On the greatest common divisor of two univariate polynomials, II

by

A. Schinzel (Warszawa)

To Andrzej Rotkiewicz on his 70th birthday

The first paper of this series [4] has concerned the supremum $A(r, s, K)$ of the number of non-zero coefficients of (f, g), where f, g run through all univariate polynomials over a field K with exactly r and s non-zero coefficients, respectively. The only case where $A(r, s, K)$ has remained to be evaluated is $r=s=3, p=$ char $K=0$. This case is studied in the present paper. Let us denote by ζ_{q} a primitive complex root of unity of order q, set

$$
P_{n, m}(z)=\left(1-z^{m}\right)^{m /(n, m)}\left(z^{m}-z^{n}\right)^{(n-m) /(n, m)}\left(z^{n}-1\right)^{-n /(n, m)}
$$

and for a trinomial

$$
T(x)=x^{n}+a x^{m}+b \in \mathbb{C}[x], \quad \text { where } n>m>0, a b \neq 0
$$

put

$$
\operatorname{inv} T=a^{-n /(n, m)} b^{(n-m) /(n, m)}
$$

We shall prove the following results:
Theorem 1. Let $T_{i}=x^{n_{i}}+a_{i} x^{m_{i}}+b_{i} \in \mathbb{C}[x], a_{i} b_{i} \neq 0, n_{i}>m_{i}>0$, and $d_{i}=\left(n_{i}, m_{i}\right)(i=1,2)$. If $\left(d_{1}, d_{2}\right)=1$, then

$$
\begin{align*}
& \operatorname{deg}\left(T_{1}, T_{2}\right) \tag{1}\\
& \quad \leq \begin{cases}n_{2} / d_{2} & \text { if } \operatorname{inv} T_{1} \neq P_{n_{1}, m_{1}}\left(\zeta_{d_{2}}^{r}\right) \text { for all } r, \\
n_{2} / d_{2}+\min \left\{2, d_{1}\right\} & \text { if } n_{1} / d_{1} \neq 4 \text { or } d_{2} \not \equiv 0 \bmod 10 \\
n_{2} / d_{2}+\min \left\{3, n_{2} / d_{2}\right\} & \text { always. }\end{cases}
\end{align*}
$$

Theorem 2. For every quadruple $\left\langle n_{1}, m_{1}, n_{2}, m_{2}\right\rangle \in \mathbb{N}^{4}$, where $\left.n_{1}\right\rangle$ $m_{1}, n_{2}>m_{2},\left\langle n_{1}, m_{1}\right\rangle \neq\left\langle n_{2}, m_{2}\right\rangle$ and $\left(n_{1}, m_{1}, n_{2}, m_{2}\right)=1$ there exists an effectively computable finite subset S of $\overline{\mathbb{Q}}^{4}$ with the following property. If

[^0]$T_{i}=x^{n_{i}}+a_{i} x^{m_{i}}+b_{i} \in \mathbb{C}[x], a_{i} b_{i} \neq 0(i=1,2)$, and $\operatorname{deg}\left(T_{1}, T_{2}\right)>2$, then
\[

$$
\begin{equation*}
T_{i}=u^{n_{i}} T_{i}^{*}\left(\frac{x}{u}\right), \quad \text { where } u \in \mathbb{C}^{*}, T_{i}^{*}=x^{n_{i}}+a_{i}^{*} x^{m_{i}}+b_{i}^{*} \tag{2}
\end{equation*}
$$

\]

and $\left\langle a_{1}^{*}, b_{1}^{*}, a_{2}^{*}, b_{2}^{*}\right\rangle \in S$.
Corollary 1. If $\operatorname{inv} T_{i} \notin \overline{\mathbb{Q}}$ for at least one $i \leq 2$, or

$$
T_{1}(0)^{-\operatorname{deg} T_{2}} T_{2}(0)^{\operatorname{deg} T_{1}} \notin \overline{\mathbb{Q}}
$$

then $\left(T_{1}, T_{2}\right)$ has at most three non-zero coefficients.
Corollary 2. We have

$$
\sup _{K \subset \mathbb{C}} A(3,3, K)=A(3,3, \overline{\mathbb{Q}})=\sup _{[K: \mathbb{Q}]<\infty} A(3,3, K) .
$$

Theorem 3. For every finite extension K of \mathbb{Q} and every pair $\langle n, m\rangle \in$ \mathbb{N}^{2}, where $n>m$, there exists a finite set $E_{n, m}(K)$ such that if $T_{i}=x^{n_{i}}+$ $a_{i} x^{m_{i}}+b_{i} \in K[x]$,

$$
\begin{equation*}
\operatorname{inv} T_{i} \notin E_{n_{i}, m_{i}}(K) \quad(i=1,2) \tag{3}
\end{equation*}
$$

and $\left(n_{1}, m_{1}, n_{2}, m_{2}\right)=1$ then either $T_{1}=T_{2}$, or $\operatorname{deg}\left(T_{1}, T_{2}\right) \leq 9$.
Corollary 3. If (3) holds, then $\left(T_{1}, T_{2}\right)$ has at most 10 non-zero coefficients.

At the end of the paper we give three examples of some interest.
R. Dvornicich has kindly looked through the paper and corrected several mistakes. The proofs of Theorems 1 and 3 use a recent result of his [2] on the so-called cyclotomic numbers, which we formulate below as

Lemma 1. Let z_{1}, z_{2} be two complex roots of unity and let Q be the least common multiple of their orders. If m, n are integers such that $(m, n, Q)=1$ and

$$
\begin{equation*}
\left|z_{1}^{m}-1\right|^{m}\left|z_{1}^{n-m}-1\right|^{n-m}\left|z_{1}^{n}-1\right|^{-n}=\left|z_{2}^{m}-1\right|^{m}\left|z_{2}^{n-m}-1\right|^{n-m}\left|z_{2}^{n}-1\right|^{-n} \tag{4}
\end{equation*}
$$

where none of the six absolute values is 0 , then either $z_{1}=z_{2}^{ \pm 1}$, or $Q=10$, $\{m, n-m,-n\}=\{x, 3 x,-4 x\}$ with $(x, 10)=1$ and z_{1}, z_{2} are two primitive tenth roots of unity.

