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Units and norm residue symbol

by
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Let p be an odd prime number, p ≥ 5. Let ζp be a primitive pth root of
unity and consider the following equation:

(∗) a, b ∈ Z, ab 6= 0, gcd(a, b) = 1, (a− bζp)Z[ζp] = Ip, I ideal of Z[ζp].

Then one can show that the ABC conjecture implies that the above equation
has a finite number of solutions, and, if p is large enough, (∗) has only the
trivial solutions, i.e. a = 1, b = −1, and a = −1, b = 1.

When studying the first case of (∗) (i.e. ab(a+ b) 6≡ 0 (mod p)), G. Ter-
janian was led to conjecture that the Kummer system of congruences has
only the trivial solutions (see [8] and Section 5). In this paper we prove that
Eichler’s Theorem applies to Terjanian’s conjecture (Corollary 5.5). More
precisely, we prove that if i(p) <

√
p− 2 then Terjanian’s conjecture is true

for the prime p, where i(p) is the index of irregularity of p.
Let F be a real subfield of Q(ζp) and let EF be the group of units of F .

Our aim is to study the Kummer subgroup of EF :

EKum
F = {ε ∈ EF : ∃a ∈ Z, ε ≡ a (mod p)}.

We show that there exists a duality between EF /EKum
F and the orthogonal of

EF for the norm residue symbol (see Theorem 4.4). A natural problem arises:
do we have an equivalence in Kummer’s Lemma (see Section 3)? We show
that this question is connected to a class number congruence obtained by
T. Metsänkylä (see [4] and Section 6). In particular, we are led to investigate
the orthogonal of the group of units of Q(ζp) for the norm residue symbol
and, thus, this leads us to Terjanian’s conjecture.

Finally, we would like to mention the following question which we call the
“weak Kummer–Vandiver conjecture”: let E be the group of units of Q(ζp)
and let C be the group of cyclotomic units of Q(ζp); do we have E⊥ = C⊥

(see Section 4)?
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1. Notations. Let p be an odd prime number. Let Zp be the ring of
p-adic integers, Qp the field of p-adic numbers, and Cp a completion of an
algebraic closure of Qp. All the finite extensions of Qp considered in this
paper are contained in Cp.

Let L/Qp be a finite extension. We set:

• OL — the integral closure of Zp in L,
• pL — the maximal ideal of OL,
• vL — the normalized discrete valuation on L associated with pL,
• UL — the group of units of OL and for n ≥ 1, U (n)

L = 1 + pnL.

Let L/Qp be a finite extension and let L′/L be a finite abelian extension.
We denote the local Artin map associated with L′/L by (·, L′/L).

Let ζp be a fixed primitive pth root of unity in Cp. We set λp = ζp − 1
and K = Qp(ζp). For α, β ∈ K∗, we define the norm residue symbol (α, β)
as follows:

(α, β) =
(β,K(γ)/K)(γ)

γ
,

where γ ∈ Cp is such that γp = α.
Let G = Gal(K/Qp). For a ∈ Z \ pZ we define σa to be the element of

G such that σa(ζp) = ζap . Recall that we have an isomorphism of groups

(Z/pZ)∗ → G, a 7→ σa. Let Ĝ be the set of group homomorphisms between
G and Z∗p. The Teichmüller character ω is the element ω ∈ Ĝ such that

ω(σa) ≡ a (mod p).

Recall that Ĝ is a cyclic group and that ω is a generator of Ĝ.
We view Q as contained in Qp. Let F/Q be a finite extension, F ⊂ Cp.

We set

• F̂ = FQp,
• OF — the ring of integers of F ,
• EF — the group of units of OF ,
• pF = pF̂ ∩OF ,
• hF — the class number of F .

If A is a commutative unitary ring, we denote the set of invertible ele-
ments of A by A∗. Let n ≥ 1 be an integer. We denote the group of nth
roots of unity in Cp by µn.

2. Some results from Lubin–Tate theory. First, we recall some
basic facts from Lubin–Tate theory (see [3], Chapter 8). We consider the
following two elements in Zp[[X]]:

T (X) = (1 +X)p − 1 and L(X) = Xp + pX.
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Then T and L are Lubin–Tate polynomials. Thus there exist two formal
groups FT = Gm and FL in Zp[[X,Y ]] such that

T ◦ FT = FT ◦ T and L ◦ FL = FL ◦ L.
We have two ring homomorphisms: Zp → EndZpGm, a 7→ [a]T = (1+X)a−1
and Zp → EndZpFL, a 7→ [a]L. Note that

• ∀a ∈ Zp, [a]T ≡ [a]L ≡ aX (mod deg 2),
• FT (X,Y ) = (1 +X)(1 + Y )− 1, FL(X,Y ) ≡ X + Y (mod deg p),
• ∀a ∈ Zp, [a]L ≡ aX (mod deg p), ∀ε ∈ µp−1, [ε]L = εX.

We set

LogT (X) = lim
n≥1

1
pn

[pn]T ∈ Qp[[X]],

LogL(X) = lim
n≥1

1
pn

[pn]L ∈ Qp[[X]].

Note that

LogT (X) =
∑

n≥1

(−1)n+1X
n

n
and LogL(X) ≡ X (mod deg p).

