn+2Bn+1 + . . .+ cn+mBn+m−1,

where ck+1’s satisfy CC, cn+1 6= 0, and cn+m 6= 0. Let x′ be the integer
defined by

x′ = x− (cn+1An + cn+2An+1 + . . .+ cn+mAn+m−1).

Then we have

(8) y
√
d− x =

m∑

k=1

cn+kDn+k−1 − x′.

We investigate the range of x′.

3.1. Case N > 0. Set ε = min(1/2,
√
d − a0). The condition N > 0

implies that x > y
√
d. Since x− y

√
d = N/(x+ y

√
d), we have

(9) 0 < N/(2x) < x− y
√
d < N/(2y

√
d).

First, assume that n is even. Then (7) yields

0 <
m∑

k=1

cn+kDn+k−1 < 1− ε.

This inequality and (8) show that

x′ − (1− ε) < x− y
√
d < x′.
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Comparing this inequality with (9), we have 0 < x′ and x′ − (1 − ε) <
N/(2y

√
d), which implies

1 ≤ x′ ≤ b1− ε+N/(2y
√
d)c.

In particular, it turns out that n cannot be even when 1 > 1−ε+N/(2y
√
d),

that is, y > N/(2ε
√
d).

Next, assume that n is odd. Then (4) yields

−1 <
m∑

k=1

cn+kDn+k−1 < 0.

Together with (8), this shows that

x′ < x− y
√
d < x′ + 1.

Comparing this inequality with (9), we have

0 ≤ x′ ≤ bN/(2y
√
d)c.

In particular, it turns out that x′ = 0 if y > N/(2
√
d).

Hence we obtain

Theorem 3. All the positive integer solutions of x2 − dy2 = N with
N > 0 have the form

x = cn+1An + cn+2An+1 + . . .+ cn+mAn+m−1 + x′,

y = cn+1Bn + cn+2Bn+1 + . . .+ cn+mBn+m−1,

where ck+1’s satisfy CC , cn+1 6= 0, cn+m 6= 0, x′ satisfies

0 ≤ x′ ≤ b1− ε+N/(2y
√
d)c,

and ε = min(1/2,
√
d − a0). In particular , x′ = 0 if y > N/(2ε

√
d). More-

over , x′ = 0 implies that n is odd.

3.2. Case N < 0. Set ε′ = min(1/2, 1− (
√
d−a0)). The condition N < 0

implies that x < y
√
d. Since y

√
d− x = −N/(y

√
d+ x), we have

(10) 0 < −N/(2y
√
d) < y

√
d− x < −N/(2x).

First, assume that n is odd. We combine (4), (10), and (8) to obtain

d−(1− ε′) +N/(2x)e ≤ x′ ≤ −1.

In particular, n cannot be odd when x > −N/(2ε′).
Next, assume that n is even. Then (7), (10), and (8) lead to

dN/(2x)e ≤ x′ ≤ 0.

In particular, x′ = 0 if x > −N/2.
Since x =

√
dy2 +N , we obtain
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Theorem 4. All the positive integer solutions of x2 − dy2 = N with
N < 0 have the form

x = cn+1An + cn+2An+1 + . . .+ cn+mAn+m−1 + x′,

y = cn+1Bn + cn+2Bn+1 + . . .+ cn+mBn+m−1,

where ck+1’s satisfy CC , cn+1 6= 0, cn+m 6= 0, x′ satisfies

d−(1− ε′) +N/(2
√
dy2 +N)e ≤ x′ ≤ 0,

and ε′ = min(1/2, 1 + a0 −
√
d). In particular , x′ = 0 if

√
y2 +N/d >

−N/(2ε′
√
d). Moreover , x′ = 0 implies that n is even.

Corollary 1. Under the same notation as in the theorem above, we
have x′ = 0 if y > −N/(2ε

√
d), where

ε = ε′/
√

2 = min(1/(2
√

2), (1 + a0 −
√
d)/
√

2).

Proof. Since 0 < ε′ ≤ 1/2 and N ≤ −1, we have
√

1 + 4(ε′)2/(−N) ≤
√

2.