Proof. See [2], Theorem 1.
REmark 1. Lemma 1 can be extended to fields of arbitrary characteristic as follows. Let K be a field of characteristic $p, p=0$ or a prime, let z_{i} $(i=1,2)$ be roots of unity in $\bar{K}, z_{i}^{Q}=1$ and let m, n be positive integers such that $m<n,(m, n, Q)=1$ and

$$
1 \neq z_{i}^{m} \neq z_{i}^{n} \neq 1, \quad P_{n, m}\left(z_{1}\right)=P_{n, m}\left(z_{2}\right)
$$

If either $p=0$ or $p>2^{(2 n /(n, m)+1) \varphi(Q)}$, then either $z_{2}=z_{1}=z_{1}^{ \pm 1}$, or $n /(n, m)=4$ and z_{1}, z_{2} are primitive tenth roots of unity.

Lemma 2. If $(n, m, q)=1$ and

$$
1 \neq \zeta_{q}^{m} \neq \zeta_{q}^{n} \neq 1, \quad q \neq 10
$$

then $P_{n, m}\left(\zeta_{q}\right)$ is an algebraic number of degree $\frac{1}{2} \varphi(q)$.
Proof. We have $P_{n, m}\left(\zeta_{q}^{-1}\right)=P_{n, m}\left(\zeta_{q}\right)$. On the other hand, if $q>2$, $0<r<s<q / 2,(r, s, q)=1$ we have by Lemma 1 ,

$$
\left|P_{n, m}\left(\zeta_{q}^{r}\right)\right| \neq\left|P_{n, m}\left(\zeta_{q}^{s}\right)\right|
$$

hence $P_{n, m}\left(\zeta_{q}\right)$ has $\frac{1}{2} \varphi(q)$ distinct conjugates.
Lemma 3. Let n, m, q be positive integers with $(n, m, q)=1, n>m$ and $T=x^{n}+a x^{m}+b \in \mathbb{C}[x], a b \neq 0$. Set

$$
C(T, q)=\left\{c^{(m, n)}: c \in \mathbb{C}, \operatorname{deg}\left(T, x^{q}-c\right) \geq 2\right\}
$$

We have

$$
\begin{equation*}
\operatorname{card} C(T, q) \leq 1 \tag{5}
\end{equation*}
$$

unless $n /(n, m)=4$ and $q \equiv 0 \bmod 10$, in which case

$$
\begin{equation*}
\operatorname{card} C(T, q) \leq 2 \tag{6}
\end{equation*}
$$

Moreover, if $C(T, q) \neq \emptyset$, then T is separable and

$$
\begin{equation*}
\operatorname{inv} T=P_{n, m}\left(\zeta_{q}^{r}\right) \quad \text { for an } r \text { satisfying } 1 \neq \zeta_{q}^{r m} \neq \zeta_{q}^{r n} \neq 1 \tag{7}
\end{equation*}
$$

Proof. By Theorem 1 of [4] we have $\operatorname{deg}\left(T, x^{q}-c\right) \leq 2$. Assume that $\operatorname{deg}\left(T, x^{q}-c\right)=2$. Since the binomial $x^{q}-c$ is separable we have

$$
\left(T, x^{q}-c\right)=\left(x-\xi_{1}\right)\left(x-\xi_{2}\right),
$$

where $\xi_{i}^{q}=c(i=1,2), \xi_{2}=\xi_{1} \zeta_{q}^{r}, \zeta_{q}^{r} \neq 1$.
By the formulae (13) and (14) of [4] we have

$$
\begin{equation*}
a^{q}=c^{n-m}\left(\frac{\zeta_{q}^{r n}-1}{1-\zeta_{q}^{r m}}\right)^{q}, \quad b^{q}=c^{n}\left(\frac{\zeta_{q}^{r m}-\zeta_{q}^{r n}}{1-\zeta_{q}^{r m}}\right)^{q} \tag{8}
\end{equation*}
$$

where $1 \neq \zeta_{q}^{r m} \neq \zeta_{q}^{r n} \neq 1$ and

$$
\operatorname{inv} T=P_{n, m}\left(\zeta_{q}^{r}\right)
$$

which proves (7). Also, if for another value c^{\prime} we have

$$
\left(T, x^{q}-c^{\prime}\right)=\left(x-\xi_{1}^{\prime}\right)\left(x-\xi_{2}^{\prime}\right)
$$

where $\xi_{i}^{\prime q}=c^{\prime}(i=1,2), \xi_{2}^{\prime}=\xi_{1}^{\prime} \zeta_{q}^{r^{\prime}}$, it follows that

$$
\operatorname{inv} T=P_{n, m}\left(\zeta_{q}^{r^{\prime}}\right), \quad \text { hence } \quad P_{n, m}\left(\zeta_{q}^{r}\right)=P_{n, m}\left(\zeta_{q}^{r^{\prime}}\right)
$$

Applying Lemma 1 with $z_{1}=\zeta_{q}^{r}, z_{2}=\zeta_{q}^{r^{\prime}}$ we infer that either $r^{\prime}= \pm r$ or $n_{1} / d_{1}=4$ and $q \equiv 0 \bmod 10, r^{\prime} \equiv \pm 3 r \bmod q$. In the former case, by (8),

$$
c^{\prime n-m}=c^{n-m}, \quad c^{\prime n}=c^{n}
$$

hence $c^{\prime(n, m)}=c^{(n, m)}$, which proves (5). In the latter case for any value $c^{\prime \prime}$ with $\operatorname{deg}\left(T, x^{q}-c^{\prime \prime}\right) \geq 2$ we have $c^{\prime \prime(n, m)}=c^{(n, m)}$ or $c^{\prime(n, m)}$, which proves (6).

It remains to prove that if $c(T, q) \neq \emptyset$, then T is separable. Now, by formula (11) of [4],
$\operatorname{disc}_{x} T=(-1)^{n(n-1) / 2} a^{n} b^{m-1}\left(n^{n^{\prime}} \operatorname{inv} T+(-1)^{n^{\prime}-1}(n-m)^{n^{\prime}-m^{\prime}} m^{m^{\prime}}\right)^{(n, m)}$, where $n^{\prime}=n /(n, m), m^{\prime}=m /(n, m)$.