We denote the inverses of LogT and LogL by ExpT and ExpL respectively.
We set fp(X) = ExpT ◦LogL and gp(X) = ExpL ◦LogT . Then fp and

gp are elements of Zp[[X]] and we have:

• fp(X) ≡ gp(X) ≡ X (mod deg 2),
• ∀a ∈ Zp, fp ◦ [a]L = [a]T ◦ fp and gp ◦ [a]T = [a]L ◦ gp,
• fp ◦ FL = FT ◦ fp and gp ◦ FT = FL ◦ gp,
• fp ◦ gp = gp ◦ fp = X.

Let vp be the p-adic valuation on Cp such that vp(p) = 1. Set D =
{α ∈ Cp : vp(α) > 0}. Then T induces a new structure of Zp-module
for D and we denote this Zp-module by DT ; the same holds for L and
we denote D equipped with the structure of Zp-module induced by L by
DL. We have an isomorphism of Zp-modules DT → DL, α 7→ gp(α). Set
ΛT = {α ∈ Cp : [p]T (α) = 0} and ΛL = {α ∈ Cp : [p]L(α) = 0}. Then ΛT
is a Zp-submodule of DT and ΛL is a Zp-submodule of DL. Note that gp
induces an isomorphism of the Zp-modules ΛT and ΛL. We have λp ∈ ΛT .
We set

λL = gp(λp).

Note that λp−1
L = −p and K = Qp(λp) = Qp(λL).

Lemma 2.1. We have

gp(X) ≡
p−1∑

n=1

(−1)n+1X
n

n
(modXpZp[[X]]),
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fp(X) ≡
p−1∑

n=1

Xn

n!
(modXpZp[[X]]).

Proof. This comes from the fact that ExpL(X) ≡ LogL(X) ≡ X
(mod deg p).

Corollary 2.2.

(i) λL ≡
p−1∑

n=1

(−1)n+1λ
n
p

n
(mod p

p
K);

(ii) λp ≡
p−1∑

n=1

λnL
n!

(mod ppK).

Lemma 2.3. Let σ ∈ G.

(i) σ(λp) = [ω(σ)]T (λp);
(ii) σ(λL) = ω(σ)λL.

Proof. The first assertion is obvious. We have

σ(λL) = σ(gp(λp)) = gp(σ(λp)).

Thus σ(λL) = gp([ω(σ)]T (λp)) = [ω(σ)]L(gp(λp)) = ω(σ)λL.

Let k be an integer, 1 ≤ k ≤ p− 1. We set

ηk =
p−1∑

i=1

(i!)k−1τ(ω−i)k,

where, for i = 1, . . . , p− 1,

τ(ω−i) = −
∑

σ∈G
ω(σ)−iσ(λp) ∈ pK .

Note that η1 = (1− p)λp.
Proposition 2.4. Let k be an integer , 1 ≤ k ≤ p− 1.

(i) ηk ≡ fp(λkL) (mod p
p
K);

(ii) λkL ≡ gp(ηk) (mod p
p
K);

(iii) ∀σ ∈ G, σ(1 + ηk) ≡ (1 + ηk)ω(σ)k (mod ppK).

Proof. Let σ ∈ G. We have

σ(λp) ≡
p−1∑

n=1

ω(σ)n
λnL
n!

(mod p
p
K).

Thus
τ(ω−i) ≡ λiL

i!
(mod ppK).

Therefore we have (i) and (ii). Now, let σ ∈ G. Then
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σ(ηk) ≡ fp(ω(σ)kλkL) ≡ [ω(σ)k]T (fp(λkL)) ≡ (1 + ηk)ω(σ)k − 1 (mod ppK).

Thus we have (iii).

Now, we recall the definition of the Kummer homomorphisms (see [3],
Chapter 7). Let u ∈ UK and write u = h(λL) for some h(X) ∈ Zp[[X]].
Then h′(λL)/u is well defined modulo pp−2

K and we can write

h′(λL)
u

≡
p−2∑

k=1

ϕk(u)λk−1
L (mod p

p−2
K ),

where ϕk(u) is in Zp modulo pZp for k = 1, . . . , p− 2. The map ϕk is called
the Kummer homomorphism of degree k.

We have the following basic properties:

• ϕk : UK → Fp is a surjective group homomorphism and µp−1U
(k+1)
K ⊂

kerϕk;
• ∀σ ∈ G,∀u ∈ UK , ϕk(σ(u)) ≡ ω(σ)kϕk(u) (mod p);
• ∀u ∈ U (1)

K ,∀a ∈ Zp, ϕk(ua) ≡ aϕk(u) (mod p);
• ⋂1≤k≤p−2 kerϕk = µp−1U

(p−1)
K .

We calculate the values of these homomorphisms for some remarkable
elements.

Proposition 2.5.

