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The first paper of this series [4] has concerned the supremum A(r, s,K)
of the number of non-zero coefficients of (f, g), where f, g run through all
univariate polynomials over a field K with exactly r and s non-zero co-
efficients, respectively. The only case where A(r, s,K) has remained to be
evaluated is r = s = 3, p = charK = 0. This case is studied in the present
paper. Let us denote by ζq a primitive complex root of unity of order q, set

Pn,m(z) = (1− zm)m/(n,m)(zm − zn)(n−m)/(n,m)(zn − 1)−n/(n,m)

and for a trinomial

T (x) = xn + axm + b ∈ C[x], where n > m > 0, ab 6= 0,

put
inv T = a−n/(n,m)b(n−m)/(n,m).

We shall prove the following results:

Theorem 1. Let Ti = xni + aix
mi + bi ∈ C[x], aibi 6= 0, ni > mi > 0,

and di = (ni,mi) (i = 1, 2). If (d1, d2) = 1, then

(1) deg(T1, T2)

≤




n2/d2 if inv T1 6= Pn1,m1(ζrd2

) for all r,
n2/d2 + min{2, d1} if n1/d1 6= 4 or d2 6≡ 0 mod 10,
n2/d2 + min{3, n2/d2} always.

Theorem 2. For every quadruple 〈n1,m1, n2,m2〉 ∈ N4, where n1 >
m1, n2 > m2, 〈n1,m1〉 6= 〈n2,m2〉 and (n1,m1, n2,m2) = 1 there exists an
effectively computable finite subset S of Q4

with the following property. If
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Ti = xni + aix
mi + bi ∈ C[x], aibi 6= 0 (i = 1, 2), and deg(T1, T2) > 2, then

(2) Ti = uniT ∗i

(
x

u

)
, where u ∈ C∗, T ∗i = xni + a∗i x

mi + b∗i

and 〈a∗1, b∗1, a∗2, b∗2〉 ∈ S.

Corollary 1. If inv Ti 6∈ Q for at least one i ≤ 2, or

T1(0)− deg T2T2(0)deg T1 6∈ Q
then (T1, T2) has at most three non-zero coefficients.

Corollary 2. We have

sup
K⊂C

A(3, 3,K) = A(3, 3,Q) = sup
[K:Q]<∞

A(3, 3,K).

Theorem 3. For every finite extension K of Q and every pair 〈n,m〉 ∈
N2, where n > m, there exists a finite set En,m(K) such that if Ti = xni +
aix

mi + bi ∈ K[x],

(3) inv Ti 6∈ Eni,mi(K) (i = 1, 2)

and (n1,m1, n2,m2) = 1 then either T1 = T2, or deg(T1, T2) ≤ 9.

Corollary 3. If (3) holds, then (T1, T2) has at most 10 non-zero co-
efficients.

At the end of the paper we give three examples of some interest.

R. Dvornicich has kindly looked through the paper and corrected several
mistakes. The proofs of Theorems 1 and 3 use a recent result of his [2] on
the so-called cyclotomic numbers, which we formulate below as

Lemma 1. Let z1, z2 be two complex roots of unity and let Q be the least
common multiple of their orders. If m,n are integers such that (m,n,Q) = 1
and

(4) |zm1 −1|m|zn−m1 −1|n−m|zn1−1|−n = |zm2 −1|m|zn−m2 −1|n−m|zn2−1|−n,
where none of the six absolute values is 0, then either z1 = z±1

2 , or Q = 10,
{m,n−m,−n} = {x, 3x,−4x} with (x, 10) = 1 and z1, z2 are two primitive
tenth roots of unity.

Proof. See [2], Theorem 1.

Remark 1. Lemma 1 can be extended to fields of arbitrary character-
istic as follows. Let K be a field of characteristic p, p = 0 or a prime, let zi
(i = 1, 2) be roots of unity in K, zQi = 1 and let m,n be positive integers
such that m < n, (m,n,Q) = 1 and

1 6= zmi 6= zni 6= 1, Pn,m(z1) = Pn,m(z2).
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If either p = 0 or p > 2(2n/(n,m)+1)ϕ(Q), then either z2 = z1 = z±1
1 , or

n/(n,m) = 4 and z1, z2 are primitive tenth roots of unity.