Thus, if T has double zeros we have

$$
\operatorname{inv} T=(-1)^{n^{\prime}} m^{\prime m^{\prime}}\left(n^{\prime}-m^{\prime}\right)^{n^{\prime}-m^{\prime}} n^{\prime-n^{\prime}}
$$

Hence, by (7),

$$
\begin{align*}
&(-1)^{n^{\prime}} m^{\prime m^{\prime}}\left(n^{\prime}-m^{\prime}\right)^{n^{\prime}-m^{\prime}} n^{\prime-n^{\prime}} \tag{9}\\
&=\left(1-\zeta_{q}^{r m}\right)^{m^{\prime}}\left(\zeta_{q}^{r m}-\zeta_{q}^{r n}\right)^{n^{\prime}-m^{\prime}}\left(\zeta_{q}^{r n}-1\right)^{-n^{\prime}}
\end{align*}
$$

Now, since $\left(n^{\prime}, m^{\prime}\left(n^{\prime}-m^{\prime}\right)\right)=1$ it follows that in the ring of integers of $\mathbb{Q}\left(\zeta_{q}\right)$ we have

$$
n^{\prime n^{\prime}}\left|\left(\zeta_{q}^{r n}-1\right)^{n^{\prime}}, \quad n^{\prime}\right| \zeta_{q}^{r n}-1
$$

On taking norms from $\mathbb{Q}\left(\zeta_{q}^{r n}\right)$ to \mathbb{Q} we infer that $n^{\prime}=2, \zeta_{q}^{r n}=-1$, hence $m^{\prime}=1, \zeta_{q}^{r m}= \pm \zeta_{4}$ and (9) gives $1 / 4=1 / 2$. The contradiction obtained shows our contention.

Proof of Theorem 1. Let

$$
T_{2}\left(x^{1 / d_{2}}\right)=\prod_{c \in \mathbb{C}}(x-c)^{e(c)}, \quad \sum_{c \in \mathbb{C}} e(c)=n_{2} / d_{2}
$$

We have

$$
\begin{equation*}
\operatorname{deg}\left(T_{1}, T_{2}\right) \leq \sum_{c \in \mathbb{C}} \operatorname{deg}\left(T_{1},\left(x^{d_{2}}-c\right)^{e(c)}\right) \leq \sum_{c \in \mathbb{C}} e(c) \operatorname{deg}\left(T_{1}, x^{d_{2}}-c\right) \tag{10}
\end{equation*}
$$

If $\operatorname{deg}\left(T_{1}, x^{d_{2}}-c\right) \leq 1$ for all $c \in \mathbb{C}$ with $e(c) \geq 1$ the inequalities (1) follow.
If for at least one c, say c_{1}, we have $e\left(c_{1}\right) \geq 1$ and $\operatorname{deg}\left(T_{1}, x^{d_{2}}-c_{1}\right)$ ≥ 2 then, by Lemma $3, T_{1}$ is separable and $\operatorname{inv} T_{1}=P_{n_{1}, m_{1}}\left(\zeta_{d_{2}}^{r}\right)$ for an r satisfying

$$
1 \neq \zeta_{d_{2}}^{r m_{1}} \neq \zeta_{d_{2}}^{r n_{1}} \neq 1
$$

This shows the first inequality of (1). Moreover, by (10),

$$
\begin{align*}
\operatorname{deg}\left(T_{1}, T_{2}\right) & \leq \sum_{c \in \mathbb{C}} \min \{e(c), 1\} \operatorname{deg}\left(T_{1}, x^{d_{2}}-c\right) \tag{11}\\
& \leq \sum_{c \in \mathbb{C}} e(c)+\sum_{e(c) \geq 1}\left(\operatorname{deg}\left(T_{1}, x^{d_{2}}-c\right)-1\right) \\
& \leq \frac{n_{2}}{d_{2}}+\sum_{\substack{e(c) \geq 1 \\
\operatorname{deg}\left(T_{1}, x^{d_{2}}-c\right)=2}} 1 .
\end{align*}
$$

If $n_{1} / d_{1} \neq 4$ or $d_{2} \not \equiv 0 \bmod 10$, then by Lemma $3, \operatorname{deg}\left(T_{1}, x^{d_{2}}-c\right)=2$ implies $c^{d_{1}}=c_{1}^{d_{1}}$, hence by Theorem 1 of [4],

$$
\sum_{\substack{e(c) \geq 1 \\ \operatorname{deg}\left(T_{1}, x^{d_{2}}-c_{1}\right)=2}} 1 \leq \operatorname{deg}\left(T_{2}\left(x^{1 / d_{2}}\right), x^{d_{1}}-c_{1}^{d_{1}}\right) \leq \min \left\{2, d_{1}\right\},
$$

which together with (11) proves the second inequality of (1) and a fortiori, the third.

If $n_{1} / d_{1}=4$ and $d_{2} \equiv 0 \bmod 10$, then by Lemma 3 there exists a c_{2}, possibly equal to c_{1}, such that $\operatorname{deg}\left(T_{1}, x^{d}-c\right)=2$ implies $c^{d_{1}}=c_{i}^{d_{i}}$ for an $i \leq 2$. If $c_{2}^{d_{1}}=c_{1}^{d_{1}}$ we are in the previous case, otherwise

$$
\begin{equation*}
\sum_{\substack{e(c) \geq 1 \\\left(T_{1}, x^{d_{2}}-c\right)=2}} 1 \leq \sum_{i=1}^{2} \operatorname{deg}\left(T_{2}\left(x^{1 / d_{2}}\right), x^{d_{1}}-c_{i}^{d_{1}}\right) \tag{12}
\end{equation*}
$$

However, since $d_{2} \equiv 0 \bmod 10$ we have $d_{1} \not \equiv 0 \bmod 10$, hence, by Lemma 3 , $C\left(T_{2}\left(x^{1 / d_{2}}\right), d_{1}\right) \leq 1$ and the right hand side of (12) does not exceed 3. Since it also does not exceed $\operatorname{deg} T_{2}\left(x^{1 / d_{2}}\right)=n_{2} / d_{2}$ the third of the inequalities (1) follows.

Lemma 4. Let $n>m>0, d=(n, m), F=\left(1-t^{m}\right) x^{n}+\left(t^{n}-1\right) x^{m}+$ $t^{m}-t^{n}$. All zeros of F in $\mathbb{C}((t))$ are given by the Puiseux expansions

$$
\begin{array}{ll}
\zeta_{d}^{\delta}, \zeta_{d}^{\delta} t: \quad 0 \leq \delta<d \\
\zeta_{m}^{\mu} t+\frac{\zeta_{m}^{\mu n}-1}{m} \zeta_{m}^{\mu} t^{n-m+1}+\ldots: & 0 \leq \mu<m, \mu \not \equiv 0 \bmod \frac{m}{d} \\
\zeta_{n-m}^{\nu}+\frac{\zeta_{n-m}^{\nu n}-1}{n-m} \zeta_{n-m}^{\nu} t^{m}+\ldots: & 0 \leq \nu<n-m, \nu \not \equiv 0 \bmod \frac{n-m}{d}
\end{array}
$$

Proof. One applies the usual procedure (Newton polygons) for finding Puiseux expansions.