(i) ϕ1(ζp) = 1 and for k ≥ 2, ϕk(ζp) = 0;
(ii) ϕk(λp/λL) = (−1)kBk/k!, where Bk is the kth Bernoulli number ;

(iii) let σ ∈ G, ϕk(σ(λp)/λp) = (−1)k(ω(σ)k − 1)Bk/k!;
(iv) ϕk(1 + ηi) = 0 if k 6= i and ϕk(1 + ηk) = k;
(v) let a ∈ Z, a 6≡ 1 (mod p), ϕ1(a− ζp) = −1/(a− 1) and for k ≥ 2,

ϕk(a− ζp) =
(−1)k−1

(k − 1)!(a− 1)
Mk(a),

where Mk(X) =
∑p−1

i=1 i
k−1Xi is the kth Mirimanoff polynomial.

Proof. (i) Write h(X) =
∑p−2

n=0X
n/n!. Then ζp ≡ h(λL) (mod ppK). Thus

ϕk(ζp) = ϕk(h(λL)). But

h′(λL)
h(λL)

≡ ζ−1
p h′(λL) ≡

( p−3∑

n=0

(−1)n
λnL
n!

)( p−3∑

n=0

λnL
n!

)
≡ 1 (mod pp−2

K ).

(ii) Put h(X) = fp(X)/X. Then λp/λL = h(λL). One can show that

h′(X)
h(X)

≡ B1 + 1 +
∑

k≥2

Bk
k!
Xk−1 (mod deg p− 2).

The result follows.
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(iii) Let σ ∈ G. We have

ϕk

(
σ(λp)
λp

)
= ϕk

(
σ

(
λp
λL

))
+ ϕk

(
σ(λL)
λp

)
= (ω(σ)k − 1)ϕk

(
λp
λL

)
.

(iv) Set h(X) = fp(Xk)+1. We have 1+ηk ≡ h(λL) (mod ppK). Therefore
ϕi(1 + ηk) = ϕi(h(λL)). But

h′(X)
h(X)

≡ kXk−1 (mod deg p− 2),

and the result follows.
(v) We have

a− ζp ≡ a− 1− λL (mod p2
K).

Therefore
ϕ1(a− ζp) = ϕ1(a− 1− λL) =

−1
a− 1

.

If a ≡ 0 (mod p), then for k ≥ 2, we have ϕk(a− ζp) = 0. Now, we suppose
that a 6≡ 0 (mod p). We have

Dk Log(a− Exp(X))X=0 ≡ (k − 1)!ϕk(a− ζp) (mod p).

But, by [5], Chapter VIII,

Dk Log(a− Exp(X))X=0 ≡
(−1)p−k

a− 1
Mk(a) (mod p).

The result follows.

We recall some basic facts about Fp[G]-modules. For χ ∈ Ĝ, we write

eχ =
1

p− 1

∑

σ∈G
χ(σ)σ−1 (mod p).

We have

• e2
χ = eχ;

• eχeψ = 0 if χ 6= ψ;
• 1 =

∑
χ∈Ĝ eχ;

• ∀σ ∈ G, σeχ = χ(σ)eχ.

Let A be an Fp[G]-module. For 1 ≤ i ≤ p− 1, we set

A(i) = eωiA = {a ∈ A : ∀σ ∈ G, σ(a) = ω(σ)ia}.
We have

A =
p−1⊕

i=1

A(i).

We set

U =
UK

µp−1U
(p)
K

.
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It is clear that U is a finite Fp[G]-module and that, for 1 ≤ i ≤ p − 1, U(i)
is an Fp-vector space of dimension 1. More precisely, let u ∈ U ; then eωiu
generates U(i) if and only if

• ϕi(u) 6= 0 if 1 ≤ i ≤ p− 2;
• NK/Qp(u) 6≡ 1 (mod p2) for i = p− 1.

In particular, for 1 ≤ k ≤ p−1, 1+ηk ∈ U(k) and 1+ηk generates U(k).

Proposition 2.6. Let u ∈ UK . Then

Logp(u) ≡ NK/Qp(u)− 1
p

λp−1
L +

p−2∑

k=2

1
k
ϕk(u)λkL (mod p

p
K),

where Logp is the usual p-adic logarithm on C∗p.

Proof. Note that we can suppose u ∈ U (1)
K . We have Logp(u) ∈ pK and,

if u ∈ U (p)
K , Logp(u) ∈ ppK . Therefore, Logp induces a group homomorphism

between U and pk/p
p
K . Note that, for k ≥ 2,

Logp(1 + ηk) ≡ gp(ηk) ≡ λkL (mod p
p
K)

and
Logp(1 + η1) ≡ Logp(ζp) ≡ 0 (mod ppK).

Let u ∈ U (2)
K . We have

u ≡
p−1∏

k=2

(1 + ηk)ak (modU (p)
K ),

where ak ∈ Fp. Thus

Logp(u) ≡
p−1∑

k=2

akλ
k
L ≡

p−2∑

k=2

1
k
ϕk(u)λkL + ap−1λ

p−1
L (mod p

p
K).

But
eωp−1u ≡ (1 + ηp−1)ap−1 ≡ NK/Qp(u)−1 (modU (p)

K ).

Thus
−Logp(NK/Qp(u)) ≡ −ap−1p (mod ppK).

But
Logp(NK/Qp(u)) ≡ NK/Qp(u)− 1 (mod p2).

Therefore we get our result for u ∈ U (2)
K .

