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1. Introduction. Let K be a field of characteristic 0 and let a, b, c be
non-zero elements of K. In connection with the problem of studying the
possible degree of (f(x), g(x)), where f(x) = xn + Axm + B is a trinomial
and g(x) = xQ − C is a binomial, A. Schinzel asked (oral communication)
the following

Question. Let ζ1, ζ2 be two complex roots of unity with least common
order Q and suppose that m,n are integers such that (m,n,Q) = 1 and

|ζm1 − 1|m|ζn−m1 − 1|n−m|ζn1 − 1|−n(1)

= |ζm2 − 1|m|ζn−m2 − 1|n−m|ζn2 − 1|−n,
where none of the six absolute values is 0. Is it true that then ζ2 = ζ±1

1 ?

For the connection between these two problems, see Schinzel [4].
We remark that there is a symmetry among the numbers m,n−m,−n:

in fact, |ζn−1| = |ζ−n−1| and we can rewrite equation (1) in the symmetric
form

|ζa1 − 1|a|ζb1 − 1|b|ζc1 − 1|c = |ζa2 − 1|a|ζb2 − 1|b|ζc2 − 1|c,(2)

where {a, b, c} = {m,n − m,−n}. Assuming again that none of the six
absolute values is zero, the hypotheses in Schinzel’s question can then be
translated into a+ b+ c = 0 and (a, b, c,Q) = 1.

The aim of this paper is to prove that Schinzel’s question has a positive
answer with essentially one exception. More precisely, we shall prove

Theorem 1. Let ζ1, ζ2, Q,m, n be as above and assume that (1) holds.
Then either ζ2 = ζ±1

1 or Q = 10, {m,n −m,−n} = {x, 3x,−4x} for some
integer x with (x, 10) = 1, and ζ1, ζ2 are any two primitive tenth roots of
unity.
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Let ζ = ζQ be a primitive Qth root of unity. According to a definition
given by Conrad [1], the multiplicative group generated by the numbers
ζν−1 with ν 6≡ 0 (modQ) modulo roots of unity is the group D(Q) of cyclo-
tomic numbers. This group and its subgroups, in particular the subgroup of
cyclotomic units, have been studied by many authors (see for instance [3],
[6]–[8]). A classification of short multiplicative relations among cyclotomic
numbers, however, is not available in the literature, and even for a simple
equation like (1) there is no automatic way to find all solutions.

The main tool for the proof of Theorem 1 will be a result by Ennola
[3], which gives necessary and sufficient conditions for a relation among
cyclotomic numbers to hold. In Section 2 we shall recall Ennola’s result and
we shall examine a few small values of Q. After some preliminary lemmas
(Section 3), we shall split our analysis into a fairly large number of cases.
The proof of Theorem 1 will result from the combination of Propositions
1–10 of Sections 4 and 5. As the proof is rather technical, we shall leave
enough detail in the general arguments, but we shall omit completely the
verifications when these concern a finite number of cases, which can very
easily be checked by a computer search.

2. Ennola’s result and a few small values of Q. We shall always
denote by ζ a primitive Qth root of unity. We briefly recall the main result
of Ennola [3].

For x ∈ Z/QZ, let

Ax = log |ζx − 1|,

and consider a linear combination with integer coefficients of the Ax,

R =
Q−1∑

x=1

CxAx.(3)

For an even character χ mod Q of conductor f > 1 and for each d such that
f | d |Q, we define

T (χ, d,R) =
d−1∑

x=1
(x,d)=1

χ(x)C(Q/d)x(4)

and

Y (χ,R) =
∑

d
f |d|Q

1
φ(d)

∏

p|d
(1− χ(p))T (χ, d,R);(5)

moreover, for all prime numbers p |Q we define



An equation in cyclotomic numbers 73

Yp(R) =
pγp−1∑

x=1

(x, pγp)C(Q/pγp)x,(6)

where pγp ||Q. Then we have the following

Theorem 2 (Ennola). We have R = 0 if and only if

Y (χ,R) = 0 for every even character χ 6= χ1(7)

and
Yp(R) = 0 for every prime p dividing m.(8)

Throughout the paper we shall keep the notation of (1)–(6), which is
borrowed from [3] with the only exception that in the present paper the
common order of ζ1 and ζ2 is called Q. Moreover, for a positive integer d we
shall denote by µd the group of complex dth roots of unity and by ζd (for
d > 2) a primitive dth root of unity. The symbol ζ without a subscript will
always stand for a primitive Qth root of unity.

Let ζ1 = ζ l, ζ2 = ζk. In Ennola’s notation, relation (1) reads as R = 0
where

R = mAlm + (n−m)Al(n−m) − nAln(9)

− (mAkm + (n−m)Ak(n−m) − nAkn).

We shall derive most of our results as consequences of relations (7). For
Q ∈ {1, 2, 3, 4, 6}, however, there is no even character χ 6= χ1 modulo Q, so
conditions (7) are empty. We leave it to the reader to verify that equations
(8) are sufficient to prove Theorem 1 for these particular values of Q.

Therefore, we shall assume Q 6∈ {1, 2, 3, 4, 6} from now on. Moreover, we
shall deal separately with the case when Q ≡ 2 (mod 4), since in this case
there is no primitive character with modulus Q.

3. Preliminary results. We recall without proof the following

Lemma 1. Let C be the maximal conductor of an even primitive char-
acter modulo a divisor of Q. Then

C =
{
Q′ if Q = 2Q′ and Q′ is odd ,
Q otherwise.

A primitive character mod C is also a Dirichlet character mod C. Let
G be the group of all even Dirichlet characters mod C and let K be the
subgroup of G generated by the set X of primitive even characters, i.e. of
even Dirichlet characters of maximal conductor.

Lemma 2. K = G unless Q = 2a · 3, a ≥ 3, in which case [G : K] = 2.

Proof. We split the proof in a number of cases.
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Case 1: Q is odd or Q = 2a. This case is trivial if Q is a prime power,
since the group of even Dirichlet characters is cyclic and any generator must
clearly have maximal conductor. Let then Q = q1 . . . qr = pa1

1 . . . parr be the
factorization of Q into primes, 2 < p1 < . . . < pr, r ≥ 2 and let χ1, . . . , χr be
Dirichlet characters induced by (odd) generators of the primitive characters
mod q1, . . . , qr, respectively. Note that χ2

i also has conductor qi unless qi = 3,
so in particular χ2

i has conductor qi for i ≥ 2. We have

(χ1χ2χ
2
3 . . . χ

2
r) · (χ1χ

−1
2 χ−2

3 . . . χ−2
r ) = χ2

1 ∈ K
and, similarly, χ2

i ∈ K for all i = 1, . . . , r. Also,

(χ1χ2χ
2
3 . . . χ

2
r) · (χ−2

3 . . . χ−2
r ) = χ1χ2 ∈ K

and, similarly, χ1χi ∈ K for all i > 1. Finally, if 1 < i < j we have
χ−2

1 · χ1χi · χ1χj = χiχj ∈ K.
The case follows since G is generated by the set {χiχj | 1 ≤ i ≤ j ≤ r}.
Case 2: Q = 2Q′ and Q′ odd. By Lemma 1, we have to consider the

characters mod Q′, so Case 1 applies.

Case 3: Q = 2aQ′, a ≥ 2, Q′ odd and Q′ > 3. Let Q′ = q1 . . . qr =
pa1

1 . . . parr . The assumption Q′ > 3 implies that either r ≥ 2 or r = 1 and
q1 > 3.