Lemma 5. Let $n_{i}>m_{i}>0, d_{i}=\left(n_{i}, m_{i}\right)$, and $F_{i}=\left(1-t^{m_{i}}\right) x^{n_{i}}+$ $\left(t^{n_{i}}-1\right) x^{m_{i}}+t^{m_{i}}-t^{n_{i}}(i=1,2)$. If $\left(d_{1}, d_{2}\right)=1$ then either $F_{1}=F_{2}$, or

$$
\left(F_{1}, F_{2}\right)=(t-1)(x-1)(x-t) .
$$

Proof. The content $C\left(F_{i}\right)$ of F_{i} viewed as a polynomial in x is $t^{d_{i}}-1$, hence $\left(C\left(F_{1}\right), C\left(F_{2}\right)\right)=t-1$. On the other hand, by Lemma 4, F_{1} and F_{2} have two common zeros in $\mathbb{C}((t))$, namely 1 and t, each with multiplicity 1 ; if there are any other common zeros we have either

$$
\begin{equation*}
\zeta_{m_{1}}^{\mu_{1}} t+\frac{\zeta_{m_{1}}^{\mu_{1} n_{1}}-1}{m_{1}} \zeta_{m_{1}}^{\mu_{1}} t^{n_{1}-m_{1}+1}=\zeta_{m_{2}}^{\mu_{2}} t+\frac{\zeta_{m_{2}}^{\mu_{2} n_{2}}-1}{m_{2}} \zeta_{m_{2}}^{\mu_{2}} t^{n_{2}-m_{2}+1} \tag{13}
\end{equation*}
$$

where $\mu_{i} \not \equiv 0 \bmod \frac{m_{i}}{d_{i}}(i=1,2)$, or

$$
\begin{equation*}
\zeta_{n_{1}-m_{1}}^{\nu_{1}}+\frac{\zeta_{n_{1}-m_{1}}^{\nu_{1} n_{1}}-1}{n_{1}-m_{1}} \zeta_{n_{1}-m_{1}}^{\nu_{1}} t^{m_{1}}=\zeta_{n_{2}-m_{2}}^{\nu_{2}}+\frac{\zeta_{n_{2}-m_{2}}^{\nu_{2} n_{2}}-1}{n_{2}-m_{2}} \zeta_{n_{2}-m_{2}}^{\nu_{2}} t^{m_{2}} \tag{14}
\end{equation*}
$$

where $\nu_{i} \not \equiv 0 \bmod \frac{n_{i}-m_{i}}{d_{i}}(i=1,2)$.
If (13) holds, we have

$$
\begin{align*}
& \zeta_{m_{1}}^{\mu_{1}}=\zeta_{m_{2}}^{\mu_{2}}, \quad n_{1}-m_{1}+1=n_{2}-m_{2}+1, \\
& \frac{\zeta_{m_{1}}^{\mu_{1} n_{1}}-1}{m_{1}}=\frac{\zeta_{m_{2}}^{\mu_{2} n_{2}}-1}{m_{2}} . \tag{15}
\end{align*}
$$

Dividing the last equality by its complex conjugate we obtain

$$
-\zeta_{m_{1}}^{\mu_{1} n_{1}}=-\zeta_{m_{2}}^{\mu_{2} n_{2}} \neq-1,
$$

hence $m_{1}=m_{2}$, which together with (15) gives $F_{1}=F_{2}$.
If (14) holds, we have

$$
\begin{align*}
& \zeta_{n_{1}-m_{1}}^{\nu_{1}} \zeta_{n_{2}-m_{2}}^{\nu_{2}}, \quad m_{2}, \\
& \frac{\zeta_{n_{1}-m_{1}}^{\nu_{1}}-1}{n_{1}-m_{1}}=\frac{\zeta_{n_{2}-m_{2}}^{\nu_{2} n_{2}}}{n_{2}-m_{2}} . \tag{16}
\end{align*}
$$

Dividing the last equality by its complex conjugate we obtain

$$
-\zeta_{n_{1}-m_{1}}^{\nu_{1} n_{1}}=-\zeta_{n_{2}-m_{2}}^{\nu_{2} n_{2}} \neq-1,
$$

hence $n_{1}-m_{1}=n_{2}-m_{2}$, which together with (16) gives $F_{1}=F_{2}$.
Proof of Theorem 2. Let $n_{i}>m_{i}>0,\left(n_{i}, m_{i}\right)=d_{i}(i=1,2),\left(d_{1}, d_{2}\right)=$ 1 and $\left\langle n_{1}, m_{1}\right\rangle \neq\left\langle n_{2}, m_{2}\right\rangle$. In the notation of Lemma 5 and by virtue of that lemma the polynomials $F_{i} /(t-1)(x-1)(x-t)(i=1,2)$ are coprime, hence their resultant R with respect to x is non-zero. We set

$$
\begin{aligned}
& S=\left\{\left\langle\frac{-n_{1}}{m_{1}}, \frac{n_{1}-m_{1}}{m_{1}}, \frac{-n_{2}}{m_{2}}, \frac{n_{2}-m_{2}}{m_{2}}\right\rangle\right\} \\
& \\
& \cup\left\{\left\langle\frac{\zeta_{d_{2}}^{r_{2} n_{1}}-1}{\left.1-\zeta_{d_{2}}^{r_{1} m_{1}}, \frac{\zeta_{d_{2}}^{r_{2} m_{1}}-\zeta_{d_{2}}^{r_{2} n_{1}}}{1-\zeta_{d_{2}}^{r_{2}} m_{1}}, \frac{\zeta_{d_{1}}^{r_{1} n_{2}}-1}{1-\zeta_{d_{1}}^{r_{1} m_{2}}}, \frac{\zeta_{d_{1}}^{r_{1} m_{2}}-\zeta_{d_{1}}^{r_{1} n_{2}}}{1-\zeta_{d_{1}}^{r_{1} m_{2}}}\right\rangle:}\right.\right. \\
& \left.\quad r_{2} m_{1} \not \equiv 0 \bmod d_{2}, r_{1} m_{2} \not \equiv 0 \bmod d_{1}\right\}
\end{aligned}
$$

$$
\cup\left\{\left\langle\frac{t^{n_{1}}-1}{1-t^{m_{1}}}, \frac{t^{m_{1}}-t^{n_{1}}}{1-t^{m_{1}}}, \frac{t^{n_{2}}-1}{1-t^{m_{2}}}, \frac{t^{m_{2}}-t^{n_{2}}}{1-t^{m_{2}}}\right\rangle: R(t)=0, t^{m_{1}} \neq 1 \neq t^{m_{2}}\right\}
$$