Now, if u ∈ U (1)
K , there exists an integer a1 such that u(1 + η1)a1 ∈ U (2)

K .
But

Logp(u(1 + η1)a1) ≡ Logp(u) (mod p
p
K),

NK/Qp(u(1 + η1)a1) ≡ NK/Qp(u) (mod p2).
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For k ≥ 2,
ϕk(u(1 + η1)a1) = ϕk(u).

The proposition follows.

We recall the definition of the local Kummer symbol relative to L (see [3],
Chapter 8). Let z ∈ pK and let α ∈ K∗. Let t ∈ Cp be such that [p]L(t) = z.
We set

〈z, α〉L = FL((α,K(t)/K)(t),−t) ∈ ΛL.
This symbol is connected to the norm residue symbol as follows: let u ∈ U (1)

K

and let α ∈ K∗; then

(u, α)− 1 = fp(〈gp(u− 1), α〉L).

Furthermore, we have the following explicit reciprocity law for 〈·, ·〉L:

Theorem 2.7. Let z ∈ pK and let u ∈ UK . Write z ≡ ∑p−1
i=1 aiλ

i
L

(mod ppK), where ai ∈ Fp. Then

〈z, u〉L =
[
a1
NK/Qp(u−1)− 1

p
+
p−1∑

i=2

aiϕp−i(u)
]

L

(λL).

Proof. See [3], Chapter 9.

3. Kummer subgroups of units. Recall that U = UK/(µp−1U
(p)
K ).

Set

V = Q(ζp) ∩ UK , V Kum = V ∩ µp−1U
(p)
K , V = V/V Kum.

Then we have an isomorphism of the Fp[G]-modules V and U .
Let B be a subgroup of V . We define the Kummer subgroup of B to be

BKum = B ∩ V Kum = B ∩ µp−1U
(p)
K .

Note that
BKum ⊂ {α ∈ B : ∃a ∈ Z, α ≡ a (mod p

p
K)}.

Let F be a real subfield ofQ(ζp). The group of cyclotomic units of F is the
subgroup of EF generated by −1 and NQ(ζp)+/F (ζ(1−a)/2

p (ζap − 1)/(ζp − 1)),
for 2 ≤ a ≤ (p− 1)/2; we denote this group by CycF . Recall that

(EF : CycF ) = hF .

In this section, our aim is to study the Fp[G]-module CycF /CycKum
F . In

particular, Theorem 3.2 will generalize a result of Vostokov (see [9], Theo-
rem 1) and we will obtain Kummer’s Lemma (see [10], Theorem 5.36) as a
corollary.

Now, let F be a real subfield of Q(ζp) and set l = [F : Q]. We suppose
that l ≥ 2.
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Lemma 3.1. We have

EKum
F = {α ∈ EF : ∃a ∈ Z, α ≡ a (mod p)} = EF ∩ (K∗)p,

EKum
F = {α ∈ EF : Logp(α) ≡ 0 (mod ppK)}.

Proof. By [10], page 80,

{α ∈ EF : ∃a ∈ Z, α ≡ a (mod p)} = EF ∩ (K∗)p.

As already noticed, EKum
F is a subgroup of this latter group. Now, let α ∈ EF

be such that α ≡ a (mod p) for some integer a. Then there exists ε ∈ µp−1

such that αε ∈ U
(p−1)
K . But NK/Qp(αε) = 1. Therefore αε ∈ U

(p)
K . Thus

α ∈ EKum
F .

Now, recall that (UK)p = µp−1U
(p+1)
K . Thus

EKum
F ⊂ {α ∈ EF : Logp(α) ≡ 0 (mod ppK)}.

Let α be in the right side group. Then, by Proposition 2.6, ϕk(α) = 0
for k = 1, . . . , p − 2. Therefore α ∈ µp−1U

(p−1)
K . But NK/Qp(α) = 1, thus

α ∈ µp−1U
(p)
K , i.e. α ∈ EKum

F .

We define the index of regularity of F to be

r(F ) = |{i : 1 ≤ i ≤ l − 1, Bi(p−1)/l 6≡ 0 (mod p)}|.
The index of irregularity of F is then

i(F ) = l − 1− r(F ).

We call F regular if i(F ) = 0. Note that, in this case, p does not divide hF
(see [10], Theorem 5.24).

If F = Q(ζp)+, then i(F ) = i(p), the index of irregularity of p.

Theorem 3.2. Let F be a real subfield of Q(ζp) with [F : Q] = l ≥ 2.

(i) If i = p− 1 or if i 6≡ 0 (mod (p− 1)/l), then

CycF
CycKum

F

(i) = 0.

(ii) For j = 1, . . . , l − 1,

CycF
CycKum

F

(
j

(p− 1)
l

)
= 0 ⇔ Bj(p−1)/l ≡ 0 (mod p).

(iii) We have

dimFp
CycF

CycKum
F

= r(F ).
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Proof. We view CycF /CycKum
F as an Fp[G]-submodule of U . Since

NK/Qp(EF ) = {1}, we have

CycF
CycKum

F

(p− 1) = 0.

Now, suppose that there exists ε ∈ EF such that ϕi(ε) 6= 0. Then

ϕi(ε(p−1)/l) = ϕi(NK/F̂ (ε)) 6= 0.