Let χ0 be a generator of the even characters mod 2a and let χ(4) be the
(odd) primitive character mod 4. As in Case 1, we see immediately that
χ2
i ∈ K and χiχj ∈ K for 0 ≤ i ≤ j ≤ r. Also, χ0 ∈ K, since for a = 2 we

have χ0 = 1 and, for a > 2:

• if r ≥ 2, then χ0χ1χ2χ
2
3 . . . χ

2
r ∈ K implies that χ0 ∈ K;

• if r = 1, then χ0χ
2
1 ∈ K implies that χ0 ∈ K.

Furthermore,
χ(4)χ0χ1χ

2
2 . . . χ

2
r ∈ K ⇒ χ(4)χ1 ∈ K

and χ(4)χi = χ(4)χ1 · χ1χi · χ−2
1 ∈ K for all i ≥ 1. Since all odd characters

mod 2a are of the form χb0χ
(4) and χb0χ

(4)χi ∈ K for all i ≥ 1, it follows that
K is again the full group of even characters.

Case 4: Q = 2a · 3, a ≥ 2. If a = 2, then χ(4)χ1 ∈ K and generates
the group of even characters mod 12. If a > 2, all characters of maximal
conductor are contained in the subgroup generated by χ(4)χ0χ1, which has
order 2a−2, while G has order 2a−1.

Corollary 1. Let k be such that χ(k) = 1 for all even primitive char-
acters of maximal conductor C. Then

(a) k ≡ ±1,±i (modQ) if Q = 2a · 3, a ≥ 3, where i is defined by the
congruences i ≡ 2a−1 + 1 (mod 2a), i ≡ −1 (mod 3),
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(b) k ≡ ±1 (modQ′) if Q = 2Q′, Q′ odd ;
(c) k ≡ ±1 (modQ) otherwise.

Proof. The case Q = 2a · 3 is established by looking at the kernel
of χ(4)χ0χ1. The remaining cases are direct consequences of Cases 1–3 of
Lemma 2.

4. The case when at least one root is primitive. Throughout this
section we shall assume that either ζ1 or ζ2 is a primitive Qth root of unity.
Without loss of generality, we shall also assume that ζ1 = ζ.

4.1. The case Q 6≡ 2 (mod 4). If Q is odd, we can improve on Lemma 2
as follows. Let Q = q1 . . . qr = pa1

1 . . . parr be the prime factorization of Q,
3 ≤ p1 < . . . < pr, r ≥ 2. Let χ1, . . . , χr be as in Lemma 2. Any Dirichlet
character modQ can be written in the form χ = χi11 . . . χ

ir
r , and the subgroup

G of even Dirichlet characters is defined by the equation i1 + . . . + ir ≡ 0
(mod 2). The following lemma is very similar in spirit to the results of [5,
Sect. 3].

Lemma 3. If Q > 3 is odd , the set X of Dirichlet characters of maximal
conductor Q is not contained in the union of two maximal subgroups H0,K0
of G unless Q can be written as Q = 3Q1Q2 with Q1, Q2 > 1, (3, Q1) =
(3, Q2) = (Q1, Q2) = 1 and the subgroups H0,K0 are defined by the equations

∑

h
ph|Q1

ih ≡ 0 (mod 2),
∑

h
ph|Q2

ih ≡ 0 (mod 2)

respectively.

Proof. The conclusion is trivial if G is cyclic, since in this case any
generator of G has maximal conductor and cannot be contained in any
proper subgroup. Hence from now on we can suppose that the number r of
distinct prime factors of Q is ≥ 2.

We recall that any maximal subgroup of a finite abelian group has prime
index in the full group.

Case 1: [G : H0] = `1, [G : K0] = `2, `1, `2 primes > 2. The equations
defining H0 and K0 must be of the form

a1i1 + . . .+ arir ≡ 0 (mod `1),(10)

b1i1 + . . .+ brir ≡ 0 (mod `2).(11)

Remark 1. If ai 6≡ 0 (mod `1) (resp. bi 6≡ 0 (mod `2)) then necessarily
pi = `1 and qi ≥ `21 or pi ≡ 1 (mod `1) (resp. pi = `2 and qi ≥ `22 or pi ≡ 1
(mod `2)). In particular, ai ≡ 0 (mod `1) and bi ≡ 0 (mod `2) if qi = 3 or
qi = 5.
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If there exists a prime ph > 3 such that ah 6≡ 0 (mod `1) and bh 6≡ 0
(mod `2), let j = 1 if p1 = 3 and j be any index such that j 6= h otherwise.
Then one of the even r-tuples (i1, . . . , ir) defined by

ih = 1,−1, 3, ij = 1, iλ = 2 for λ 6= h, j

does not satisfy either of equations (10) and (11). (In what follows, we say
that an even r-tuple is good if it does not satisfy either of the equations
defining the subgroups H0 and K0.)

If there exist two distinct primes ph, pj > 3 such that ah 6≡ 0 (mod `1)
and bj 6≡ 0 (mod `2), suppose, by symmetry, that ph < pj . Then one of the
r-tuples (i1, . . . , ir) defined by

{
ih = ±1, ij = ±1 and iλ = 2 for λ 6= h, j if p1 > 3,
ih = ±1, ij = ±2, i1 = 1, iλ = 2 for λ 6= 1, h, j otherwise,

is good. So, since neither of equations (10) and (11) can be empty, we are
left with the case (up to symmetry between `1 and `2) when p1 = 3, `2 = 3
and

a1i1 + . . .+ arir ≡ 0 (mod `1), i1 ≡ 0 (mod 3).

If ah ≡ 0 (mod `1) for all h > 1, then the r-tuple defined by i1 = i2 = 1,
iλ = 2 for λ > 2 is good. If ah 6≡ 0 (mod `1) for some h > 1, then at least
one of the r-tuples defined by i1 = 1, ih = ±1, iλ = 2 for λ 6= 1, h is good.

Case 2: [G : H0] = 2 and [G : K0] = ` > 2. The group G/2G has order
2r if all pi are congruent to 1 mod 4, and 2r−1 otherwise. In any case G has
2r−1 − 1 subgroups of index 2 given by equations of type

∑

h∈S
ih ≡ 0 (mod 2), S 6= ∅, {1, . . . , r}

(the interchange between S and its complementary set {1, . . . , r} \ S gives
the same subgroup). These are all subgroups of index 2 if there exists at
least one prime ph which is congruent to 3 mod 4. If ph ≡ 1 (mod 4) for all i,
then we also have the 2r−1 subgroups given by equations of type

ε1i1 + . . .+ εrir ≡ 0 (mod 4),

where εh = ±1 and changing all signs gives rise to the same subgroup. So
this case splits into two subcases.

Subcase 2a: The relevant equations are:

ε1i1 + . . .+ εrir ≡ 0 (mod 4), εh = ±1,

a1i1 + . . .+ arir ≡ 0 (mod `),

and ph ≡ 1 (mod 4) for all h.
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Choose an index h such that ah 6≡ 0 (mod `), and let j 6= h be any other
index. Then at least one of the r-tuples

ih = ±1,±3, ij = 1, iλ = 2 for λ 6= h, j

is good. (Note that χ±1
h 6= χ∓3

h by Remark 1.)
Subcase 2b: The relevant equations are:

∑

h∈S
ih ≡ 0 (mod 2), S 6= ∅, {1, . . . , r},

a1i1 + . . .+ arir ≡ 0 (mod `).

Note that, by Remark 1, if qi = 3, 5 then ai = 0. Interchanging S with its
complementary set if necessary, we may suppose that there exists an index
h 6∈ S such that ah 6≡ 0 (mod `). Let j = 1 if 1 ∈ S and j be any index such
that j ∈ S otherwise. Then at least one of the two r-tuples

{
i1 = 1, ih = ±1, iλ = 2 for λ 6= 1, h if 1 ∈ S,
i1 = 1, ij = 1, ih = ±2, iλ = 2 for λ 6= 1, h, j otherwise,

is good.