Then y > −N/(2ε
√
d) implies that

y >
−N

2ε′
√
d

√
1 + 4(ε′)2/(−N),

which is equivalent to the inequality
√
y2 +N/d > −N/(2ε′

√
d).

Theorem 1 is a consequence of Theorems 3, 4, and Corollary 1.

4. “Periodicity” of the solutions. Before investigating the length of
the form of the solutions, we discuss some property of the solutions.

We need the following lemma:

Lemma 3. Ak+l = AkAl−1 + dBkBl−1, Bk+l = BkAl−1 + AkBl−1.

Proof. By equation (3) in [2, §12] and ζl+1 = ζ1 = 1/(
√
d− a0), we have

√
d =

ζl+1Al + Al−1

ζl+1Bl +Bl−1
=
Al + (

√
d− a0)Al−1

Bl + (
√
d− a0)Bl−1

,

which leads to

dBl−1 = Al − a0Al−1 and Bl − a0Bl−1 = Al−1.

Hence Lemma 3 is true for k = 0. With the definition of {Ak} and {Bk},
we can easily complete the proof by induction on k.

The discussion of x2 − 77y2 = 37 in [4, Chap. IV, §2] suggests that the
following theorem holds. Here we prove it by using the lemma above.

Theorem 5. Assume that n ≥ l. Then the following statements are
equivalent :
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(i) The following x and y satisfy x2 − dy2 = N :

x = cn+1An + cn+2An+1 + . . .+ cn+mAn+m−1,

y = cn+1Bn + cn+2Bn+1 + . . .+ cn+mBn+m−1.

(ii) The following x and y satisfy x2 − dy2 = (−1)lN :

x = cn+1An−l + cn+2An+1−l + . . .+ cn+mAn+m−1−l,

y = cn+1Bn−l + cn+2Bn+1−l + . . .+ cn+mBn+m−1−l.

Proof. Suppose that (i) holds. Then

N =
(∑

k

cn+kAn+k−1

)2
− d
(∑

k

cn+kBn+k−1

)2

=
∑

k,k′

cn+kcn+k′(An+k−1An+k′−1 − dBn+k−1Bn+k′−1).

By Lemma 3 and the well known fact that A2
l−1 − dB2

l−1 = (−1)l, we have

An+k−1An+k′−1 − dBn+k−1Bn+k′−1

= (An+k−1−lAl−1 + dBn+k−1−lBl−1)(An+k′−1−lAl−1 + dBn+k′−1−lBl−1)

− d(Bn+k−1−lAl−1 +An+k−1−lBl−1)

× (Bn+k′−1−lAl−1 + An+k′−1−lBl−1)

= An+k−1−lAn+k′−1−l(A2
l−1 − dB2

l−1)

− dBn+k−1−lBn+k′−1−l(A2
l−1 − dB2

l−1)

= (−1)l(An+k−1−lAn+k′−1−l − dBn+k−1−lBn+k′−1−l).

Hence

N =
∑

k,k′

cn+kcn+k′(−1)l(An+k−1−lAn+k′−1−l − dBn+k−1−lBn+k′−1−l)

= (−1)l
{(∑

k

cn+kAn+k−1−l
)2
− d
(∑

k

cn+kBn+k−1−l
)2}

.

Theorem 5 will be used in the next two sections.

5. Length of the form of the solutions. In this section, j is any
positive integer if l is even, and any positive even integer if l is odd.

We investigate the length of the form of the solutions, which we denote
by m in the preceding theorems. The number of the cases when x′ 6= 0 is at
most finite. Hence we discuss the solutions with x′ = 0.

Let

Fk =
1√
5

{(
1 +
√

5
2

)k
−
(

1−
√

5
2

)k}
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be the kth Fibonacci number, that is, F0 = 0, F1 = 1 and Fk = Fk−1 +Fk−2

(k ≥ 2). We have the following:

Lemma 4. For 0 ≤ n0 ≤ n1,

Fn1−n0+1 ≤ Bn1/Bn0 ≤ (1 + a0)n1−n0 · 2d(n1−n0)/le.