But Gal(K/F̂ ) = Gl, thus

ϕi(NK/F̂ (ε)) =
1
l

(∑

σ∈G
ω(σ)il

)
ϕi(ε).

Thus il ≡ 0 (mod p− 1) and we get (i).
By Proposition 2.5, for k ≥ 2, we have

ϕk

(
σa(λp)
λp

)
= (−1)k(ω(σa)k − 1)

Bk
k!
.

Therefore we get (ii) and (iii).

We recover Kummer’s Lemma:

Corollary 3.3. Suppose that F is regular. Then EKum
F = (EF )p.

Proof. In this case, we have

dimFp
CycF

CycKum
F

= l − 1.

But CycF ∩EKum
F = CycKum

F , thus

dimFp
EF
EKum
F

≥ l − 1.

Note that (EF )p ⊂ EKum
F and

dimFp
EF

(EF )p
= l − 1.

Therefore we get the desired result.

A natural problem arises: do we have an equivalence in Kummer’s Lem-
ma? It is not difficult to show that if p does not divide hF , then EKum

F =
(EF )p implies that F is regular. In fact, we have

Proposition 3.4. Let F be a real subfield of Q(ζp). Suppose that
pmax(i(F ),1) does not divide hF . Then EKum

F = (EF )p implies i(F ) = 0.

Proof. If EKum
F = (EF )p, then

dimFp
EF

CycF E
Kum
F

= i(F ).

Since hF = (EF : CycF ), pi(F ) divides hF .
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4. The orthogonal of local units. Recall that

V =
Q(ζp) ∩ UK

Q(ζp) ∩ µp−1U
(p)
K

is an Fp[G]-module which is isomorphic to U = UK/(µp−1U
(p)
K ). Let α ∈

Q(ζp) ∩ µp−1U
(p)
K . Then for every β ∈ Q(ζp) ∩ UK , we have (β, α) = 1.

Therefore, if B is a subgroup of V, we set

B⊥ = {α ∈ V : ∀b ∈ B, (b, α) = (α, b) = 1}.
Via our isomorphism φ : V → U , we have an isomorphism

B⊥ ≡ {α ∈ U : ∀b ∈ B, (α, φ(b)) = 1}.
Note that, if B is an Fp[G]-submodule of V, the above isomorphism is an
isomorphism of Fp[G]-modules.

Now, pK can be viewed as a Zp-submodule of (D)L (see Section 2).
Since [p]L(pk) ⊂ ppK and, for all a ∈ Zp, [a]L(ppK) ⊂ ppK , it follows that
(pK)L/(p

p
K)L is an Fp-vector space. Furthermore, since FL(X,Y ) ≡ X + Y

(mod deg p) and [a]L ≡ aX (mod deg p) for all a ∈ Zp, (pK)L/(p
p
K)L is the

same as the usual Fp-vector space pK/p
p
K . Therefore we have an isomorphism

of Fp[G]-modules ψ : U → pK/p
p
K , u 7→ gp(u− 1). But recall that

∀u ∈ U (1)
K , ∀α ∈ K∗, fp(〈gp(u− 1), α〉L) = (u, α)− 1.

We deduce from the above discussion that B⊥ is isomorphic to the Fp-vector
space

{z ∈ pK/p
p
K : 〈z,B〉L = 0}.

Theorem 4.1. Let B be an Fp[G]-submodule of V. Then, for 1 ≤ i ≤
p− 1, we have

dimFp B
⊥(i) + dimFp B(p− i) = 1.

Proof. First note that B⊥ is an Fp[G]-submodule of V. Now, we iden-
tify B⊥ and {z ∈ pK/p

p
K : 〈z,B〉L = 0} which is an Fp[G]-submodule of

pK/p
p
K . Note that pK/p

p
K is an Fp-vector space of dimension p − 1 with

{λL, . . . , λp−1
L } as a base over Fp.

For simplification, we set ei = eωi for i = 1, . . . , p−1. Let j be an integer,
1 ≤ j ≤ p− 1. We have:

• eiλjL = 0 if j 6= i,
• eiλjL = λjL if j = i.

Therefore
pK

p
p
K

(i) = FpλiL.

This implies that
B⊥(i) 6= 0 ⇔ λiL ∈ B⊥.
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Now, let 2 ≤ j ≤ p − 1, 1 ≤ i ≤ p − 1. Let b ∈ B. By Theorem 2.7, we
have

〈λjL, eib〉L = [ϕp−j(eib)]L(λL).

But ϕp−j(eib) = 0 if p− j 6= i and ϕp−j(eib) = ϕi(b) if i = p− j. Now, note
that

λjL ∈ B⊥ ⇔ ∀i, 1 ≤ i ≤ p− 1, 〈λjL, B(i)〉L = 0.

Furthermore

∀b ∈ B, 〈λL, b〉L =
[
NK/Qp(u−1)− 1

p

]

L

(λL).

Thus λL ∈ B⊥ ⇔ B(p− 1) = 0. The theorem follows.

Corollary 4.2. Let B be an Fp[G]-submodule of V. Then

dimFp B
⊥ + dimFp B = p− 1.