Case 3: [G : H0] = 2, [G : K0] = 2. Also this case splits into subcases.

Subcase 3a: The equations are

ε1i1 + . . .+ εrir ≡ 0 (mod 4), εh = ±1,

δ1i1 + . . .+ δrir ≡ 0 (mod 4), δh = ±1;

in this case all primes ph are congruent to 1 mod 4.
The r-tuple i1 = 2, iλ = 4 for λ > 1 is good.

Subcase 3b: The equations are

ε1i1 + . . .+ εrir ≡ 0 (mod 4), εh = ±1,∑

h∈S
ih ≡ 0 (mod 2), S 6= ∅, {1, . . . , r};

in this case all primes ph are congruent to 1 mod 4.
Let h ∈ S, j 6∈ S; at least one of the r-tuples

ih = ±1, ij = 1, iλ = 2 for λ 6= h, j

is good.

Subcase 3c: The equations are
∑

h∈S
ih ≡ 0 (mod 2), S 6= ∅, {1, . . . , r},

∑

h∈T
ih ≡ 0 (mod 2), T 6= ∅, {1, . . . , r}.
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We may of course suppose that S 6= T and, possibly interchanging the roles
of S, T and their complementary sets, that 1 6∈ S ∪ T .

If S ∩ T 6= ∅, let h be an index such that h ∈ S ∩ T . The r-tuple

i1 = ih = 1, iλ = 2 for λ 6= 1, h

is good.
Suppose then that S ∩ T = ∅. If there exists h > 1 such that h 6∈ S ∪ T ,

let j1 ∈ S, j2 ∈ T ; the r-tuple

i1 = ih = ij1 = ij2 = 1, iλ = 2 for λ 6= 1, h, j1, j2

is good.
If q1 6= 3, we can get the same conclusion by looking at the r-tuple

ij1 = ij2 = 1, iλ = 2 for λ 6= j1, j2.
So we are left with the case when q1 = 3, S ∩ T = ∅, S ∪ T = {2, . . . , r},

thereby proving Lemma 3.

With the notation of Lemma 3, suppose next that Q = 3Q1Q2, and that
H is a subgroup of G contained in H0. We have the following

Lemma 4. Let Q be odd , Q = 3Q1Q2, with Q1, Q2 > 1 and (3, Q1) =
(3, Q2) = (Q1, Q2) = 1. Then the set X of Dirichlet characters of maximal
conductor Q is not contained in H∪K0 unless Q1 = 5 and H coincides with
the subgroup H1 defined by the equation

i2 + 2i3 + . . .+ 2ir ≡ 0 (mod 4).(12)

Proof. By Lemma 3, we have X 6⊂ H ∪K0 whenever H is contained in a
maximal subgroup of G of odd index; hence we may only consider the case
when H is contained in a maximal subgroup of H0 of index 2.

The group H0/2H0 has order 2r−1 if all primes ph with h ∈ S are con-
gruent to 1 mod 4 and order 2r−2 otherwise. In any case there are 2r−2 − 1
subgroups of H0 of index 2 given by the equations

∑

h∈U
ih ≡ 0 (mod 2),

where U is a subset of {1, . . . , r} different from ∅, {1, . . . , r}, S, T , and two
sets U and U ′ give rise to the same subgroup if and only if U ∩S, U ′∩S and
U ∩ T , U ′ ∩ T are either equal or complementary in S and T respectively.

In the case when there exists h ∈ S with ph ≡ 3 (mod 4), these are all
possible equations of subgroups of H0 of index 2. But since necessarily in
an equation of this type we must have U 6= S, T , the argument of the proof
of Lemma 3 shows that we are done in this case.

In the case when ph is congruent to 1 mod 4 for all h ∈ S, renumber the
indices 2, . . . , r so that S = {2, . . . , s}, T = {s+ 1, . . . , r} and p2 < . . . < ps,
ps+1 < . . . < pr. Then the other 2r−2 subgroups of index 2 are given by the



An equation in cyclotomic numbers 79

equations

ε2i2 + . . .+ εsis + δs+1is+1 + . . .+ δrir ≡ 0 (mod 4),

where εh = ±1, δh = 0, 2, and two such equations give rise to the same
subgroup if and only if they are equal or obtained from one another by
changing all signs.

If |S| ≥ 2, hence s ≥ 3, then at least one of the r-tuples given by

i1 = ir = 1, i2 = 2, i3 = 2, 4, iλ = 4 for λ 6= 1, 2, 3, r

is good.
If s = 2 and q2 6= 5, then at least one of the r-tuples

i1 = ir = 1, i2 = 2, 4, iλ = 4 for λ 6= 1, 2, r

is good.
Suppose now that s = 2 and q2 = 5. If there exists h > 2 such that

δh = 0, then the r-tuple given by

i1 = 1 = ih = 1, iλ = 2 for λ 6= 1, h

is good.
Hence the only possibility is that Q1 = 5 and that H1 is the unique

maximal subgroup of H0 containing H.
If H = H1, then in fact we have X ⊂ H1∪K0. If H is properly contained

in H1, then in fact it must be contained in a subgroup of H1 of index 2. As
before, we can check that H1/2H1 has order 2r−2 and that all its subgroups
of index 2 are given by equations of type

∑

h∈V
ih ≡ 0 (mod 2),

where V is a non-empty subset of {3, . . . , r}. Let h ∈ V . Then the r-tuple
given by

i1 = ih = 1, iλ = 2 for λ 6= 1, h

is then good, and this concludes the proof of the lemma.

Consider now the case when all m,n − m,n are coprime to Q. Notice
that Q must be odd in this case, since at least one of the three numbers
m,n−m,n is even.

Let z be the solution mod Q of the congruence m ≡ zn (modQ). Let
H,K be the subgroups of G defined by the equations χ(z) = χ(1 − z) = 1
and χ(k) = 1, respectively. We have the following

Lemma 5. If Q > 3 is odd and k 6= ±1 then the set X of Dirichlet even
characters of maximal conductor Q is not contained in H ∪K.

Proof. By Lemma 2, the condition k 6= ±1 implies that K 6= G. Lemma
3 shows that we only have to take care of the case when Q = 3Q1Q2 with
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Q1, Q2 > 1, (3, Q1) = (3, Q2) = (Q1, Q2) = 1 and the subgroups H,K are
contained in maximal subgroups H0,K0 defined by the equations

∑

h∈S
ih ≡ 0 (mod 2),

∑

h∈T
ih ≡ 0 (mod 2)

respectively, where S = {h : ph |Q1} and T = {h : ph |Q2}.
However, we note that H cannot coincide with the subgroup H0: in fact,

the set {x ∈ Z | χ(x) = 1 ∀χ ∈ H0} is contained in the set x ≡ ±1 (modQ1)
in this case, and it is immediately seen that z and 1− z cannot both lie in
this set (note that Q1 > 3). So it remains to consider the case when H is
properly contained in H0, and, by Lemma 4, only the case when H = H1,
i.e. the subgroup defined by the equation

i2 + 2i3 + . . .+ 2ir ≡ 0 (mod 4).

One easily sees that the set {x ∈ Z | χ(x) = 1 ∀χ ∈ H1} is contained in the
set {x ∈ Z | x ≡ ±1 (modQ2)}, and again it is not possible that both z and
1− z belong to this set. This concludes the proof of the lemma.

Proposition 1. Let ζ1 = ζ be a primitive Qth root of unity and ζ2 = ζk.
Assume that (m,Q) = (n−m,Q) = (n,Q) = 1, whence, in particular , that
Q is odd. If (1) holds, then k ≡ ±1 (modQ).

Proof. Consider all relations (7) relative to characters of maximal con-
ductor. They have the form

(1− χ(k))(mχ(m) + (n−m)χ(n−m)− nχ(n)) = 0.