Lemma 2. If (n,m, q) = 1 and

1 6= ζmq 6= ζnq 6= 1, q 6= 10,

then Pn,m(ζq) is an algebraic number of degree 1
2ϕ(q).

Proof. We have Pn,m(ζ−1
q ) = Pn,m(ζq). On the other hand, if q > 2,

0 < r < s < q/2, (r, s, q) = 1 we have by Lemma 1,

|Pn,m(ζrq )| 6= |Pn,m(ζsq )|,
hence Pn,m(ζq) has 1

2ϕ(q) distinct conjugates.

Lemma 3. Let n,m, q be positive integers with (n,m, q) = 1, n > m and
T = xn + axm + b ∈ C[x], ab 6= 0. Set

C(T, q) = {c(m,n) : c ∈ C, deg(T, xq − c) ≥ 2}.
We have

(5) cardC(T, q) ≤ 1

unless n/(n,m) = 4 and q ≡ 0 mod 10, in which case

(6) cardC(T, q) ≤ 2.

Moreover , if C(T, q) 6= ∅, then T is separable and

(7) inv T = Pn,m(ζrq ) for an r satisfying 1 6= ζrmq 6= ζrnq 6= 1.

Proof. By Theorem 1 of [4] we have deg(T, xq − c) ≤ 2. Assume that
deg(T, xq − c) = 2. Since the binomial xq − c is separable we have

(T, xq − c) = (x− ξ1)(x− ξ2),

where ξqi = c (i = 1, 2), ξ2 = ξ1ζ
r
q , ζrq 6= 1.

By the formulae (13) and (14) of [4] we have

(8) aq = cn−m
(
ζrnq − 1

1− ζrmq

)q
, bq = cn

(
ζrmq − ζrnq
1− ζrmq

)q
,

where 1 6= ζrmq 6= ζrnq 6= 1 and

inv T = Pn,m(ζrq ),

which proves (7). Also, if for another value c′ we have

(T, xq − c′) = (x− ξ′1)(x− ξ′2)

where ξ′qi = c′ (i = 1, 2), ξ′2 = ξ′1ζ
r′
q , it follows that

inv T = Pn,m(ζr
′
q ), hence Pn,m(ζrq ) = Pn,m(ζr

′
q ).
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Applying Lemma 1 with z1 = ζrq , z2 = ζr
′
q we infer that either r′ = ±r or

n1/d1 = 4 and q ≡ 0 mod 10, r′ ≡ ±3r mod q. In the former case, by (8),

c′n−m = cn−m, c′n = cn,

hence c′(n,m) = c(n,m), which proves (5). In the latter case for any value c′′

with deg(T, xq−c′′) ≥ 2 we have c′′(n,m) = c(n,m) or c′(n,m), which proves (6).
It remains to prove that if c(T, q) 6= ∅, then T is separable. Now, by

formula (11) of [4],

discx T = (−1)n(n−1)/2anbm−1(nn
′
inv T + (−1)n

′−1(n−m)n
′−m′mm′)(n,m),

where n′ = n/(n,m), m′ = m/(n,m).
Thus, if T has double zeros we have

inv T = (−1)n
′
m′m

′
(n′ −m′)n′−m′n′−n′ .

Hence, by (7),

(9) (−1)n
′
m′m

′
(n′ −m′)n′−m′n′−n′

= (1− ζrmq )m
′
(ζrmq − ζrnq )n

′−m′(ζrnq − 1)−n
′
.

Now, since (n′,m′(n′ − m′)) = 1 it follows that in the ring of integers of
Q(ζq) we have

n′n
′ | (ζrnq − 1)n

′
, n′ | ζrnq − 1.

On taking norms from Q(ζrnq ) to Q we infer that n′ = 2, ζrnq = −1, hence
m′ = 1, ζrmq = ±ζ4 and (9) gives 1/4 = 1/2. The contradiction obtained
shows our contention.

Proof of Theorem 1. Let

T2(x1/d2) =
∏

c∈C
(x− c)e(c),

∑

c∈C
e(c) = n2/d2.

We have

(10) deg(T1, T2) ≤
∑

c∈C
deg(T1, (xd2 − c)e(c)) ≤

∑

c∈C
e(c) deg(T1, x

d2 − c).

If deg(T1, x
d2 − c) ≤ 1 for all c ∈ C with e(c) ≥ 1 the inequalities (1) follow.