Corollary 4.3. Let B be an Fp[G]-submodule of V. Then

(B⊥)⊥ = B.

Proof. Note that B⊥ is an Fp[G]-submodule of V. Thus, by Corollary 4.2,

dimFp(B⊥)⊥ + dimFp B
⊥ = p− 1.

But B ⊂ (B⊥)⊥, and by Corollary 4.2,

dimFp B + dimFp B
⊥ = p− 1.

Thus B = (B⊥)⊥.

Now, let F be a real subfield of Q(ζp) with [F : Q] = l ≥ 2. If we apply
Theorems 3.2 and 4.1, we get

Theorem 4.4. (i) Let i be an integer , 1 ≤ i ≤ p− 1. Then

dimFp Cyc⊥F (i) + dimFp
CycF

CycKum
F

(p− i) = 1.

Thus Cyc⊥F 6= 0 if and only if i 6≡ 1 (mod (p − 1)/l), i = p − 1, or i ≡ 1
(mod (p− 1)/l) and Bp−i ≡ 0 (mod p). In particular ,

dimFp Cyc⊥F = p− 1− r(F ).

(ii) Let i be an integer , 1 ≤ i ≤ p− 1. Then

dimFp
Cyc⊥F
E⊥F

(i) = dimFp
EF

CycF E
Kum
F

(p− i).

Let I be the Stickelberger ideal (see [10], Chapter 6) and let I be its
image in Fp[G]. Let F = Q(ζp)+. Then, by Theorem 4.4 and [10], Section 6.3,
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there exists a surjective morphism of Fp[G]-modules

Fp[G]−

I− → Cyc⊥F
E⊥F

.

Since dimFp Fp[G]−/I− = i(p), this morphism is an isomorphism if and only
if EKum

F = (EF )p.

5. Mirimanoff’s polynomials. In his attempt to prove the first case
of Fermat’s Last Theorem, D. Mirimanoff introduced the polynomials

Mk(X) =
p−1∑

i=1

ik−1Xi ∈ Fp[X], k ≥ 1 an integer.

Note that (X − 1)M1(X) = Xp − X. Let Γ = X d
dX . Then, for k ≥ 1,

we have
Γ kM1 = Mk+1.

From this relation, we deduce immediately that, for 2 ≤ k ≤ p− 1, we have

Mk(X) = X(X − 1)p−kPk(X),

where Pk(X) ∈ Fp[X] is of degree k − 2 and Pk(0) 6≡ 0 (mod p), Pk(1) 6≡ 0
(mod p).

Note that, if k is odd, 3 ≤ k ≤ p− 2, we have (see [5], Chapter 8):

Mk(X) = (−1)kX(X + 1)(X − 1)p−kLk(−X),

where Lk(X) ∈ Fp[X] is of degree k − 3. The first polynomials Lk(X) are:

L3(X) = 1,

L5(X) = X2 − 10X + 1,

L7(X) = X4 − 56X3 + 246X2 − 56X + 1,

L9(X) = X6 − 246X5 + 4047X4 − 11572X3 + 4047X2 − 246X + 1.

In this section, we will relate the study of the non-trivial zeros in F∗p of
the polynomials Mk(X), k odd, to the orthogonal of cyclotomic units.

Note that the number of k even, 2 ≤ k ≤ p − 3, such that −1 ∈ F∗p is a
root of Mk(X) is connected to i(p):

Lemma 5.1. (i) Let k be an even integer , 2 ≤ k ≤ p− 3. Then

Mk(−1) ≡ 2(2k − 1)
Bk
k

(mod p).

(ii) Mp−1(−1) ≡ 2p−2
p (mod p).

Proof. (i) is a consequence of Proposition 2.5; for (ii) see [5], Chapter 8.
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Recall that we identify V and U . Set

ε+ =
∑

i≡0 (mod 2)

eωi ∈ Fp[G] and ε− =
∑

i≡1 (mod 2)

eωi ∈ Fp[G].

Then ε+ε− = 0, ε2
+ = ε+, ε2

− = ε−, 1 = ε+ + ε−, σ−1ε+ = ε+ and
σ−1ε− = −ε−. We set V+ = ε+V and V− = ε−V. Then

V+ =
⊕

i≡0 (mod 2)

V(i), V− =
⊕

i≡1 (mod 2)

V(i).

Furthermore
dimFp V+ = dimFp V− = (p− 1)/2.

Note also that

V+ =
Q(ζp)+ ∩ UK

Q(ζp)+ ∩ µp−1U
(p)
K

.

Let ε ∈ µp−1. We set

%ε =
ε− ζp
ε− ζ−1

p

.

Then %ε ∈ V−. In this section, we suppose that p ≥ 5.

Lemma 5.2. V− is generated as Fp[G]-module by the %ε, ε ∈ µp−1 \
{1,−1}.

Proof. Let ε ∈ µp−1, ε 6= 1. Then, by Proposition 2.5, we have ϕ1(%ε)
6= 0. Thus

V−(1) = Fpeω%ε.
Let k be an odd integer, 3 ≤ k ≤ p− 2. By Proposition 2.5, we have

V−(k) = Fpeωk%ε ⇔ ϕk(%ε) 6= 0 ⇔ Mk(ε) 6≡ 0 (mod p).