We look when the term inside the second parentheses is zero, i.e. when

mχ(m) + (n−m)χ(n−m)− nχ(n) = 0.(13)

In our notation, this amounts to studying the vanishing of the quantity
mχ(z) + (n−m)χ(1− z)− n. Since |χ(z)| = |χ(1− z)| = 1, this vanishes if
and only if χ(z) = χ(1− z) = 1. Since H is a proper subgroup of G, Lemma
5 implies that K = G and, by Corollary 1(c), k ≡ ±1 (modQ).

Proposition 2. Let ζ1 = ζ, ζ2 = ζk. Suppose that Q 6≡ 2 (mod 4), and
that exactly two of the numbers (m,Q), (n−m,Q), (n,Q) are equal to 1. If
(1) holds, then k ≡ ±1 (modQ).

Proof. By symmetry, we may consider only the case when (m,Q) =
(n−m,Q) = 1 and (n,Q) > 1. For an even character of maximal conductor
χ, relations (7) take the form

(1− χ(k))(mχ(m) + (n−m)χ(n−m)) = 0.

Now mχ(m)+(n−m)χ(n−m) = 0 implies |m| = |n−m|, hence n = 2m and
2mχ(m) = 0, a contradiction. This means that we must have χ(k) = 1 for
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all even characters of maximal order. By Corollary 1, the conclusion follows
if Q is not of the form Q = 2a · 3, a ≥ 3.

If Q = 2a · 3, a ≥ 3, we need to exclude the case when k = ±i (with
the notation of Corollary 1). Consider a generator χ0 of the even characters
mod 2a; we have χ0(±i) = −1 and the relation Y (χ0, R) = 0 is

1
φ(2a)

2a−1∑

x=1
(x,2a)=1

χ0(x)C3x +
1

φ(2a · 3)
(1− χ0(3))

2a·3−1∑

x=1
(x,2a·3)=1

χ0(x)Cx = 0.(14)

Since 2 |n and 3 -m(n −m) all the equations 3x = m,n −m,−n, 3x =
∓im,∓i(n−m),±in are unsolvable under the condition (x, 2a) = 1; more-
over, χ0(n) = χ0(±in) = 0. So equation (14) becomes

2(1− χ0(3))(mχ(m) + (n−m)χ(n−m)) = 0,

which is impossible since χ0(3) 6= 1.

Proposition 3. Let ζ1 = ζ, ζ2 = ζk. Suppose that Q 6≡ 2 (mod 4), and
that exactly one of the numbers (m,Q), (n−m,Q), (n,Q) is equal to 1. If
(1) holds, then k ≡ ±1 (modQ).

Proof. By symmetry, we may only consider the case when (m,Q) = 1,
(n−m,Q) > 1 and (n,Q) > 1. For any even character of maximal conductor
Q, relation (7) reads

(1− χ(k))χ(m) = 0.

By Corollary 1, we need only exclude the case when Q = 2a · 3, a ≥ 3, and
k = ±i. We consider again the character χ0. Exactly one number between
n and n−m is divisible by 2, whereas the other one is divisible by 3. Again
we deal only with the case when 2 |n and 3 |n − m, the other case being
similar. Equation (14) becomes

2
φ(2a)

(n−m)χ0

(
n−m

3

)
+

2
φ(2a · 3)

(1− χ0(3))mχ0(m) = 0,

or, equivalently,

2(n−m)χ0

(
n−m

3

)
+ (1− χ0(3))mχ0(m) = 0.

This last equation implies that |1− χ0(3)| = 2(n−m)/m; but 1− χ0(3) is
an algebraic integer, so if its absolute value is rational then it must be an
integer, and in fact it can only be 0, 1, 2. All possibilities are easily excluded
under our hypotheses, so the proposition follows.

Proposition 4. Let ζ1 = ζ, ζ2 = ζk. Suppose that Q 6≡ 2 (mod 4), and
that none of the numbers m,n − m,n is coprime to Q. If (1) holds, then
k ≡ ±1 (modQ).
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Proof. Let (m,Q) = pα1
1 . . . pαrr , m = (m,Q)m∗, Q = (m,Q)fm, so that

(m∗, fm) = 1, whereas (n −m, fm) > 1 and (n, fm) > 1. Define fn−m and
fn similarly. All numbers fm, fn−m, fn are divisible by at least two prime
factors and at least two of them, say fm and fn, are divisible by the same
power of 2 as Q. Consider even characters χ of conductor f = fm.

Let d be an integer such that fm | d |Q, and write d = pi11 . . . p
ir
r f . The

equations (Q/d)x = n, kn are not solvable under the given conditions, since
(Q/d, n) = 1 and a possible solution would satisfy x ≡ 0 (modn), hence
(x, fm) > 1 and a fortiori (x, d) > 1; the same argument shows that the
equations (Q/d)x = n −m,k(n−m) are not solvable with (x, d) = 1. The
equation (Q/d)x = pα1−i1

1 . . . pαr−irr x = m has solution x = pi11 . . . p
ir
r m

∗,
but this solution is coprime to d only if i1 = . . . = ir = 0, i.e. if d = fm.
Hence relations (7) for such characters become

1
φ(fm)

(1− χ(k))mχ(m∗) = 0

and we can obtain a similar expression by considering the conductor fn.
Since at most one of fm and fn, say fm, can be of the form 2a · 3, a ≥ 3, we
get the system {

k ≡ ±1(±i) (mod fm),
k ≡ ±1 (mod fn).

But the solutions of the single congruences must agree modulo (fm, fn) > 1
and [fm, fn] = Q, hence we get k ≡ ±1 (modQ).

4.2. The case Q ≡ 2 (mod 4). Consider the case when Q = 2Q′, Q′ odd;
then exactly one of m,n −m,n is even, say n = 2n1. By this assumption
we lose some of the symmetries among the numbers m,n − m,−n, hence
throughout this subsection the number −n will be given a distinguished role.
As remarked above, we can suppose that Q′ > 3.

Proposition 5. Let ζ1 = ζ, ζ2 = ζk, k odd , and Q = 2Q′, Q′ odd.
Suppose moreover that (m,Q′) = (n − m,Q′) = (n,Q′) = 1. If (1) holds,
then k ≡ ±1 (modQ), except for the case Q′ = 5, {4m, 4(n−m)} = {n, 3n},
where k can be any number coprime to 10.

Proof. For even characters χ of modulus Q′ relations (7) give

(1− χ(2))
Q∑

x=1
(x,Q)=1

χ(x)Cx +
Q′∑

x=1
(x,Q′)=1

χ(x)C2x = 0.

If k is odd, this becomes

(1− χ(k))[(1− χ(2))(mχ(m) + (n−m)χ(n−m))− nχ(n1)] = 0.(15)
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We first examine the characters χ for which

(1− χ(2))(mχ(m) + (n−m)χ(n−m))− nχ(n1) = 0.(16)

Lemma 6. If equation (16) holds, then either

χ(2) = χ(3) = −1 and {4m, 4(n−m)} = {n, 3n}(17)

or
χ(2) = ζ6 and χ(n1) = ζ6χ(m) = ζ6χ(n−m).(18)

Proof. Let d be the order of such a χ, ζd be a primitive dth root of unity
and consider the congruence mod 2Z[ζd]; since m is odd, we obtain

(1− χ(2))(χ(m)− χ(n−m)) ≡ 0 (mod 2Z[ζd]).(19)

Let (2) = (P1 . . .Ps)e be the factorization of the ideal (2) into prime ideals
(notice that e is a power of 2). We observe that if a number of the form 1−ζad
belongs to P ih for some h, i, then all its conjugates, being its multiples, belong
to P ih; consequently, 1 − ζad ∈ P ij for all j, since the prime ideals Pj are all
conjugate under the action of the Galois group Gal(Q(ζd)/Q).