If for at least one c, say c1, we have e(c1) ≥ 1 and deg(T1, x
d2 − c1)

≥ 2 then, by Lemma 3, T1 is separable and inv T1 = Pn1,m1(ζrd2
) for an r

satisfying

1 6= ζrm1
d2
6= ζrn1

d2
6= 1.

This shows the first inequality of (1). Moreover, by (10),
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deg(T1, T2) ≤
∑

c∈C
min{e(c), 1}deg(T1, x

d2 − c)(11)

≤
∑

c∈C
e(c) +

∑

e(c)≥1

(deg(T1, x
d2 − c)− 1)

≤ n2

d2
+

∑

e(c)≥1
deg(T1,xd2−c)=2

1.

If n1/d1 6= 4 or d2 6≡ 0 mod 10, then by Lemma 3, deg(T1, x
d2 − c) = 2

implies cd1 = cd1
1 , hence by Theorem 1 of [4],
∑

e(c)≥1
deg(T1,xd2−c1)=2

1 ≤ deg(T2(x1/d2), xd1 − cd1
1 ) ≤ min{2, d1},

which together with (11) proves the second inequality of (1) and a fortiori ,
the third.

If n1/d1 = 4 and d2 ≡ 0 mod 10, then by Lemma 3 there exists a c2,
possibly equal to c1, such that deg(T1, x

d − c) = 2 implies cd1 = cdii for an
i ≤ 2. If cd1

2 = cd1
1 we are in the previous case, otherwise

(12)
∑

e(c)≥1
deg(T1,xd2−c)=2

1 ≤
2∑

i=1

deg(T2(x1/d2), xd1 − cd1
i ).

However, since d2 ≡ 0 mod 10 we have d1 6≡ 0 mod 10, hence, by Lemma 3,
C(T2(x1/d2), d1) ≤ 1 and the right hand side of (12) does not exceed 3. Since
it also does not exceed deg T2(x1/d2) = n2/d2 the third of the inequalities
(1) follows.

Lemma 4. Let n > m > 0, d = (n,m), F = (1− tm)xn + (tn − 1)xm +
tm − tn. All zeros of F in C((t)) are given by the Puiseux expansions

ζδd , ζ
δ
dt : 0 ≤ δ < d;

ζµmt+
ζµnm − 1
m

ζµmt
n−m+1 + . . . : 0 ≤ µ < m, µ 6≡ 0 mod

m

d
;

ζνn−m +
ζνnn−m − 1
n−m ζνn−mt

m + . . . : 0 ≤ ν < n−m, ν 6≡ 0 mod
n−m
d

.

Proof. One applies the usual procedure (Newton polygons) for finding
Puiseux expansions.

Lemma 5. Let ni > mi > 0, di = (ni,mi), and Fi = (1 − tmi)xni +
(tni − 1)xmi + tmi − tni (i = 1, 2). If (d1, d2) = 1 then either F1 = F2, or

(F1, F2) = (t− 1)(x− 1)(x− t).
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Proof. The content C(Fi) of Fi viewed as a polynomial in x is tdi − 1,
hence (C(F1), C(F2)) = t− 1. On the other hand, by Lemma 4, F1 and F2

have two common zeros in C((t)), namely 1 and t, each with multiplicity 1;
if there are any other common zeros we have either

(13) ζµ1
m1
t+

ζµ1n1
m1

− 1
m1

ζµ1
m1
tn1−m1+1 = ζµ2

m2
t+

ζµ2n2
m2

− 1
m2

ζµ2
m2
tn2−m2+1,

where µi 6≡ 0 mod mi
di

(i = 1, 2), or

(14) ζν1
n1−m1

+
ζν1n1
n1−m1

− 1
n1 −m1

ζν1
n1−m1

tm1 = ζν2
n2−m2

+
ζν2n2
n2−m2

− 1
n2 −m2

ζν2
n2−m2

tm2 ,

where νi 6≡ 0 mod ni−mi
di

(i = 1, 2).
If (13) holds, we have

(15)

ζµ1
m1

= ζµ2
m2
, n1 −m1 + 1 = n2 −m2 + 1,

ζµ1n1
m1

− 1
m1

=
ζµ2n2
m2

− 1
m2

.