We proceed to show that the set S has the property asserted in the theorem. Since $R \in \mathbb{Q}[t]$ we have $S \subset \overline{\mathbb{Q}}^{4}$. Assume that $\operatorname{deg}\left(T_{1}, T_{2}\right) \geq 3$. If (T_{1}, T_{2}) has a double zero ξ_{0} we set

$$
T_{i}^{*}(x)=\xi_{0}^{-n_{i}} T_{i}\left(\xi_{0} x\right) \quad(i=1,2)
$$

and from the equations $T_{i}^{*}(1)=0=\frac{d T_{i}^{*}}{d x}(1)(i=1,2)$ we find that

$$
a_{i}^{*}=-\frac{n_{i}}{m_{i}}, \quad b_{i}^{*}=\frac{n_{i}-m_{i}}{m_{i}} \quad(i=1,2),
$$

hence $\left\langle a_{1}^{*}, b_{1}^{*}, a_{2}^{*}, b_{2}^{*}\right\rangle \in S$ and (2) holds with $u=\xi_{0}$.
If (T_{1}, T_{2}) has three distinct zeros $\xi_{0}, \xi_{1}, \xi_{2}$ we set

$$
T_{i}^{*}(x)=\xi_{0}^{-n_{i}} T_{i}\left(\xi_{0} x\right) \quad(i=1,2)
$$

Changing, if necessary, the role of T_{1} and T_{2} we have one of the three cases:
(i) $\left(\xi_{1} / \xi_{0}\right)^{d_{1}}=1$ and $\left(\xi_{2} / \xi_{0}\right)^{d_{2}}=1$,
(ii) $\left(\xi_{1} / \xi_{0}\right)^{d_{1}}=1$ and $\left(\xi_{2} / \xi_{0}\right)^{d_{2}} \neq 1$,
(iii) $\left(\xi_{1} / \xi_{0}\right)^{d_{1}} \neq 1$ and $\left(\xi_{1} / \xi_{0}\right)^{d_{2}} \neq 1$.

In case (i) we have $\xi_{j} / \xi_{0}=\zeta_{d_{j}}^{r_{j}}(j=1,2)$ and the equations $T_{i}^{*}\left(\xi_{j} / \xi_{0}\right)=0$ $(i=1,2)$ give

$$
\begin{gathered}
a_{i}^{*}=\frac{\zeta_{d_{3-i}}^{r_{3-i} n_{i}}-1}{1-\zeta_{d_{3-i}}^{r_{3-i} m_{i}}, \quad b_{i}^{*}=\frac{\zeta_{d_{3-i}}^{r_{3-i} m_{i}}-\zeta_{d_{3-i}}^{r_{3-i} n_{i}}}{1-\zeta_{d_{3-i}}^{r_{3-i}}},} \begin{array}{c}
r_{3-i} m_{i} \neq 0 \bmod d_{3-i} \quad(i=1,2)
\end{array}, .
\end{gathered}
$$

Hence $\left\langle a_{1}^{*}, b_{1}^{*}, a_{2}^{*}, b_{2}^{*}\right\rangle \in S$ and (2) holds with $u=\xi_{0}$. In case (ii) we have $\left(\xi_{2} / \xi_{0}\right)^{d_{1}} \neq 1$, since otherwise T_{2} would have three common zeros with $x^{d_{1}}-\xi_{0}^{d_{1}}$, contrary to Theorem 1 of [4].

Hence $\left(\xi_{2} / \xi_{0}\right)^{d_{i}} \neq 1(i=1,2)$ and the equations $T_{i}^{*}\left(\xi_{2} / \xi_{0}\right)=0(i=1,2)$ give

$$
\left(\xi_{2} / \xi_{0}\right)^{m_{1}} \neq 1 \neq\left(\xi_{2} / \xi_{0}\right)^{m_{2}}
$$

and

$$
a_{i}^{*}=\frac{\left(\xi_{2} / \xi_{0}\right)^{n_{i}}-1}{1-\left(\xi_{2} / \xi_{0}\right)^{m_{i}}}, \quad b_{i}^{*}=\frac{\left(\xi_{2} / \xi_{0}\right)^{m_{i}}-\left(\xi_{2} / \xi_{0}\right)^{n_{i}}}{1-\left(\xi_{2} / \xi_{0}\right)^{m_{i}}} .
$$

The polynomials $T_{i}^{*} /(x-1)\left(x-\xi_{2} / \xi_{0}\right)(i=1,2)$ have a common zero ξ_{1} / ξ_{0}, hence $R\left(\xi_{2} / \xi_{0}\right)=0$. It follows that $\left\langle a_{1}^{*}, b_{1}^{*}, a_{2}^{*}, b_{2}^{*}\right\rangle \in S$ and (2) holds with $u=\xi_{0}$.

In case (iii) we have $\left(\xi_{1} / \xi_{0}\right)^{d_{i}} \neq 1(i=1,2)$ and we reach the desired conclusion replacing in the above argument ξ_{2} by ξ_{1}.

Proof of Corollary 1. Since f and $f\left(x^{d}\right)$ have for every $f \in \mathbb{C}[x]$ and every $d \in \mathbb{N}$ the same number of non-zero coefficients we may assume that $\left(n_{1}, m_{1}, n_{2}, m_{2}\right)=1$. If $T_{1}=T_{2}$ then $\left(T_{1}, T_{2}\right)=T_{1}$ has three non-zero coefficients. If $T_{1} \neq T_{2}$, but $\left\langle n_{1}, m_{1}\right\rangle=\left\langle n_{2}, m_{2}\right\rangle$, then by Theorem 2 of [4],

$$
\left(T_{1}, T_{2}\right)=\left(\left(a_{1}-a_{2}\right) x^{m_{1}}+b_{1}-b_{2},\left(a_{1}-a_{2}\right) x^{n_{1}}+a_{1} b_{2}-a_{2} b_{1}\right)
$$

has at most two non-zero coefficients. If $\left\langle n_{1}, m_{1}\right\rangle \neq\left\langle n_{2}, m_{2}\right\rangle$ then by Theorem 2 either $\operatorname{deg}\left(T_{1}, T_{2}\right) \leq 2$, or (2) holds. However in the latter case

$$
\operatorname{inv} T_{i}=\operatorname{inv} T_{i}^{*} \in \overline{\mathbb{Q}} \quad(i=1,2)
$$

and

$$
T_{1}(0)^{-\operatorname{deg} T_{2}} T_{2}(0)^{\operatorname{deg} T_{1}}=T_{1}^{*}(0)^{-\operatorname{deg} T_{2}} T_{2}^{*}(0)^{\operatorname{deg} T_{1}} \in \overline{\mathbb{Q}}
$$