Hence at least one of the numbers (1− χ(2))2 and (χ(m)− χ(n−m))2

belongs to the ideal (2).

Case 1: 1 − (χ(2))2 ∈ (2). In this case we have χ(2) = ±1,±i, where
i2 = −1. If χ(2) = 1 equation (16) is clearly impossible. If χ(2) = −1, taking
the squares of absolute values in (16) we get

4[m2 + (n−m)2 +m(n−m) · 2<(χ(m)χ(n−m))] = n2.

It follows that the algebraic integer θ = 2<(χ(m)χ(n − m)) is a rational
number, hence θ ∈ {−2,−1, 0, 1, 2}. We get

(8− 4θ)m2 + (4θ − 8)mn+ 3n2 = 0.

This equation can have integer solutions only if θ = −2,−1, 2. If θ = 2 then
n = 0, impossible. If θ = −1, then n = 2m, but in this case n−m = m, hence
χ(m) = χ(n−m), χ(m)χ(m−n) = 1 and θ = 2, a contradiction. If θ = −2,
then either 4m = n and 4(n−m) = 3n or 4m = 3n and 4(n−m) = n, and
therefore χ(3) = −1.

If χ(2) = ±i, taking the squares of absolute values in (16) we get

2(m2 + (n−m)2 + θm(n−m)) = n2.

This last equation has rational solutions only if θ = 0, 2. If θ = 0 we get
n = 2m, n−m = m = n1 and

(1± i)nχ(n1) = nχ(n1),

a contradiction. If θ = 2 we get n = 0, also a contradiction.
It follows that this case implies χ(2) = χ(3) = −1, {4m, 4(n − m)} =

{n, 3n}.
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Case 2: (χ(m))2 − (χ(n−m))2 ∈ (2). This implies that either χ(m) =
±χ(n − m) or χ(m) = iχ(n − m), where i2 = −1. In the latter case the
greatest common divisor of the ideals ((1 ± i)χ(m)) and (2) is (1 ± i) =
(P1 . . .Ps)e/2, hence we fall again into Case 1.

If χ(m) = −χ(n−m), then from (16) we have

(1− χ(2))(2m− n)χ(m) = nχ(n1).

This implies again that |1− χ(2)| ∈ {0, 1, 2}. The case when 1 − χ(2) = 0,
hence χ(2) = 1, is excluded trivially. If |1− χ(2)| = 1, then we get |2m− n|
= |n|, which implies either n = m or m = 0, both cases being impossible.
If |1− χ(2)| = 2, hence χ(2) = −1, we get |4m− 2n| = |n|, and considering
both signs we get {4m, 4(n−m)} = {n, 3n}, and consequently χ(3) = −1.

If χ(m) = χ(n−m), we obtain

(1− χ(2))nχ(m) = nχ(n1),

whence χ(2) = 1− χ(2) = ζ6 and χ(n1) = ζ6χ(m) = ζ6χ(n−m).

Let X be the set of even Dirichlet characters of conductor Q′ and let Z
be the subset of even characters of conductor Q′ having either property (17)
or (18). Moreover, let H be the subgroup of even Dirichlet characters mod
Q′ generated by Z and let K be the subgroup of even Dirichlet characters
mod Q′ defined by the equation χ(k) = 1. Equation (16) holds for all even
characters of conductor Q′ only if X ⊂ Z ∪K, whence clearly only if X ⊂
H ∪K.

Suppose that K 6= G, and consider first the case when H is the full
group of even Dirichlet characters mod Q′. Since both equations (17) and
(18) imply that χ(2)6 = 1, this can only happen if 26 ≡ ±1 (modQ′), i.e.
Q′ | 63 or Q′ | 65.

Lemma 7. If Q′ 6= 3, 5 and either Q′ | 63 or Q′ | 65, then there exists a
subset Y of the set X of even primitive characters mod Q′ such that :

(i) for all χ ∈ Y relation (16) does not hold ;
(ii) Y generates the full group G of even Dirichlet characters mod Q′.

Proof. Direct checking or computer search.

By Lemma 7, we immediately conclude that k ≡ ±1 (modQ′) ifQ′ | 64±1
except for the case when Q′ = 5 and {4m, 4(n−m)} = {n, 3n}.

Let Q′ be such that Q′ - 64± 1 and suppose that K 6= G. By Lemma 3,
and with the notation of that lemma, X 6⊂ H ∪K unless Q′ = 3Q′1Q

′
2, H

is contained in the maximal subgroup H0 given by those characters whose
restriction mod Q′1 is the full group of even characters mod Q′1, and K
is contained in the maximal subgroup K0 given by those characters whose
restriction mod Q′2 is the full group of even characters mod Q′2.

Lemma 8. If H = H0, then X 6⊂ Z ∪K.



An equation in cyclotomic numbers 85

Proof. By (17) and (18), H = H0 implies that 64 ≡ ±1 (modQ′1). Since
(3, Q′2) = 1, we can have 3Q′2 | 64± 1 only if Q′2 = 7.

Case 1: Q′2 6= 7. By Lemma 2, the set of primitive even characters mod
3Q′2 generates the group of all even Dirichlet characters mod 3Q′2, hence
there exists an even character χ of conductor 3Q′2 such that χ(2) 6∈ µ6.
Letting χ′ be any even character of conductor Q′1, we get χ′χ(2) 6∈ µ6,
hence neither (17) nor (18) is satisfied; moreover, the restriction of χ′χ mod
Q′2 is odd, so χ′χ 6∈ K.

Case 2: Q′2 = 7. By direct checking, we get Q′1 ∈ {5, 13, 65}. For all
these cases, it is an exercise to find characters χ of conductor Q′ for which
χ(2) = ζ3, whence χ 6∈ Z ∪K.

If H is strictly contained in H0, then Lemma 4 shows again that X 6⊂
H ∪ K unless Q′1 = 5, Q′ = 3 · 5 · Q′2, (15, Q′2) = 1, H coincides with the
subgroup of the characters defined by equation (12) and K is contained in
the subgroup of those characters whose restriction mod 15 is even. We claim
that also in this case X 6⊂ Z ∪K.

Definition 1. Here and in what follows, if q > 2 is a prime power we
shall denote by χq an (odd) generator of the group of characters mod q.

Consider characters of type χ3χ
2
5χ, where χ is an odd primitive character

mod Q′2. Since χ3χ
2
5(2) = 1, it is enough to show that there exists an odd

primitive character χ mod Q′2 such that χ(2) 6= −1, ζ6. Clearly the odd
primitive characters modQ′2 generate the full group Ĝ of Dirichlet characters
mod Q′2 (remember that Q′2 is odd), hence the existence of such a χ is
guaranteed unless Q′2 - 63 = 26 − 1, which, in our situation, leaves only the
case Q′2 = 7. In this case we can take χ = χ3χ

2
5χ7, and the claim is proved.

It follows that, if H 6= G, then X ⊂ H ∪ K implies K = G, whence
k ≡ ±1 (modQ′). Together with Lemma 7, this concludes the proof of
Proposition 5.

Remark 2. We make it explicit what happens in the case Q′ = 5 and
{4m, 4(n −m)} = {n, 3n}. The assumptions in Proposition 5 say that k is
odd; moreover, in this case k 6≡ 5 (mod 10), since otherwise we would have
ζkn−1 = 0. The condition χ(2) = χ(3) = −1 is clearly satisfied for the only
non-trivial even character χ mod 5. The condition {4m, 4(n−m)} = {n, 3n}
implies that n = 4x for some integer x; moreover, x cannot be divisible by
5 (otherwise n would be divisible by 10 and ζkn − 1 = 0) and x must be
odd (otherwise m,n−m,n would be all even). It follows that {m,n−m} =
{x, 3x} and n = 4x for some x coprime to 10. In all these cases, it is easy to
verify that the two terms in (1) coincide, their common value being 1/5x.
Finally, by the symmetry among the numbers m,n−m,−n remarked in the
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introduction, equation (1) holds whenever {m,n −m,−n} = {x, 3x,−4x}
and (x, 10) = (k, 10) = 1.