Dividing the last equality by its complex conjugate we obtain

−ζµ1n1
m1

= −ζµ2n2
m2

6= −1,

hence m1 = m2, which together with (15) gives F1 = F2.
If (14) holds, we have

(16)

ζν1
n1−m1

= ζν2
n2−m2

, m1 = m2,

ζν1n1
n1−m1

− 1
n1 −m1

=
ζν2n2
n2−m2

− 1
n2 −m2

.

Dividing the last equality by its complex conjugate we obtain

−ζν1n1
n1−m1

= −ζν2n2
n2−m2

6= −1,

hence n1 −m1 = n2 −m2, which together with (16) gives F1 = F2.

Proof of Theorem 2. Let ni > mi > 0, (ni,mi) = di (i = 1, 2), (d1, d2) =
1 and 〈n1,m1〉 6= 〈n2,m2〉. In the notation of Lemma 5 and by virtue of
that lemma the polynomials Fi/(t− 1)(x− 1)(x− t) (i = 1, 2) are coprime,
hence their resultant R with respect to x is non-zero. We set

S =
{〈−n1

m1
,
n1 −m1

m1
,
−n2

m2
,
n2 −m2

m2

〉}

∪
{〈

ζr2n1
d2
− 1

1− ζr2m1
d2

,
ζr2m1
d2

− ζr2n1
d2

1− ζr2m1
d2

,
ζr1n2
d1
− 1

1− ζr1m2
d1

,
ζr1m2
d1

− ζr1n2
d1

1− ζr1m2
d1

〉
:

r2m1 6≡ 0 mod d2, r1m2 6≡ 0 mod d1

}
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∪
{〈

tn1 − 1
1− tm1

,
tm1 − tn1

1− tm1
,
tn2 − 1
1− tm2

,
tm2 − tn2

1− tm2

〉
: R(t) = 0, tm1 6= 1 6= tm2

}
.

We proceed to show that the set S has the property asserted in the
theorem. Since R ∈ Q[t] we have S ⊂ Q4

. Assume that deg(T1, T2) ≥ 3. If
(T1, T2) has a double zero ξ0 we set

T ∗i (x) = ξ−ni0 Ti(ξ0x) (i = 1, 2)

and from the equations T ∗i (1) = 0 = dT ∗i
dx (1) (i = 1, 2) we find that

a∗i = − ni
mi

, b∗i =
ni −mi

mi
(i = 1, 2),

hence 〈a∗1, b∗1, a∗2, b∗2〉 ∈ S and (2) holds with u = ξ0.
If (T1, T2) has three distinct zeros ξ0, ξ1, ξ2 we set

T ∗i (x) = ξ−ni0 Ti(ξ0x) (i = 1, 2).

Changing, if necessary, the role of T1 and T2 we have one of the three cases:

(i) (ξ1/ξ0)d1 = 1 and (ξ2/ξ0)d2 = 1,
(ii) (ξ1/ξ0)d1 = 1 and (ξ2/ξ0)d2 6= 1,
(iii) (ξ1/ξ0)d1 6= 1 and (ξ1/ξ0)d2 6= 1.

In case (i) we have ξj/ξ0 = ζ
rj
dj

(j = 1, 2) and the equations T ∗i (ξj/ξ0) = 0
(i = 1, 2) give

a∗i =
ζ
r3−ini
d3−i

− 1

1− ζr3−imid3−i

, b∗i =
ζ
r3−imi
d3−i

− ζr3−inid3−i

1− ζr3−imid3−i

,

r3−imi 6≡ 0 mod d3−i (i = 1, 2).

Hence 〈a∗1, b∗1, a∗2, b∗2〉 ∈ S and (2) holds with u = ξ0. In case (ii) we have
(ξ2/ξ0)d1 6= 1, since otherwise T2 would have three common zeros with
xd1 − ξd1

0 , contrary to Theorem 1 of [4].
Hence (ξ2/ξ0)di 6= 1 (i = 1, 2) and the equations T ∗i (ξ2/ξ0) = 0 (i = 1, 2)

give
(ξ2/ξ0)m1 6= 1 6= (ξ2/ξ0)m2

and

a∗i =
(ξ2/ξ0)ni − 1
1− (ξ2/ξ0)mi

, b∗i =
(ξ2/ξ0)mi − (ξ2/ξ0)ni

1− (ξ2/ξ0)mi
.