But there exists ε ∈ µp−1\{1,−1} such that Mk(ε) 6≡ 0 (mod p). The lemma
follows.

Lemma 5.3. Let F be a real subfield of Q(ζp) with [F : Q] = l ≥ 2.
Then %ε ∈ Cyc⊥F if and only if for j = 1, . . . , l − 1,

Bj(p−1)/lMp−j(p−1)/l(ε) ≡ 0 (mod p).

Proof. By the proof of Proposition 2.6, we have

gp(%ε − 1) ≡
p−2∑

k=1

1
k
ϕk(%ε)λkL (mod ppK).

Thus, by Theorem 2.7, Proposition 2.5 and Theorem 3.2, if

Bj(p−1)/lMp−i(p−1)/l(ε) ≡ 0 (mod p) for j = 1, . . . , l − 1,

then %ε ∈ Cyc⊥F .
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Conversely, assume that %ε ∈ Cyc⊥F . Let B be the Fp[G]-submodule of
V− generated by %ε. By Theorem 4.1, we have

dimFp B(i) + dimFp
CycF

CycKum
F

(p− 1) ≤ 1.

It remains to apply Proposition 2.5 and Theorem 3.2.

G. Terjanian has conjectured (see [8]) that for every odd prime number,
%ε ∈ Cyc⊥F ⇒ ε = 1 or ε = −1, where F = Q(ζp)+. By Lemma 5.3, Ter-
janian’s conjecture is equivalent to the statement that the Kummer system
of congruences

B2jMp−2j ≡ 0 (mod p), 1 ≤ j ≤ (p− 3)/2,

has only the trivial solutions, i.e. 0, 1 and −1. L. Skula has proved (see [7])
that if Terjanian’s conjecture is false for a prime p then i(p) ≥ [ 3

√
p/2].

Theorem 5.4. Let x, y ∈ Z be such that xy(x2 − y2) 6≡ 0 (mod p). Let
B be the Fp[G]-submodule of V generated by x+ yζp. Then

dimFp B
− ≥ √p− 1.

Proof. Suppose that dimFp B
− <

√
p − 1. Set r = [

√
p] − 1. Note that

ζp ∈ B−. Consider the set of all products

ζb0p

r∏

i=1

(x+ yζip)
bi ,

where 0 ≤ bi < p for i = 0, . . . , r. The number of such products is pr+1 >
|B−|. Therefore, two of them must agree in their B−-components, so we
may divide and obtain

r∏

i=1

(x+ yζip)
ai ≡ ζνp δ (mod p),

where −p < ai < p and some ai are non-zero (because a non-trivial power
of ζp is not congruent to a real number modulo p), δ ∈ Q(ζp)+ and ν ≥ 0.
Thus, we get

r∏

i=1

(x+ yζip)
ai

(y + xζip)ai
≡ ζvp (mod p)

for some v ≥ 0. But, by the proof of Eichler’s Theorem (see [10], Theo-
rem 6.23), this implies that xy(x2 − y2) ≡ 0 (mod p), a contradiction.

Corollary 5.5. Let p ≥ 5 be a prime number. If Terjanian’s conjecture
is false for the prime p, then:

(i) 2p−1 ≡ 1 (mod p2);
(ii) Bp−3 ≡ 0 (mod p);

(iii) i(p) ≥ √p− 2.
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Proof. Let C be the group of cyclotomic units of Q(ζp) and let F =
Q(ζp)+. Then ε − ζp is orthogonal to C for the norm residue symbol if
and only if %ε ∈ Cyc⊥F (see [2]). Therefore (i) and (ii) are a consequence of
[8], Enoncé 8. Now, (iii) is a consequence of Theorem 5.4, Lemma 5.3 and
Proposition 2.5.

Note that the ABC conjecture implies that Terjanian’s conjecture is
true for infinitely many primes p (see [6]). It would be interesting to find
analogues of Terjanian’s conjecture for real subfields of Q(ζp) (see [1]).

6. p-adic regulators and Kummer subgroups of units. Let F be
a real subfield of Q(ζp) with [F : Q] = l, l ≥ 2. We set GF = Gal(F̂ /Qp)
and χ = ω(p−1)/l. Then

ĜF = 〈χ〉.
We denote the p-adic regulator of F by Rp(F ) and the discriminant of F by
d(F ). Let ε ∈ EF ; we denote by Aε the subgroup of EF generated by −1
and σ(ε), σ ∈ GF . We say that ε is a Minkowski unit if Aε is of finite index
in EF .

Proposition 6.1. Let ε ∈ EF be a Minkowski unit. Then

(EF : Aε)
Rp(F )√
d(F )

≡ ± l2(l−1)

(l − 1)!

l−1∏

k=1

ϕk(p−1)/l(ε) (mod p).

Proof. Let ε be a Minkowski unit. Set

Rp(Aε) = det(Logp(στ(ε)))σ,τ∈GF \{1}.

Then Rp(Aε) 6= 0 and (see [10], Lemma 4.15)

(EF : Aε) = ±Rp(Aε)
Rp(F )

.