Proposition 6. Let ζ1 = ζ, ζ2 = ζk, k even, and Q = 2Q′, Q′ odd.
Suppose that (m,Q′) = (n−m,Q′) = (n1, Q

′) = 1. Then equation (1) does
not hold.

Proof. Let k = 2k1. For even characters χ of modulus Q′ Ennola’s rela-
tions (7) give

[1− χ(2)− χ(k1)](mχ(m) + (n−m)χ(n−m)) = (1− χ(k))nχ(n1).(20)

Suppose first that χ(k1) = 0, whence χ(k) = 0. Then equation (20) reduces
to equation (16). Proposition 5 shows that this equation can be satisfied for
all characters only if Q′ = 5. But in this case χ(k) cannot be zero, since
otherwise k would be divisible by 10. Hence in the rest of the proof we shall
assume χ(k1) 6= 0.

Lemma 9. If equation (20) holds, then χ(2) belongs either to µ6 or to
µ10. Moreover , if χ(2) = ±1, then χ has order multiple of 6.

Proof. Consider, as in Lemma 6, the congruence modulo the ideal (2)
in Z[ζd]:

(1− χ(2)− χ(k1))(χ(m)− χ(n−m)) ≡ 0 (mod (2)).(21)

The greatest common divisor between the ideals (χ(m)−χ(n−m)) and (2)
is of the form (P1 . . .Ps)e′ , hence we see again that either (1−χ(2)−χ(k1))2

or (χ(m)− χ(n−m))2 must be divisible by 2.

Case 1: 1 − (χ(2))2 − (χ(k1))2 ∈ (2). If we have 1 + ζad + ζbd ∈ (2),
then the same is true for its complex conjugate, hence 1 + ζb−ad + ζbd ∈ (2)
and ζad + ζb−ad ∈ (2). This means that ζad = ±ζb−ad , ζbd = ζadζ

b−a
d = ±ζ2a

and ζ3a = ±1. Notice that however ζa cannot be itself equal to ±1, hence
ζa = ζ3 or ζa = ζ6.

It follows that χ(2) must be one of ζ3, ζ6, ζ12.

Case 2: (χ(m))2 − (χ(n−m))2 ∈ (2). As in Lemma 6, we can suppose
that χ(m) = ±χ(n−m).

Suppose that χ(m) = χ(n−m). Putting this into (20), we get

[1− χ(2)− χ(k1)]χ(m) = (1− χ(k))χ(n1),(22)

giving a 5-term relation among roots of unity. Suppose first that such a rela-
tion is indecomposable. By a theorem of Conway and Jones [2], all the roots
of unity involved (i.e. the ratios between two roots of unity occurring in the
relation) must belong either to µ6 or to µ10. If the relation is decomposable,
then necessarily it must split into two subrelations of lengths 2 and 3. We
leave it as an exercise to the reader to check that all possible splittings give
either a contradiction or the conclusion χ(2) ∈ µ6.
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Moreover, notice that substituting χ(2) = 1 into (22) gives χ(k) =
χ(k1) = ζ6 and χ(m) = ζ6χ(n1); and substituting χ(2) = −1 gives χ(k1) =
−χ(k) = ζ6 and again χ(m) = ζ6χ(n1), whence χ has order multiple of 6.

Suppose now that χ(m) = −χ(n−m), and substitute this into (20). We
get

[1− χ(2)− χ(k1)](2m− n)χ(m) = (1− χ(k))nχ(n1),(23)

yielding a 5-term relation among roots of unity. If the relation is indecom-
posable, then all roots of unity involved belong either to µ6 or to µ10. If any
of the roots of unity involved has order multiple of 5, then all coefficients
must have the same absolute value, hence |2m− n| = |n|, impossible under
our hypotheses. Hence necessarily all roots involved, and in particular χ(2),
must belong to µ6. Consider now the case when the relation is decomposable,
whence necessarily it splits in one 2-term relation and one 3-term relation.
Both relations must have coefficients of equal absolute value, whence the
only possibility is that the two terms are 1, χ(k) and the three terms are
1, χ(2), χ(k1). This again implies that χ(2) ∈ µ6.

Moreover, note that if χ(2) = 1 then χ(k) = χ(k1) and 1 − χ(k) must
be an integer. If 1 − χ(k) = 0 then 2m − n = 0 and χ(m) = χ(n −m), a
contradiction. If 1 − χ(k) = 1 then |2m − n| = |n|, impossible under our
hypotheses. If 1 − χ(k) = 2, hence χ(k) = −1, we get (2m − n)χ(m) =
2nχ(n1); it follows that |2m − n| = |2n|, so either 2m = 3n and 2(n −m)
= −n or 2m = −n and 2(n−m) = 3n. In both cases we must have χ(3) = −1
and, substituting into (23), we get a contradiction.

If χ(2) = −1, hence χ(k) = −χ(k1), then taking absolute values we
obtain

[5− 2(χ(k1) + χ(k1))](2m− n)2 = [2 + (χ(k1) + χ(k1))]n2.

It follows that χ(k1)+χ(k1) must lie in the set {−2,−1, 0, 1, 2}; a direct check
shows that the cases when χ(k1)+χ(k1) = 0,−1 do not have integer solutions
(m,n); the case χ(k1) + χ(k1) = −2 gives n = 2m and contradicts our
hypotheses, the case χ(k1)+χ(k1) = 1 gives |2m−n| = |n|, contradicting our
hypotheses; finally, χ(k1)+χ(k1) = 2 leads to the equation (2m−n)χ(m) =
2nχ(n1), already considered above and shown to be contradictory.

To conclude the proof of the lemma, it remains to exclude the case when
χ(2) ∈ µ12, which occurs in Case 1.

If χ(2) = ζ12 and 1− (χ(2))2− (χ(k1))2 ∈ (2), then χ(k1) ∈ {ζ12, ζ
4
12, ζ

7
12,

ζ10
12}. The factorization of the ideal (2) in Z[ζ12] is (2) = P2 = (ζ2

12 +ζ12 +1)2

and it is easily checked that in all the above cases we have (1−χ(2)−χ(k1))
= P. This means that Case 2 must hold as well. Since χ(m) = ±χ(n−m)
imply that χ(2) belongs either to µ6 or to µ10, it remains to consider the
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case when χ(m) = ±iχ(n−m), where i2 = −1. For j ∈ {1, 4, 7, 10}, let

Aj = |1− χ(2)− χ(k1)|2 = |1− ζ−1
12 − ζ

j
12|2,

Bj = |1− χ(k)|2 = |1− ζj+1
12 |2.

Taking the squares of absolute values in (20) we obtain

Aj [m2 + (n−m)2] = Bjn
2 for j ∈ {1, 4, 7, 10}.

We leave it to the reader to check that the last equation has no integer
solutions (m,n) for j ∈ {1, 4, 7, 10}.

By Lemma 9, if Q′ - 210 ± 1 and Q′ - 26 ± 1 there exist even characters of
maximal conductor for which (20) is not true, hence Proposition 6 follows
for these values of Q′. The remaining cases can be settled by a computer
search.

Proposition 7. Let ζ1 = ζ, ζ2 = ζk, Q = 2Q′, Q′ odd. Suppose that
exactly two of the numbers m,n −m,n1 are coprime to Q. If equation (1)
holds, then k ≡ ±1 (modQ).