Proof of Corollary 2. The second equality is clear. In order to prove the first, note that $A(3,3, \overline{\mathbb{Q}}) \geq 3$. On the other hand, if $\left(T_{1}, T_{2}\right)$ has more than three non-zero coefficients, then by Corollary 1,

$$
\operatorname{inv} T_{i} \in \overline{\mathbb{Q}} \quad(i=1,2)
$$

hence

$$
T_{i}=u_{i}^{\operatorname{deg} T_{i}} T_{i}^{* *}\left(\frac{x}{u_{i}}\right), \quad \text { where } u_{i} \in \mathbb{C}^{*}, T_{i}^{* *} \in \overline{\mathbb{Q}}[x]
$$

Moreover, also by Corollary 1,

$$
\left(\frac{u_{2}}{u_{1}}\right)^{\operatorname{deg} T_{1} \operatorname{deg} T_{2}} T_{1}^{* *}(0)^{-\operatorname{deg} T_{2}} T_{2}^{* *}(0)^{\operatorname{deg} T_{1}} \in \overline{\mathbb{Q}}
$$

hence $v=u_{2} / u_{1} \in \overline{\mathbb{Q}}$ and $\left(T_{1}, T_{2}\right)$ has the same number of non-zero coefficients as $\left(T_{1}^{* *}, T_{2}^{* *}(x / v)\right)$, where both terms belong to $\overline{\mathbb{Q}}[x]$.

Lemma 6. Let n, m be positive integers, $n>m$ and $a, b \in K^{*}$, where K is a finite extension of \mathbb{Q}. If F is a monic factor of $x^{n /(n, m)}+a x^{m /(n, m)}+b$ in $K[x]$ of maximal possible degree $d \leq 2$ and $n /(n, m)>\max \{6,9-3 d\}$, then

$$
\frac{x^{n}+a x^{m}+b}{F\left(x^{(n, m)}\right)}
$$

is reducible over K if and only if there exists a positive integer $l \mid(n, m)$ such that

$$
a=u^{(n, m) / l} a_{0}, \quad b=u^{n / l} b_{0}, \quad F=u^{d} F_{0}\left(\frac{x}{u}\right)
$$

where $u \in K^{*},\left\langle a_{0}, b_{0}, F_{0}\right\rangle \in F_{n / l, m / l}^{d}(K)$ and $F_{n / l, m / l}^{d}(K)$ is a certain finite set, possibly empty.

Proof. See [3], Theorem 3.
Lemma 7. Let $a, b \in K^{*}, n>m>0, d=(n, m)$. Let $f(x)$ be a factor of $x^{n / d}+a x^{m / d}+b$ of degree at most 2 . If $n>2 d$, then (n, m) is the greatest
common divisor of the exponents of powers of x occurring with non-zero coefficients in $\left(x^{n}+a x^{m}+b\right) / f\left(x^{(n, m)}\right)=: Q(x)$.

Proof. We may assume that f is monic and $d=1$. If $f(x)=1$ the assertion is obvious. If $f(x)=x-c$, then $Q(x)$ contains terms x^{n-1} and $c x^{n-2}$, unless $m=n-1$ and $a=-c$. But in the latter case $x-c \mid b$, which is impossible. If $f(x)=x^{2}-p x-q$, we first observe that $p \neq 0$. Otherwise, we should have $q^{n / 2}+a q^{m / 2}+b=0$ and also $(-1)^{n} q^{n / 2}+a(-1)^{m} q^{m / 2}+b=0$, which, since at least one of the numbers n, m is odd, gives $a b=0$. Now $\left(x^{n}+a x^{m}+b\right) /\left(x^{2}-p x-q\right)$ contains the terms x^{n-2} and $p x^{n-3}$, unless $m=n-1$ and $a=-p$. It also contains the terms $-b / q$ and $\left(b / q^{2}\right) p x$, unless $m=1, a=(b / q) p$. However $m=n-1$ and $m=1$ give $n=2$, contrary to the assumption.

Lemma 8. If $n>m>0, n>3, a b c \neq 0$, then $\left(x^{n}+a x^{m}+b\right)(x-c)$ has six non-zero coefficients, unless either $m=n-1$ or $m=1$, when there are at least four non-zero coefficients. Only in the former case does x^{n-1} occur with a non-zero coefficient.

Proof. We have

$$
\left(x^{n}+a x^{m}+b\right)(x-c)=x^{n+1}-c x^{n}+a x^{m+1}-a x^{m}+b x-c b
$$

The cancellation can occur only between the second and the third term (if $m=n-1$), or between the fourth and the fifth term (if $m=1$).

Lemma 9. If $n>m>0, n>6, a b p q \neq 0$, then $\left(x^{n}+a x^{m}+b\right)\left(x^{2}-p x+q\right)$ has nine non-zero coefficients, unless $m \geq n-2$ or $m \leq 2$, when there are at most eight. If $m=n-1$ there are at least five non-zero coefficients, including that of x^{n-1}; if $m=n-2$ there are at least seven non-zero coefficients, including that of x^{n-2}. If $m \leq 2$ the coefficients of x^{n-1} and x^{n-2} are zero.

Proof. We have

$$
\begin{aligned}
& \left(x^{n}+a x^{m}+b\right)\left(x^{2}-p x+q\right) \\
& \quad=x^{n+2}-p x^{n+1}+q x^{n}+a x^{m+2}-a p x^{m+1}+a q x^{m}+b x^{2}-b p x+b q
\end{aligned}
$$

The cancellation can occur only if $m \geq n-2$ or $m \leq 2$ and all the assertions are easily checked.