The polynomials T ∗i /(x−1)(x−ξ2/ξ0) (i = 1, 2) have a common zero ξ1/ξ0,
hence R(ξ2/ξ0) = 0. It follows that 〈a∗1, b∗1, a∗2, b∗2〉 ∈ S and (2) holds with
u = ξ0.

In case (iii) we have (ξ1/ξ0)di 6= 1 (i = 1, 2) and we reach the desired
conclusion replacing in the above argument ξ2 by ξ1.
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Proof of Corollary 1. Since f and f(xd) have for every f ∈ C[x] and
every d ∈ N the same number of non-zero coefficients we may assume that
(n1,m1, n2,m2) = 1. If T1 = T2 then (T1, T2) = T1 has three non-zero
coefficients. If T1 6= T2, but 〈n1,m1〉 = 〈n2,m2〉, then by Theorem 2 of [4],

(T1, T2) = ((a1 − a2)xm1 + b1 − b2, (a1 − a2)xn1 + a1b2 − a2b1)

has at most two non-zero coefficients. If 〈n1,m1〉 6= 〈n2,m2〉 then by Theo-
rem 2 either deg(T1, T2) ≤ 2, or (2) holds. However in the latter case

inv Ti = inv T ∗i ∈ Q (i = 1, 2)

and
T1(0)− deg T2T2(0)deg T1 = T ∗1 (0)− deg T2T ∗2 (0)deg T1 ∈ Q.

Proof of Corollary 2. The second equality is clear. In order to prove the
first, note that A(3, 3,Q) ≥ 3. On the other hand, if (T1, T2) has more than
three non-zero coefficients, then by Corollary 1,

inv Ti ∈ Q (i = 1, 2),

hence

Ti = udeg Ti
i T ∗∗i

(
x

ui

)
, where ui ∈ C∗, T ∗∗i ∈ Q[x].

Moreover, also by Corollary 1,
(
u2

u1

)deg T1 deg T2

T ∗∗1 (0)−deg T2T ∗∗2 (0)deg T1 ∈ Q,

hence v = u2/u1 ∈ Q and (T1, T2) has the same number of non-zero coeffi-
cients as (T ∗∗1 , T ∗∗2 (x/v)), where both terms belong to Q[x].

Lemma 6. Let n,m be positive integers, n > m and a, b ∈ K∗, where K
is a finite extension of Q. If F is a monic factor of xn/(n,m) +axm/(n,m) + b
in K[x] of maximal possible degree d ≤ 2 and n/(n,m) > max{6, 9 − 3d},
then

xn + axm + b

F (x(n,m))

is reducible over K if and only if there exists a positive integer l | (n,m) such
that

a = u(n,m)/la0, b = un/lb0, F = udF0

(
x

u

)
,

where u ∈ K∗, 〈a0, b0, F0〉 ∈ F dn/l,m/l(K) and F dn/l,m/l(K) is a certain finite
set , possibly empty.

Proof. See [3], Theorem 3.

Lemma 7. Let a, b ∈ K∗, n > m > 0, d = (n,m). Let f(x) be a factor of
xn/d + axm/d + b of degree at most 2. If n > 2d, then (n,m) is the greatest
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common divisor of the exponents of powers of x occurring with non-zero
coefficients in (xn + axm + b)/f(x(n,m)) =: Q(x).

Proof. We may assume that f is monic and d = 1. If f(x) = 1 the
assertion is obvious. If f(x) = x − c, then Q(x) contains terms xn−1 and
cxn−2, unless m = n−1 and a = −c. But in the latter case x− c | b, which is
impossible. If f(x) = x2− px− q, we first observe that p 6= 0. Otherwise, we
should have qn/2 +aqm/2 + b = 0 and also (−1)nqn/2 +a(−1)mqm/2 + b = 0,
which, since at least one of the numbers n,m is odd, gives ab = 0. Now
(xn + axm + b)/(x2 − px − q) contains the terms xn−2 and pxn−3, unless
m = n−1 and a = −p. It also contains the terms −b/q and (b/q2)px, unless
m = 1, a = (b/q)p. However m = n− 1 and m = 1 give n = 2, contrary to
the assumption.

Lemma 8. If n > m > 0, n > 3, abc 6= 0, then (xn +axm + b)(x− c) has
six non-zero coefficients, unless either m = n− 1 or m = 1, when there are
at least four non-zero coefficients. Only in the former case does xn−1 occur
with a non-zero coefficient.