Proof. The relevant equations depend on the parity of k and on which
terms are coprime to Q. Consider first the case when k is odd. Then we
must consider specializations of (15).

Case 1: The relevant equation is

(1− χ(k))[(1− χ(2))(mχ(m) + (n−m)χ(n−m))] = 0.

We examine when the term inside the square brackets is zero, i.e. when

(1− χ(2))(mχ(m) + (n−m)χ(n−m)) = 0.(24)

Equation (24) implies that χ(2) = 1. The subgroup H of Dirichlet characters
with this property is always proper. If K 6= G, we can have X ⊂ H ∪ K
only if Q′ = 3Q′1Q

′
2 and H is contained in the subgroup of those characters

whose restriction mod Q′1 is even. It cannot coincide with this subgroup,
since Q′1 6= 3. If it is properly contained in this subgroup, then the only
possibility is that Q = 3 · 5 ·Q′2 and H coincides with the subgroup defined
by equation (12), while K is contained in the subgroup of those characters
whose restriction mod 15 is even.

If this is the case, consider characters of the type χ3χ
2
5χ, where χ is an

odd primitive character mod Q′2. Since χ3χ
2
5(2) = 1, it is enough to show

that there exists a primitive character χ mod Q′2 such that χ(2) 6= 1, and
this is trivial.

Case 2: The equation is

(1− χ(k))[(1− χ(2))mχ(m)− nχ(n1)] = 0.
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We look again when the term inside the square brackets is zero, i.e. when

(1− χ(2))mχ(m)− nχ(n1) = 0.(25)

Equation (25) can hold only if the congruence mod (2) is satisfied, i.e. if
χ(2) = ±1. The subgroup of characters with this property is not the full
group G unless Q′ = 5. But Q′ cannot be a prime number, otherwise we
would have Q′ |n − m, contrary to our assumptions. Hence the subgroup
is proper, and we can use the argument above to show that we need only
consider the case Q = 3Q′1Q

′
2 and H is contained in the subgroup of those

characters whose restriction mod Q′ is even. Both when H coincides with
this subgroup and when it is properly contained in it, we must have Q′1 = 5.
Remembering that χ3χ

2
5(2) = 1, this time it is enough to show that there

exists an odd primitive character χ mod Q′2 such that χ(2) 6= ±1, and this
is again trivial.

Let now k = 2k1 be even. Then we must look at specializations of (20).

Case 3: The equation is

(1− χ(2)− χ(k1))(mχ(m) + (n−m)χ(n−m)) = 0.

If χ(k1) = 0, we reduce to equation (24) and the argument of Case 1 applies.
If χ(k1) 6= 0, then the only possibility is that χ(2) = χ(k1) = ζ6. This

leads again to the study of the cases when either Q′ | 63 or Q′ | 65, which can
be dealt with directly.

Case 4: The equation is

(1− χ(2)− χ(k1))mχ(m) = (1− χ(k))nχ(n1).(26)

If χ(k1) = 0, then we reduce to (25), and the argument of Case 2 applies.
If χ(k1) 6= 0, then the congruence mod (2) implies that χ(2) = ζ3, ζ6,

hence Q′ | 63 or Q′ | 65. A direct check gives the conclusion.

Proposition 8. Let ζ1 = ζ, ζ2 = ζk, Q = 2Q′, Q′ odd. Suppose that
exactly one of the numbers m,n − m,n1 is coprime to Q. If equation (1)
holds, then k ≡ ±1 (modQ).

Proof. Consider first the case when k is odd, and hence specializations
of (15).

Case 1: The equation is

(1− χ(k))[(1− χ(2))mχ(m)] = 0.

Use the same argument as in Proposition 7, Case 1.

Case 2: The equation is

(1− χ(k))nχ(n1) = 0,

which gives immediately the conclusion.
Suppose now that k = 2k1 is even, and specialize (20) accordingly.



90 R. Dvornicich

Case 3: The equation is

(1− χ(2)− χ(k1))mχ(m) = 0.

Use the same argument as in Proposition 7, Case 3.

Case 4: The equation is

(1− χ(k))nχ(n1) = 0.

This equation can be true for all primitive characters only if k ≡ ±1
(modQ′). If this is the case, let (m,Q′) = m0, m = m0m

∗, Q′ = m0fm, so
that (m∗, fm) = 1. Define (n−m)∗ and fn−m similarly. Since [fm, fn−m] = Q′

and Q′ has at least two distinct prime factors, at least one between fm and
fn−m, say fm, is greater than 3, hence we may consider non-trivial even
characters χ of conductor f = fm. Let d be such that f | d |Q. The equa-
tion (Q/d)x = m has a solution with (x, d) = 1 only in the case d = 2f
and the solution is x = m∗; the equation (Q/d)x = km has a solution
with (x, d) = 1 only if d = f and the solution is x = k1m

∗; the equations
(Q/d)x = n − m,k(n − m) do not have solutions with (x, d) = 1 since
(Q,n−m) = 1 and (n−m, f) > 1; the equations (Q/d)x = n, kn have solu-
tions with (x, d) = 1 only if d = m0f = Q′ and the solutions are x = n1, kn1.
The corresponding relations (7) give

1
φ(f)

(1− χ(2)− χ(k1))mχ(m∗) =
1

φ(Q′)

( ∏

p|m0

(1− χ(p))
)

(1− χ(k))χ(n1).

Now notice that k ≡ ±1 (modQ′) implies k ≡ ±1 (mod f), hence χ(k) = 1
and the term on the right is zero. Also, since k = 2k1, χ(k1) = χ(2), hence
we obtain 2χ(2) = 1, a contradiction.

Proposition 9. Let ζ1 = ζ, ζ2 = ζk, Q = 2Q′, Q′ odd. Suppose that
none of the numbers m,n−m,n1 is coprime to Q. Then k ≡ ±1 (modQ).

Proof. Let (m,Q′) = pα1
1 . . . pαrr , m = (m,Q′)m∗, Q′ = (m,Q′)fm, so

that (m∗, fm) = 1, whereas (n −m, fm) > 1 and (n, fm) > 1. Define fn−m
and fn similarly. All numbers fm, fn−m, fn are divisible by at least two prime
factors. Consider even characters χ of conductor f = fm.

Let d be an integer such that fm | d |Q, and write d = pi11 . . . p
ir
r f . The

equations (Q/d)x = n, kn are not solvable under the given conditions, since
(Q/d, n) = 2 and a possible solution would satisfy x ≡ 0 (modn1), hence
(x, fm) > 1 and a fortiori (x, d) > 1; the same argument shows that the
equations (Q/d)x = n −m,k(n−m) are not solvable with (x, d) = 1. The
equation (Q/d)x = (2Q′/d)x = pα1−i1

1 . . . pαr−irr x = m has a solution only if
2 | d and the solution is x = pi11 . . . p

ir
r m

∗; this solution is coprime to d only if
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i1 = . . . = ir = 0, i.e. if d = 2fm. As for the equation (Q/d)x = (2Q′/d)x =
km, there is only one solution of the type required, namely x = km∗ for
d = 2fm if k is odd, and x = k1m

∗ for d = fm if k = 2k1 is even.
Hence relations (7) for such characters become

{
(1− χ(k))(1− χ(2))mχ(m∗) = 0 if k is odd,
(1− χ(2)− χ(k1))mχ(m∗) = 0 if k is even.

By Proposition 8, we obtain k ≡ ±1 (mod 2fm) and, similarly, k ≡ ±1
(mod 2fn−m). But the solutions of the single congruences must agree modulo
(2fm, 2fn−m) > 2 and [2fm, 2fn−m] = Q, hence we get k ≡ ±1 (modQ).