Lemma 10. Let $d_{i}=\left(n_{i}, m_{i}\right)(i=1,2)$ and let $f_{i}(x)$ be a monic factor of degree ≤ 2 of $x^{n_{i} / d_{i}}+a_{i} x^{m_{i} / d_{i}}+b_{i}$. If $n_{i} / d_{i}>6$ and

$$
\begin{equation*}
\frac{x^{n_{1}}+a_{1} x^{m_{1}}+b_{1}}{f_{1}\left(x^{d_{1}}\right)}=\frac{x^{n_{2}}+a_{2} x^{m_{2}}+b_{2}}{f_{2}\left(x^{d_{2}}\right)} \tag{17}
\end{equation*}
$$

then

$$
\begin{equation*}
x^{n_{1}}+a_{1} x^{m_{1}}+b_{1}=x^{n_{2}}+a_{2} x^{m_{2}}+b_{2} . \tag{18}
\end{equation*}
$$

Proof. By Lemma 7, $d_{1}=d_{2}$, hence we may assume without loss of generality that $d_{1}=d_{2}=1$. Then the equality (17) gives

$$
\begin{equation*}
\left(x^{n_{1}}+a_{1} x^{m_{1}}+b_{1}\right) f_{2}(x)=\left(x^{n_{2}}+a_{2} x^{m_{2}}+b_{2}\right) f_{1}(x) \tag{19}
\end{equation*}
$$

and we may assume without loss of generality that $\operatorname{deg} f_{1} \geq \operatorname{deg} f_{2}$. Moreover, since (19) is equivalent to

$$
\begin{aligned}
\left(x^{n_{1}}+a_{1} b_{1}^{-1} x^{n_{1}-m_{1}}+\right. & \left.b_{1}^{-1}\right) \frac{x^{\operatorname{deg} f_{2}} f_{2}\left(x^{-1}\right)}{f_{2}(0)} \\
& =\left(x^{n_{2}}+a_{2} b_{2}^{-1} x^{n_{2}-m_{2}}+b_{2}^{-1}\right) \frac{x^{\operatorname{deg} f_{1}} f_{1}\left(x^{-1}\right)}{f_{1}(0)},
\end{aligned}
$$

we may assume that

$$
\begin{equation*}
2 m_{2} \geq n_{2} . \tag{20}
\end{equation*}
$$

If $\operatorname{deg} f_{2}=0$, then the left hand side of (19) has only three non-zero coefficients, thus by Lemmas 8 and 9 applied to the right hand side $\operatorname{deg} f_{1}=$ 0 and (18) follows.

If $\operatorname{deg} f_{2}=1<2=\operatorname{deg} f_{1}$, then the left hand side of (19) has at most six non-zero coefficients, which by Lemma 9 and condition (20) gives $m_{2}=n_{2}-1$. Since $n_{2}>6$ taking the residues $\bmod x^{4}$ of both sides of (19) we obtain

$$
\begin{equation*}
\left(a_{1} x^{m_{1}}+b_{1}\right) f_{2}(x) \equiv b_{2} f_{1}(x) \bmod x^{4}, \tag{21}
\end{equation*}
$$

hence $m_{1}=1$ and subtracting (21) from (19) gives

$$
x^{n_{1}} f_{2}(x)=\left(x^{n_{2}}+a_{2} x^{n_{2}-1}\right) f_{1}(x),
$$

a contradiction $\bmod f_{1}$.
If $\operatorname{deg} f_{2}=1=\operatorname{deg} f_{1}$, then $n_{1}=n_{2}$. If $m_{2} \neq n_{2}-1$, then by Lemma 8 and (20) the right hand side of (19) has six non-zero coefficients, thus also on the left hand side no terms coalesce and we have $b_{1} f_{2}=b_{2} f_{1}$, hence $f_{2}=f_{1}$ and (18) follows. If $m_{2}=n_{2}-1$, then on the right hand side of (19) we have five or four non-zero coefficients, including that of $x^{n_{2}-1}$, hence by Lemma $8, m_{1}=n_{1}-1$. Taking the residues of both sides of (19) $\bmod x^{3}$ we find $b_{1} f_{2}=b_{2} f_{1}$, hence $f_{2}=f_{1}$ and (18) follows. If $\operatorname{deg} f_{1}=\operatorname{deg} f_{2}=2$, then again $n_{1}=n_{2}$. If $m_{2}<n_{2}-2$, then on the right hand side of (19) we have nine non-zero coefficients, hence also on the left hand side no two terms coalesce and taking residues $\bmod x^{3}$ we obtain $b_{1} f_{2}=b_{2} f_{1}$, hence $f_{2}=f_{1}$ and (18) follows. If $m_{2} \geq n_{2}-2$, then by Lemma 9 the number of non-zero coefficients on the right hand side of (19) is at most eight and $x^{m_{2}}$ occurs with a non-zero coefficient, hence also on the left hand side we have at most eight non-zero coefficients and either $x^{n_{1}-1}$ or $x^{n_{1}-2}$ occurs with a non-zero coefficient. Again by Lemma $9, m_{1} \geq n_{1}-2$. Taking the residues of both sides of $(19) \bmod x^{3}$ we find $b_{1} f_{2}=b_{2} f_{1}$, hence $f_{2}=f_{1}$ and (18) follows.

Proof of Theorem 3. Put

$$
F_{n, m}(K)=K \cap\left\{P_{n, m}\left(\zeta_{q}^{r}\right): 0 \leq r<q, 1 \neq \zeta_{q}^{r m} \neq \zeta_{q}^{r n} \neq 1\right\}
$$

The set $F_{n, m}(K)$ is finite since by Lemma 2 the condition $P_{n, m}\left(\zeta_{q}^{r}\right) \in K$ implies

$$
\text { either } \quad \frac{q}{(q, r)}=10 \quad \text { or } \quad \frac{1}{2} \varphi\left(\frac{q}{(q, r)}\right) \leq[K: \mathbb{Q}]
$$

and this leaves only finitely many possibilities for ζ_{q}^{r}. We set

$$
\begin{aligned}
E_{n, m}(K)= & F_{n, m}(K) \\
& \cup \bigcup_{d \leq 2} \bigcup_{l \mid(n, m)} \bigcup_{\left\langle a_{0}, b_{0}, F_{0}\right\rangle \in F_{n / l, m / l}^{d}(K)}\left\{a_{0}^{-n /(n, m)} b_{0}^{(n-m) /(n, m)}\right\}
\end{aligned}
$$

where $F_{\nu, \mu}^{d}(K)$ are as in Lemma 6.
Now, let $d_{i}=\left(n_{i}, m_{i}\right)$ and let f_{i} be a monic polynomial over K of maximal possible degree $\delta_{i} \leq 2$ dividing $T_{i}\left(x^{1 / d_{i}}\right)(i=1,2)$. We may assume without loss of generality that $n_{2} / d_{2} \leq n_{1} / d_{1}$.