Proof. We assume that n0 < n1 because the case n0 = n1 is obvious.
For the upper bound, we note that

Bn1

Bn0

=
n1∏

k=n0+1

Bk
Bk−1

=
n1∏

k=n0+1

akBk−1 +Bk−2

Bk−1
<

n1∏

k=n0+1

(ak + 1).

Moreover, the argument on Lagrange’s algorithm (cf. [4, Chap. III, §1])
shows that ak <

√
d (i.e. ak ≤ a0) if l - k or k = 0, while ak < 2

√
d (i.e.

ak ≤ 2a0 + 1) if l | k. So we have

Bn1

Bn0

< (a0 +1)n1−n0

(
2a0 + 1 + 1
a0 + 1

)d(n1−n0)/le
= (a0 +1)n1−n0 ·2d(n1−n0)/le.

On the other hand, we can obtain the lower bound as follows:

Bn1

Bn0

>
Bn1−1 +Bn1−2

Bn0

> . . . >
Fn1−n0+1Bn0 + Fn1−n0Bn0−1

Bn0

≥ Fn1−n0+1.

Suppose that

x =
m∑

k=1

cn+kAn+k−1 and y =
m∑

k=1

cn+kBn+k−1

are a solution of x2 − dy2 = N . Then

(11) Bn +Bn+m−1 ≤ y < Bn+m.

Moreover, Theorem 5 shows that

xj =
m∑

k=1

cn+kAn+k−1+jl and yj =
m∑

k=1

cn+kBn+k−1+jl

are also a solution of x2 − dy2 = N .

5.1. Case N > 0. Theorem 3 tells us that n is odd. Inequality (3) yields

x− y
√
d = −

m∑

k=1

cn+kDn+k−1 >
1

Bn+2 +Bn+1
.

By (9) and (11), we have

N

2
√
d
> y(x− y

√
d) > (Bn+m−1 +Bn)

1
Bn+2 +Bn+1
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=
Bn+m−1/Bn+2 +Bn/Bn+2

1 +Bn+1/Bn+2
>

1
2
· Bn+m−1

Bn+2
,

that is,
N√
d
>
Bn+m−1

Bn+2
.

Assume that m ≥ 3. Then Lemma 4 leads to

1√
5

(
1 +
√

5
2

)m−3

< Fm−2 ≤
N√
d
.

Taking logarithms to base g = (1 +
√

5)/2, we obtain

m− 3− logg
√

5 < logg
N√
d
.

On the other hand, (3) yields

x− y
√
d < 1/Bn.

Since (9) shows that

N/2 < x(x− y
√
d) = (x− y

√
d)2 + y

√
d(x− y

√
d),

we have

N/2− 1/B2
n < N/2− (x− y

√
d)2 < y

√
d(x− y

√
d).

By (11) and Lemma 4, we have

N − 2/B2
n

2
√
d

< y(x− y
√
d) < Bn+m

1
Bn
≤ (1 + a0)m · 2dm/le.

A similar discussion of (xj , yj) gives

N − 2/B2
n+jl

2
√
d

≤ (1 + a0)m · 2dm/le

for any j. Since Bk increases to ∞ as k goes to ∞, we let j →∞ to obtain

N/(2
√
d) ≤ (1 + a0)m · 2dm/le < (1 + a0)m · 2m/l+1.

Taking logarithms to base e, we have

log
N

4
√
d
< m log(1 + a0) +

m

l
log 2.

Hence we obtain

Theorem 6. Assume that a positive integer solution of x2 − dy2 = N
with N > 0 has the form

x = cn+1An + cn+2An+1 + . . .+ cn+mAn+m−1,

y = cn+1Bn + cn+2Bn+1 + . . .+ cn+mBn+m−1,
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where ck+1’s satisfy CC , cn+1 6= 0, and cn+m 6= 0. Then n is odd , and

1
log(1 + a0) + (log 2)/l

· log
N

4
√
d
< m < max

(
3, 3 + logg

√
5 + logg

N√
d

)
.

