On the greatest common divisor of two univariate polynomials, II

by

A. SCHINZEL (Warszawa)

To Andrzej Rotkiewicz on his 70th birthday

The first paper of this series [4] has concerned the supremum A(r, s, K)of the number of non-zero coefficients of (f, g), where f, g run through all univariate polynomials over a field K with exactly r and s non-zero coefficients, respectively. The only case where A(r, s, K) has remained to be evaluated is r = s = 3, p = char K = 0. This case is studied in the present paper. Let us denote by ζ_q a primitive complex root of unity of order q, set

$$P_{n,m}(z) = (1 - z^m)^{m/(n,m)} (z^m - z^n)^{(n-m)/(n,m)} (z^n - 1)^{-n/(n,m)}$$

and for a trinomial

$$T(x)=x^n+ax^m+b\in \mathbb{C}[x], \quad \text{ where } n>m>0, \, ab\neq 0,$$

put

inv
$$T = a^{-n/(n,m)} b^{(n-m)/(n,m)}$$
.

We shall prove the following results:

THEOREM 1. Let $T_i = x^{n_i} + a_i x^{m_i} + b_i \in \mathbb{C}[x]$, $a_i b_i \neq 0$, $n_i > m_i > 0$, and $d_i = (n_i, m_i)$ (i = 1, 2). If $(d_1, d_2) = 1$, then

(1)
$$\deg(T_1, T_2)$$

$$\leq \begin{cases} n_2/d_2 & \text{if inv } T_1 \neq P_{n_1, m_1}(\zeta_{d_2}^r) \text{ for all } r, \\ n_2/d_2 + \min\{2, d_1\} & \text{if } n_1/d_1 \neq 4 \text{ or } d_2 \not\equiv 0 \mod 10, \\ n_2/d_2 + \min\{3, n_2/d_2\} & always. \end{cases}$$

THEOREM 2. For every quadruple $\langle n_1, m_1, n_2, m_2 \rangle \in \mathbb{N}^4$, where $n_1 > m_1, n_2 > m_2, \langle n_1, m_1 \rangle \neq \langle n_2, m_2 \rangle$ and $(n_1, m_1, n_2, m_2) = 1$ there exists an effectively computable finite subset S of $\overline{\mathbb{Q}}^4$ with the following property. If

²⁰⁰⁰ Mathematics Subject Classification: 12D05, 12E10.

 $T_i = x^{n_i} + a_i x^{m_i} + b_i \in \mathbb{C}[x], \ a_i b_i \neq 0 \ (i = 1, 2), \ and \ \deg(T_1, T_2) > 2, \ then$

(2)
$$T_i = u^{n_i} T_i^* \left(\frac{x}{u}\right), \quad where \ u \in \mathbb{C}^*, \ T_i^* = x^{n_i} + a_i^* x^{m_i} + b_i^*$$

and $\langle a_1^*, b_1^*, a_2^*, b_2^* \rangle \in S.$

COROLLARY 1. If inv $T_i \notin \overline{\mathbb{Q}}$ for at least one $i \leq 2$, or $T_1(0)^{-\deg T_2} T_2(0)^{\deg T_1} \notin \overline{\mathbb{Q}}$

then (T_1, T_2) has at most three non-zero coefficients.

COROLLARY 2. We have

$$\sup_{K \subset \mathbb{C}} A(3,3,K) = A(3,3,\overline{\mathbb{Q}}) = \sup_{[K:\mathbb{Q}] < \infty} A(3,3,K).$$

THEOREM 3. For every finite extension K of \mathbb{Q} and every pair $\langle n, m \rangle \in \mathbb{N}^2$, where n > m, there exists a finite set $E_{n,m}(K)$ such that if $T_i = x^{n_i} + a_i x^{m_i} + b_i \in K[x]$,

(3)
$$\operatorname{inv} T_i \notin E_{n_i,m_i}(K) \quad (i = 1, 2)$$

and $(n_1, m_1, n_2, m_2) = 1$ then either $T_1 = T_2$, or $\deg(T_1, T_2) \le 9$.

COROLLARY 3. If (3) holds, then (T_1, T_2) has at most 10 non-zero coefficients.

At the end of the paper we give three examples of some interest.