Proof. We have

(xn + axm + b)(x− c) = xn+1 − cxn + axm+1 − axm + bx− cb.
The cancellation can occur only between the second and the third term (if
m = n− 1), or between the fourth and the fifth term (if m = 1).

Lemma 9. If n > m > 0, n > 6, abpq 6= 0, then (xn+axm+b)(x2−px+q)
has nine non-zero coefficients, unless m ≥ n−2 or m ≤ 2, when there are at
most eight. If m = n−1 there are at least five non-zero coefficients, including
that of xn−1; if m = n − 2 there are at least seven non-zero coefficients,
including that of xn−2. If m ≤ 2 the coefficients of xn−1 and xn−2 are zero.

Proof. We have

(xn + axm + b)(x2 − px+ q)

= xn+2 − pxn+1 + qxn + axm+2 − apxm+1 + aqxm + bx2 − bpx+ bq.

The cancellation can occur only if m ≥ n−2 or m ≤ 2 and all the assertions
are easily checked.

Lemma 10. Let di = (ni,mi) (i = 1, 2) and let fi(x) be a monic factor
of degree ≤ 2 of xni/di + aix

mi/di + bi. If ni/di > 6 and

(17)
xn1 + a1x

m1 + b1
f1(xd1)

=
xn2 + a2x

m2 + b2
f2(xd2)

,

then

(18) xn1 + a1x
m1 + b1 = xn2 + a2x

m2 + b2.
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Proof. By Lemma 7, d1 = d2, hence we may assume without loss of
generality that d1 = d2 = 1. Then the equality (17) gives

(19) (xn1 + a1x
m1 + b1)f2(x) = (xn2 + a2x

m2 + b2)f1(x)

and we may assume without loss of generality that deg f1 ≥ deg f2. More-
over, since (19) is equivalent to

(xn1 + a1b
−1
1 xn1−m1 + b−1

1 )
xdeg f2f2(x−1)

f2(0)

= (xn2 + a2b
−1
2 xn2−m2 + b−1

2 )
xdeg f1f1(x−1)

f1(0)
,

we may assume that
(20) 2m2 ≥ n2.

If deg f2 = 0, then the left hand side of (19) has only three non-zero
coefficients, thus by Lemmas 8 and 9 applied to the right hand side deg f1 =
0 and (18) follows.

If deg f2 = 1 < 2 = deg f1, then the left hand side of (19) has at
most six non-zero coefficients, which by Lemma 9 and condition (20) gives
m2 = n2 − 1. Since n2 > 6 taking the residues mod x4 of both sides of (19)
we obtain
(21) (a1x

m1 + b1)f2(x) ≡ b2f1(x) mod x4,

hence m1 = 1 and subtracting (21) from (19) gives

xn1f2(x) = (xn2 + a2x
n2−1)f1(x),

a contradiction mod f1.
If deg f2 = 1 = deg f1, then n1 = n2. If m2 6= n2 − 1, then by Lemma

8 and (20) the right hand side of (19) has six non-zero coefficients, thus
also on the left hand side no terms coalesce and we have b1f2 = b2f1, hence
f2 = f1 and (18) follows. If m2 = n2− 1, then on the right hand side of (19)
we have five or four non-zero coefficients, including that of xn2−1, hence by
Lemma 8, m1 = n1 − 1. Taking the residues of both sides of (19) mod x3

we find b1f2 = b2f1, hence f2 = f1 and (18) follows. If deg f1 = deg f2 = 2,
then again n1 = n2. If m2 < n2 − 2, then on the right hand side of (19)
we have nine non-zero coefficients, hence also on the left hand side no two
terms coalesce and taking residues mod x3 we obtain b1f2 = b2f1, hence
f2 = f1 and (18) follows. If m2 ≥ n2 − 2, then by Lemma 9 the number of
non-zero coefficients on the right hand side of (19) is at most eight and xm2

occurs with a non-zero coefficient, hence also on the left hand side we have
at most eight non-zero coefficients and either xn1−1 or xn1−2 occurs with a
non-zero coefficient. Again by Lemma 9, m1 ≥ n1 − 2. Taking the residues
of both sides of (19) mod x3 we find b1f2 = b2f1, hence f2 = f1 and (18)
follows.
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Proof of Theorem 3. Put