5.2. Case N < 0. Theorem 4 tells us that n is even. By (6), we have

1
Bn+2 +Bn+1

< y
√
d− x =

m∑

k=1

cn+kDn+k−1 <
1
Bn

.

Since (10) yields

−N/2 > (y
√
d− x)x = y

√
d(y
√
d− x)− (y

√
d− x)2,

we have
−N

2
+

1
B2
n

>
−N

2
+ (y
√
d− x)2 > y

√
d(y
√
d− x).

By (11), we have

−N + (2/B2
n)

2
√
d

> y(y
√
d− x)

> (Bn+m−1 +Bn)
1

Bn+2 +Bn+1
>

1
2
· Bn+m−1

Bn+2
.

Assume that m ≥ 3. Then Lemma 4 yields

−N + 2/B2
n√

d
>
Bn+m−1

Bn+2
≥ Fm−2.

A similar discussion of (xj , yj) gives

−N + 2/B2
n+jl√

d
≥ Fm−2

for any j. We let j →∞ to obtain

−N√
d
≥ Fm−2 >

1√
5

(
1 +
√

5
2

)m−3

.

Taking logarithms to base g, we have

logg
√

5 + logg
−N√
d
> m− 3.

On the other hand, (10), (11), and Lemma 4 show that

−N
2
√
d
< y(y

√
d− x) < Bn+m

1
Bn

< (1 + a0)m · 2m/l+1.

Taking logarithms to base e, we have

log
−N
2
√
d
< m log(1 + a0) +

m

l
log 2.
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Hence we obtain

Theorem 7. Assume that a positive integer solution of x2 − dy2 = N
with N < 0 has the form

x = cn+1An + cn+2An+1 + . . .+ cn+mAn+m−1,

y = cn+1Bn + cn+2Bn+1 + . . .+ cn+mBn+m−1,

where ck+1’s satisfy CC , cn+1 6= 0, and cn+m 6= 0. Then n is even, and

1
log(1 + a0) + (log 2)/l

· log
−N
4
√
d
< m < max

(
3, 3 + logg

√
5 + logg

−N√
d

)
.

Theorem 2 is a consequence of Theorems 6 and 7.

6. Application. In this section, let j′ be 1 if l is even, and 2 if l is odd.
It is known that only finitely many checkings are necessary to find

whether x2 − dy2 = N has a positive integer solution. That is to say, the
following proposition holds:

Proposition 1. There exists a finite set S of integers such that the
following two conditions are equivalent :

(i) There exists a pair (x, y) of positive integers satisfying x2−dy2 = N .
(ii) There exists a pair (x, y) of positive integers satisfying x2−dy2 = N

and y ∈ S.

For example, the discussion in [5, §34] shows that we can take

S =
{
{y | 0 < y ≤ Bj′l−1

√
N} if N > 0,

{y |
√
−N/d < y ≤ Aj′l−1

√
−N/d} if N < 0.

The concept of Ostrowski representation yields another choice of S. Fix
n0 such that if (x, y) is a solution of x2−dy2 = N and y ≥ Bn0 then x′ = 0,
where x′ is as in Theorem 1. If x2 − dy2 = N has a solution, then it is well
known that there exist infinitely many solutions, and Theorems 1, 2, and 5
imply that x2 − dy2 = N has a solution

x = cn+1An + cn+2An+1 + . . .+ cn+mAn+m−1,

y = cn+1Bn + cn+2Bn+1 + . . .+ cn+mBn+m−1,

where ck+1’s satisfy CC, cn+1 6= 0, cn+m 6= 0, m is bounded by d and N ,
and n satisfies n0 ≤ n < n0 + j′l.

Our discussion shows that we can take

S =
{ m∑

k=1

cn+kBn+k−1

∣∣∣∣
n0 ≤ n < n0 + j′l, mmin < m < mmax,

cn+k’s satisfy CC, cn+1 6= 0, cn+m 6= 0

}
,
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where

mmin =
1

log(1 + a0) + (log 2)/l
· log

|N |
4
√
d
,

mmax = max
(

3, 3 + logg
√

5 + logg
|N |√
d

)
.
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