R. Dvornicich has kindly looked through the paper and corrected several mistakes. The proofs of Theorems 1 and 3 use a recent result of his [2] on the so-called cyclotomic numbers, which we formulate below as

LEMMA 1. Let z_1, z_2 be two complex roots of unity and let Q be the least common multiple of their orders. If m, n are integers such that (m, n, Q) = 1 and

(4) $|z_1^m - 1|^m |z_1^{n-m} - 1|^{n-m} |z_1^n - 1|^{-n} = |z_2^m - 1|^m |z_2^{n-m} - 1|^{n-m} |z_2^n - 1|^{-n}$, where none of the six absolute values is 0, then either $z_1 = z_2^{\pm 1}$, or Q = 10, $\{m, n-m, -n\} = \{x, 3x, -4x\}$ with (x, 10) = 1 and z_1, z_2 are two primitive tenth roots of unity.

Proof. See [2], Theorem 1.

REMARK 1. Lemma 1 can be extended to fields of arbitrary characteristic as follows. Let K be a field of characteristic p, p = 0 or a prime, let z_i (i = 1, 2) be roots of unity in $\overline{K}, z_i^Q = 1$ and let m, n be positive integers such that m < n, (m, n, Q) = 1 and

$$1 \neq z_i^m \neq z_i^n \neq 1, \quad P_{n,m}(z_1) = P_{n,m}(z_2).$$

If either p = 0 or $p > 2^{(2n/(n,m)+1)\varphi(Q)}$, then either $z_2 = z_1 = z_1^{\pm 1}$, or n/(n,m) = 4 and z_1, z_2 are primitive tenth roots of unity.

LEMMA 2. If (n, m, q) = 1 and

$$1 \neq \zeta_q^m \neq \zeta_q^n \neq 1, \quad q \neq 10,$$

then $P_{n,m}(\zeta_q)$ is an algebraic number of degree $\frac{1}{2}\varphi(q)$.

Proof. We have $P_{n,m}(\zeta_q^{-1}) = P_{n,m}(\zeta_q)$. On the other hand, if q > 2, 0 < r < s < q/2, (r, s, q) = 1 we have by Lemma 1,

$$|P_{n,m}(\zeta_q^r)| \neq |P_{n,m}(\zeta_q^s)|,$$

hence $P_{n,m}(\zeta_q)$ has $\frac{1}{2}\varphi(q)$ distinct conjugates.

LEMMA 3. Let n, m, q be positive integers with (n, m, q) = 1, n > m and $T = x^n + ax^m + b \in \mathbb{C}[x], ab \neq 0$. Set

$$C(T,q) = \{ c^{(m,n)} : c \in \mathbb{C}, \ \deg(T, x^q - c) \ge 2 \}.$$

We have

(5)
$$\operatorname{card} C(T,q) \le 1$$

unless n/(n,m) = 4 and $q \equiv 0 \mod 10$, in which case

(6)
$$\operatorname{card} C(T,q) \le 2.$$

Moreover, if $C(T,q) \neq \emptyset$, then T is separable and

(7) inv $T = P_{n,m}(\zeta_q^r)$ for an r satisfying $1 \neq \zeta_q^{rm} \neq \zeta_q^{rn} \neq 1$.

Proof. By Theorem 1 of [4] we have $\deg(T, x^q - c) \leq 2$. Assume that $\deg(T, x^q - c) = 2$. Since the binomial $x^q - c$ is separable we have

$$(T, x^{q} - c) = (x - \xi_{1})(x - \xi_{2}),$$

where $\xi_i^q = c \ (i = 1, 2), \ \xi_2 = \xi_1 \zeta_q^r, \ \zeta_q^r \neq 1.$

By the formulae (13) and (14) of [4] we have

(8)
$$a^{q} = c^{n-m} \left(\frac{\zeta_{q}^{rn} - 1}{1 - \zeta_{q}^{rm}} \right)^{q}, \quad b^{q} = c^{n} \left(\frac{\zeta_{q}^{rm} - \zeta_{q}^{rn}}{1 - \zeta_{q}^{rm}} \right)^{q},$$

where $1 \neq \zeta_q^{rm} \neq \zeta_q^{rn} \neq 1$ and

$$\operatorname{inv} T = P_{n,m}(\zeta_q^r),$$

which proves (7). Also, if for another value c' we have

$$(T, x^{q} - c') = (x - \xi'_{1})(x - \xi'_{2})$$

where $\xi_i^{\prime q} = c'$ $(i = 1, 2), \ \xi_2^{\prime} = \xi_1^{\prime} \zeta_q^{r'}$, it follows that

inv
$$T = P_{n,m}(\zeta_q^{r'})$$
, hence $P_{n,m}(\zeta_q^r) = P_{n,m}(\zeta_q^{r'})$.