Fn,m(K) = K ∩ {Pn,m(ζrq ) : 0 ≤ r < q, 1 6= ζrmq 6= ζrnq 6= 1}.
The set Fn,m(K) is finite since by Lemma 2 the condition Pn,m(ζrq ) ∈ K
implies

either
q

(q, r)
= 10 or

1
2
ϕ

(
q

(q, r)

)
≤ [K : Q]

and this leaves only finitely many possibilities for ζrq . We set

En,m(K) = Fn,m(K)

∪
⋃

d≤2

⋃

l|(n,m)

⋃

〈a0,b0,F0〉∈F dn/l,m/l(K)

{a−n/(n,m)
0 b

(n−m)/(n,m)
0 },

where F dν,µ(K) are as in Lemma 6.
Now, let di = (ni,mi) and let fi be a monic polynomial over K of

maximal possible degree δi ≤ 2 dividing Ti(x1/di) (i = 1, 2). We may assume
without loss of generality that n2/d2 ≤ n1/d1.

If n2/d2 ≤ 9, then, since inv T2 6∈ Fn2,m2(K), by Theorem 1 we have

(22) deg(T1, T2) ≤ n2/d2 ≤ 9.

If n2/d2 > 9, then by Lemma 6 either Ti/fi(xdi) is irreducible over K
or there exists an integer l | di, an element u of K∗ and 〈a0, b0, F0〉 ∈
F δini/l,mi/l(K) such that

Ti(x) = xni + u(ni−mi)/la0x
mi + uni/lb0, fi = uδiF0

(
x

u

)
.

These conditions give

inv Ti = a
−ni/di
0 b

(ni−mi)/di
0 ∈ Eni,mi(K),

contrary to the assumption. Therefore Ti/fi(xdi) is irreducible over K for
i = 1, 2 and we have

either T1/f1(xd1) = T2/f2(xd2) or (T1/f1(xd1), T2/f2(xd2)) = 1.

In the former case we have T1 = T2 by Lemma 10; in the latter case

(23) (T1, T2) =
(T1, f2(xd2))(T2, f1(xd1))

(f1(xd1), f2(xd2))
.

However, by Lemma 3 if deg f3−i = 1, or if deg f3−i = 2 and f ′3−i(0) = 0
and by Theorem 1 otherwise, we have

deg(Ti, f3−i(xd3−i)) ≤ deg f3−i ≤ 2,

which by (23) gives

(24) deg(T1, T2) ≤ 2 + 2 = 4.

The alternative (22) or (24) gives the theorem.
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We shall now give the promised examples.

Example 1. Let ni > mi > 0, di = (ni,mi), 0 6≡ mi 6≡ ni 6≡ 0 mod d3−i
for i = 1, 2, (d1, d2) = 1, and

Ti(x) = xni +
ζ
r3−ini
d3−i

− 1

1− ζr3−imid3−i

xmi +
ζ
r3−imi
d3−i

− ζr3−inid3−i

1− ζr3−imid3−i

(i = 1, 2),

where r3−i is chosen so that

1 6= ζ
r3−imi
d3−i

6= ζ
r3−ini
d3−i

6= 1 (i = 1, 2).

Here (T1, T2) has the following distinct zeros: 1, ζr1d1
, ζr2d2

, ζr1d1
ζr2d2

, hence

deg(T1, T2) ≥ 4.

If n2/d2 = 2 this shows that the second and the third inequality of (1) are
exact in infinitely many essentially different cases and the condition for the
first inequality is not superfluous.

Example 2. Let T1 = x4 − 5x + 5 and T2 = x20 + 54x10 + 55. Here
(T1, T2) = T1, hence

deg(T1, T2) = 4 > n2/d2 + min{2, d1}.
This shows that the condition for the second inequality of (1) is not super-
fluous.

Example 3 (due to S. Chaładus [1]). Let T1 = x7 + 9x2 + 27 and
T2 = x15 − 27x6 + 729. Here

(T1, T2) = x5 + 3x4 + 6x3 + 9x2 + 9x+ 9.

Since inv T1 = 3, d2 = 3, and Pn1,m1(ζ±1
3 ) = 1, in this case the first inequal-

ity of (1) is exact. Moreover (T1, T2) has six non-zero coefficients, which is
the present record.
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