But, from [10], Lemma 5.26,

Rp(Aε) =
l−1∏

j=1

( ∑

σ∈GF
χ(σ)−j Logp(σ(ε))

)
.

Now, by Proposition 2.6,

Logp(σ(ε)) ≡
l−1∑

j=1

1
j(p− 1)/l

χ(σ)−jϕj(p−1)/l(ε)λ
j(p−1)/l
L (mod p

p
K).

Thus, we have
∑

σ∈GF
χ(σ)−k Logp(σ(ε)) ≡ l2

k(p− 1)
ϕk(p−1)/l(ε)λ

k(p−1)/l
L (mod p

p
K).



Units and norm residue symbol 49

Therefore, there exists ak ∈ Zp, ak ≡ ϕk(p−1)/l(ε), such that

∑

σ∈GF
χ(σ)−k Logp(σ(ε)) = λ

k(p−1)/l
L

(
l2

k(p− 1)
ak + uk

)
,

where uk ∈ p
1+(p−1)/l
K . We get

Rp(Aε) = λ
(p−1)(l−1)/2
L

l−1∏

k=1

(
l2

k(p− 1)
ak + uk

)
.

But
√
d(F ) = ±λ(p−1)(l−1)/2

L . Therefore

(EF : Aε)
Rp(F )√
d(F )

≡ ± l2(l−1)

(l − 1)!

l−1∏

k=1

ϕk(p−1)/l(ε) (mod p
1+(p−1)/l
K ).

But, since Rp(F )/
√
d(F ) ∈ Zp, this congruence holds modulo p.

Corollary 6.2. Let ε be a Minkowski unit , ε ∈ EF . Then

(2l)l−1hF

l−1∏

k=1

ϕk(p−1)/l(ε) ≡ ±(EF : Aε)
l−1∏

k=1

Bk(p−1)/l (mod p).

Proof. By [10], Theorem 5.24,

2l−1hF
Rp(F )√
d(F )

=
l−1∏

j=1

Lp(1, χj).

Now

Lp(1, χj) ≡
l

j
Bj(p−1)/l (mod p).

Therefore

2l−1hF
Rp(F )√
d(F )

≡ ll−1

(l − 1)!

l−1∏

j=1

Bj(p−1)/l (mod p).

Let ε be a Minkowski unit. By Proposition 6.1, we have

(EF : Aε)
Rp(F )√
d(F )

≡ ± l2(l−1)

(l − 1)!

l−1∏

j=1

ϕj(p−1)/l(ε) (mod p).

The corollary follows.

Let ε1, . . . , εl−1 be a system of fundamental units of F . We set

RF ≡
(

det
(

1
j(p− 1)/l

ϕj(p−1)/l(εi)
)

1≤i,j≤l−1

)2

(mod p).

Note that RF modulo p is independent of the choice of ε1, . . . , εl−1 (see [4]).
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Lemma 6.3. RF 6≡ 0 (mod p) if and only if EKum
F = (EF )p.

Proof. It is clear that if RF 6≡ 0 (mod p) then EKum
F = (EF )p.

Conversely, assume that EKum
F = (EF )p. Let ε be a generator of the

cyclic Fp[GF ]-module EF /EKum
F . Set

B ≡
(

det
(

1
j(p− 1)/l

ϕj(p−1)/l(σ(ε))
)

1≤j≤l−1, σ∈GF \{1}

)2

(mod p).

The rank of this latter matrix is equal to the rank of

(χ(σ)j)1≤j≤l−1, σ∈GF \{1}.

Therefore B 6≡ 0 (mod p). By Proposition 2.6 and [4], page 113,

B ≡ (EF : Aε)2RF (mod p).

Therefore RF 6≡ 0 (mod p).

If we apply Proposition 2.6, by the proof of [4], Theorem 1A, we get

Theorem 6.4. Let g be a primitive root modulo p. We have

4l−1h2
FRF

≡ l2

(l − 1)!2
(det(g(p−1)(i−1)k/l)1≤i,k≤l−1)2

l−1∏

j=1

B2
j(p−1)/l

((j(p− 1)/l)!)2 (mod p).

Theorem 6.5.

EKum
F = (EF )p if and only if

Rp(F )√
d(F )

6≡ 0 (mod p).

Proof. Let ε1, . . . , εl−1 be a system of fundamental units of F . Set βi =
Logp(εi) for i = 1, . . . , l − 1 and βl = 1 (recall that l = [F : Q]). We have

F̂ = Qp(λ(p−1)/l
L ). Thus

OF̂ =
l−1⊕

j=0

Zpλ
j(p−1)/l
L .

Therefore, for i = 1, . . . , l, we can write

βi =
l−1∑

j=0

aijλ
j(p−1)/l
L ,

where aij ∈ Zp. But

det(σ(βi))σ∈Gal(F̂ /Qp), i=1,...,l = lRp(F ).

Furthermore
det(σ(βi)) = det(aij)det(σ(λj(p−1)/l

L )).
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But, for i = 1, . . . , l − 1, we have

aij ≡ −
l

j
ϕj(p−1)/l(εi) (mod p)

for j = 1, . . . , l − 1 and ai0 ≡ 0 (mod p). Therefore

det(aij)2 ≡ RF (mod p).

The theorem follows.
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