If $n_{2} / d_{2} \leq 9$, then, since $\operatorname{inv} T_{2} \notin F_{n_{2}, m_{2}}(K)$, by Theorem 1 we have

$$
\begin{equation*}
\operatorname{deg}\left(T_{1}, T_{2}\right) \leq n_{2} / d_{2} \leq 9 \tag{22}
\end{equation*}
$$

If $n_{2} / d_{2}>9$, then by Lemma 6 either $T_{i} / f_{i}\left(x^{d_{i}}\right)$ is irreducible over K or there exists an integer $l \mid d_{i}$, an element u of K^{*} and $\left\langle a_{0}, b_{0}, F_{0}\right\rangle \in$ $F_{n_{i} / l, m_{i} / l}^{\delta_{i}}(K)$ such that

$$
T_{i}(x)=x^{n_{i}}+u^{\left(n_{i}-m_{i}\right) / l} a_{0} x^{m_{i}}+u^{n_{i} / l} b_{0}, \quad f_{i}=u^{\delta_{i}} F_{0}\left(\frac{x}{u}\right)
$$

These conditions give

$$
\operatorname{inv} T_{i}=a_{0}^{-n_{i} / d_{i}} b_{0}^{\left(n_{i}-m_{i}\right) / d_{i}} \in E_{n_{i}, m_{i}}(K)
$$

contrary to the assumption. Therefore $T_{i} / f_{i}\left(x^{d_{i}}\right)$ is irreducible over K for $i=1,2$ and we have

$$
\text { either } \quad T_{1} / f_{1}\left(x^{d_{1}}\right)=T_{2} / f_{2}\left(x^{d_{2}}\right) \quad \text { or } \quad\left(T_{1} / f_{1}\left(x^{d_{1}}\right), T_{2} / f_{2}\left(x^{d_{2}}\right)\right)=1
$$

In the former case we have $T_{1}=T_{2}$ by Lemma 10; in the latter case

$$
\begin{equation*}
\left(T_{1}, T_{2}\right)=\frac{\left(T_{1}, f_{2}\left(x^{d_{2}}\right)\right)\left(T_{2}, f_{1}\left(x^{d_{1}}\right)\right)}{\left(f_{1}\left(x^{d_{1}}\right), f_{2}\left(x^{d_{2}}\right)\right)} \tag{23}
\end{equation*}
$$

However, by Lemma 3 if $\operatorname{deg} f_{3-i}=1$, or if $\operatorname{deg} f_{3-i}=2$ and $f_{3-i}^{\prime}(0)=0$ and by Theorem 1 otherwise, we have

$$
\operatorname{deg}\left(T_{i}, f_{3-i}\left(x^{d_{3-i}}\right)\right) \leq \operatorname{deg} f_{3-i} \leq 2
$$

which by (23) gives

$$
\begin{equation*}
\operatorname{deg}\left(T_{1}, T_{2}\right) \leq 2+2=4 \tag{24}
\end{equation*}
$$

The alternative (22) or (24) gives the theorem.

We shall now give the promised examples.
Example 1. Let $n_{i}>m_{i}>0, d_{i}=\left(n_{i}, m_{i}\right), 0 \not \equiv m_{i} \not \equiv n_{i} \not \equiv 0 \bmod d_{3-i}$ for $i=1,2,\left(d_{1}, d_{2}\right)=1$, and

$$
T_{i}(x)=x^{n_{i}}+\frac{\zeta_{d_{3-i}}^{r_{3-i} n_{i}}-1}{1-\zeta_{d_{3-i}}^{r_{3-i} m_{i}}} x^{m_{i}}+\frac{\zeta_{d_{3-i}}^{r_{3-i} m_{i}}-\zeta_{d_{3-i}}^{r_{3-i} n_{i}}}{1-\zeta_{d_{3-i}}^{r_{3-i} m_{i}}} \quad(i=1,2)
$$

where r_{3-i} is chosen so that

$$
1 \neq \zeta_{d_{3-i}}^{r_{3-i} m_{i}} \neq \zeta_{d_{3-i}}^{r_{3-i} n_{i}} \neq 1 \quad(i=1,2)
$$

Here $\left(T_{1}, T_{2}\right)$ has the following distinct zeros: $1, \zeta_{d_{1}}^{r_{1}}, \zeta_{d_{2}}^{r_{2}}, \zeta_{d_{1}}^{r_{1}} \zeta_{d_{2}}^{r_{2}}$, hence

$$
\operatorname{deg}\left(T_{1}, T_{2}\right) \geq 4
$$

If $n_{2} / d_{2}=2$ this shows that the second and the third inequality of (1) are exact in infinitely many essentially different cases and the condition for the first inequality is not superfluous.

Example 2. Let $T_{1}=x^{4}-5 x+5$ and $T_{2}=x^{20}+5^{4} x^{10}+5^{5}$. Here $\left(T_{1}, T_{2}\right)=T_{1}$, hence

$$
\operatorname{deg}\left(T_{1}, T_{2}\right)=4>n_{2} / d_{2}+\min \left\{2, d_{1}\right\}
$$

This shows that the condition for the second inequality of (1) is not superfluous.

Example 3 (due to S . Chaładus [1]). Let $T_{1}=x^{7}+9 x^{2}+27$ and $T_{2}=x^{15}-27 x^{6}+729$. Here

$$
\left(T_{1}, T_{2}\right)=x^{5}+3 x^{4}+6 x^{3}+9 x^{2}+9 x+9
$$

Since $\operatorname{inv} T_{1}=3, d_{2}=3$, and $P_{n_{1}, m_{1}}\left(\zeta_{3}^{ \pm 1}\right)=1$, in this case the first inequality of (1) is exact. Moreover $\left(T_{1}, T_{2}\right)$ has six non-zero coefficients, which is the present record.

References

[1] S. Chaładus, Letter to the author of July 7, 1994.
[2] R. Dvornicich, On an equation in cyclotomic numbers, this issue, 71-94.
[3] A. Schinzel, On reducible trinomials, III, Period. Math. Hungar. 43 (2001), 43-69.
[4] -, On the greatest common divisor of two univariate polynomials, I, in: A Tribute to Alan Baker, to appear.

Institute of Mathematics

Polish Academy of Sciences
P.O. Box 137

00-950 Warszawa, Poland
E-mail: schinzel@impan.gov.pl

[^0]: 2000 Mathematics Subject Classification: 12D05, 12E10.