Remark 3. If Q 6≡ 2 (mod 4) and at least one of the numbers m,n−m,n
is coprime to Q, Propositions 1, 2 and 3 show that equation (13) cannot be
true for all primitive characters mod Q. If Q ≡ 2 (mod 4) and at least one
of the numbers m,n−m,n1 is coprime to Q′, Propositions 5, 7 and 8 show
that, apart from the exceptions given, equation (16) cannot be true for all
primitive characters mod Q′.

We shall use this remark in the proof of Proposition 10.

5. The case when none of the roots is primitive

Proposition 10. If neither ζ1 nor ζ2 is a primitive Qth root of unity ,
then equation (1) does not hold.

Proof. Let ζ1 = ζ l and ζ2 = ζk, (l, Q) = Dl > 1, (k,Q) = Dk > 1,
(Dl,Dk) = 1.

Let also l = Dll
∗, Q = Dlfl so that (l∗, fl) = 1 and (k, fl) > 1. Define fk

similarly. Note that, since (l, k,Q) = 1, we have [fl, fk] = Q.
By using relations of type (8), one can easily exclude the finite number of

cases when both fl and fk are contained in the set {2, 3, 4, 6}. By symmetry,
we can suppose that fl 6∈ {2, 3, 4, 6}. If both fl and fk do not belong to
{2, 3, 4, 6}, one can of course suppose also that fl 6= 10. If fk does belong to
the set {2, 3, 4, 6}, one further application of relations (8) leads us to exclude
that fl = 10 and {4m, 4(n−m)} = {n, 3n}.

Summarizing, we can assume, by symmetry, that fl satisfies the following
condition:

fl 6∈ {2, 3, 4, 6} and, if fl = 10, then {4m, 4(n−m)} 6= {n, 3n}.(27)

The following lemma shows that we can also assume that Dk 6= 2, 4.

Lemma 10. If Dk = 2, 4 and fl satisfies condition (27), then Dl 6= 2, 4
and we can assume that also fk satisfies condition (27).
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Proof. Since (k, l,Q) = 1, Dk = 2, 4 implies that Dl is odd. Now, as
Q = Dkfk, the lemma is reduced to the verification of a finite number of
cases.

Suppose now that fl 6≡ 2 (mod 4) and at least one of the numbers m,
n−m,n is coprime to fl. Consider even characters χ of conductor f = fl and
let d be such that f | d |Q. The equations (Q/d)x = km, k(n −m), kn are
not solvable under the given conditions, since (Q/d, k) = 1 and (k, fl) > 1.
Similarly, the equations (Q/d)x = lm, l(n − m), n can have a solution of
the type required only if d = fl (the existence of a solution depending,
respectively, on whether or not (m, fl) = 1, (n−m, fl) = 1, (n, fl) = 1). In
any case we are left with the relations

χ(l∗)(mχ(m) + (n−m)χ(n−m)− nχ(n)) = 0.

Since χ(l∗) 6= 0, these relations cannot hold for all even characters χ of
conductor fl by Remark 3.

Next, suppose that fl = 2f ′l ≡ 2 (mod 4), n = 2n1 and that at least one
of the numbers m,n−m,n1 is coprime to fl. Consider even characters χ of
conductor f = f ′l and let d be such that f | d |Q as before.

The equations (Q/d)x = km, k(n − m), kn are not solvable under the
given conditions, since (Q/d, k) ≤ 2 and (k, fl) > 2. The equations (Q/d)x =
lm, l(n−m) can have a solution of the type required only if d = f ′l , and in
this case we have x = l∗m, l∗(n −m). The equation (Q/d)x = ln can have
a solution of the type required only if d = fl, the solution being x = l∗n1.
Hence relations (7) for these characters give

χ(l∗)[(1− χ(2))(mχ(m) + (n−m)χ(n−m))− nχ(n1)] = 0.

But χ(l∗) 6= 0, and, taking into account that we have supposed {4m,
4(n − m)} 6= {n, 3n} if fl = 10, these relations cannot hold for all even
characters χ of conductor f ′l by Remark 3.

Assume now that none of the numbers m,n−m,n is coprime to fl, and
let Dm = (m, fl) > 1, Dn−m = (n−m, fl) > 1, Dn = (n, fl) > 1. Clearly we
have (Dm,Dn−m) = (Dm,Dn) = (Dn−m,Dn) = 1. Notice that in this case
fl must be divisible by at least three distinct prime factors, and in particular
there exists a prime p0 ≥ 5 such that p0 | fl. If Dk | 2Dm, then Dk - 2Dn−m
and Dk - 2Dn, otherwise m and n would have a common factor which is a
divisor of Q (remember that we have supposed Dk 6= 2, 4).

Remark 4. In what follows we allow complete symmetry among the
numbers m,n−m,−n, and in particular we do not suppose that −n is the
even number among the three.

Possibly interchanging the roles of m,n − m,n, we can then suppose
that Dk - 2Dm. Also, since at least two of m,n−m,n have this property, the
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choice can be made so that p0 -Dm. Let fl = Dmf
∗, m = Dmm

∗, so that
(m∗, f∗) = 1. Now f∗ is divisible by at least two distinct prime factors, one
of which is p0. Finally, if any of the numbers Dm,Dn−m,Dn is equal to 2,
we agree to choose m so that Dm = 2, while Dn−m and Dn are odd.

If f∗ 6≡ 2 (mod 4), consider even primitive characters of conductor f ∗.
Letting again d be such that f ∗ | d |Q, the equations (Q/d)x = km,
k(n−m), kn have no solutions under the given conditions, since (Dl,Dk) = 1
and Dk -Dm ensure that a possible solution would be divisible by a prime di-
viding Dk, and hence would not be coprime to f ∗. The equation (Q/d)x =
lm has a solution of the type required only if d = f ∗, the solution being
x = l∗m∗, a number coprime to f ∗. The equations (Q/d)x = l(n −m), ln
do not have solutions of the type required; in fact, in order that a solution
be coprime to df∗ we must necessarily have (d, l) = 1 and, assuming this,
the condition (Dm,Dn−m) = (Dm,Dn) = 1 implies that a possible solution
would have a factor dividing Dn−m,Dn, respectively, and hence would not
be coprime to df∗. It follows that relations (7) simply tell you that

mχ(l∗m∗) = 0,

a contradiction.
If f∗ = 2f ′∗ ≡ 2 (mod 4), consider even primitive characters of conductor

f ′∗. Letting again d be such that f ∗ | d |Q, the equations (Q/d)x = km,
k(n−m), kn have no solutions under the given conditions, since (Dl,Dk) = 1
and Dk - 2Dm ensure that a possible solution would be divisible by a prime
dividing Dk, and hence would not be coprime to f ∗. The equation (Q/d)x =
lm has a solution of the type required only if either d = f ∗ or d = f ′∗,
depending on whether m∗ is odd or m∗ = 2m∗1 is even; the solution in this
case is either x = l∗m∗ or x = l∗m∗1, in any case a number coprime to f ′∗. The
equations (Q/d)x = l(n−m), ln do not have solutions of the type required;
in fact, in order that a solution be coprime to df ∗ we must necessarily have
(d, l) = 1; assuming this, the conditions (Dm,Dn−m) = (Dm,Dn) = 1 and
Dn−m 6= 2, Dn 6= 2 imply that Dn−m - 2Dm, Dn - 2Dm, hence a possible
solution would have a factor dividing Dn−m,Dn, respectively, and therefore
would not be coprime to df ∗. It follows that relations (7) simply tell you
that {

(1− χ(2))mχ(l∗m∗) = 0 if m∗ is odd,
mχ(l∗m∗1) = 0 if m∗ is even,

and this is impossible for all even characters mod f ′∗ since f ′∗ is divisible
by p0 ≥ 5.
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