Applying Lemma 1 with $z_1 = \zeta_q^r$, $z_2 = \zeta_q^{r'}$ we infer that either $r' = \pm r$ or $n_1/d_1 = 4$ and $q \equiv 0 \mod 10$, $r' \equiv \pm 3r \mod q$. In the former case, by (8),

$$c^{\prime n-m} = c^{n-m}, \quad c^{\prime n} = c^n,$$

hence $c'^{(n,m)} = c^{(n,m)}$, which proves (5). In the latter case for any value c'' with $\deg(T, x^q - c'') \ge 2$ we have $c''^{(n,m)} = c^{(n,m)}$ or $c'^{(n,m)}$, which proves (6).

It remains to prove that if $c(T,q) \neq \emptyset$, then T is separable. Now, by formula (11) of [4],

$$\operatorname{disc}_{x} T = (-1)^{n(n-1)/2} a^{n} b^{m-1} (n^{n'} \operatorname{inv} T + (-1)^{n'-1} (n-m)^{n'-m'} m^{m'})^{(n,m)},$$

where n' = n/(n, m), m' = m/(n, m).

Thus, if T has double zeros we have

inv
$$T = (-1)^{n'} m'^{m'} (n' - m')^{n' - m'} n'^{-n'}.$$

Hence, by (7),

(9)
$$(-1)^{n'}m'^{m'}(n'-m')^{n'-m'}n'^{-n'}$$

= $(1-\zeta_q^{rm})^{m'}(\zeta_q^{rm}-\zeta_q^{rn})^{n'-m'}(\zeta_q^{rn}-1)^{-n'}.$

Now, since (n', m'(n' - m')) = 1 it follows that in the ring of integers of $\mathbb{Q}(\zeta_q)$ we have

$$n'^{n'} | (\zeta_q^{rn} - 1)^{n'}, \quad n' | \zeta_q^{rn} - 1.$$

On taking norms from $\mathbb{Q}(\zeta_q^{rn})$ to \mathbb{Q} we infer that n' = 2, $\zeta_q^{rn} = -1$, hence m' = 1, $\zeta_q^{rm} = \pm \zeta_4$ and (9) gives 1/4 = 1/2. The contradiction obtained shows our contention.

Proof of Theorem 1. Let

$$T_2(x^{1/d_2}) = \prod_{c \in \mathbb{C}} (x-c)^{e(c)}, \quad \sum_{c \in \mathbb{C}} e(c) = n_2/d_2.$$

We have

(10)
$$\deg(T_1, T_2) \le \sum_{c \in \mathbb{C}} \deg(T_1, (x^{d_2} - c)^{e(c)}) \le \sum_{c \in \mathbb{C}} e(c) \deg(T_1, x^{d_2} - c).$$

If $\deg(T_1, x^{d_2} - c) \leq 1$ for all $c \in \mathbb{C}$ with $e(c) \geq 1$ the inequalities (1) follow.

If for at least one c, say c_1 , we have $e(c_1) \ge 1$ and $\deg(T_1, x^{d_2} - c_1) \ge 2$ then, by Lemma 3, T_1 is separable and inv $T_1 = P_{n_1,m_1}(\zeta_{d_2}^r)$ for an r satisfying

$$1 \neq \zeta_{d_2}^{rm_1} \neq \zeta_{d_2}^{rn_1} \neq 1.$$

This shows the first inequality of (1). Moreover, by (10),

Greatest common divisor of polynomials

(11)
$$\deg(T_1, T_2) \leq \sum_{c \in \mathbb{C}} \min\{e(c), 1\} \deg(T_1, x^{d_2} - c)$$
$$\leq \sum_{c \in \mathbb{C}} e(c) + \sum_{e(c) \geq 1} (\deg(T_1, x^{d_2} - c) - 1)$$
$$\leq \frac{n_2}{d_2} + \sum_{\substack{e(c) \geq 1 \\ \deg(T_1, x^{d_2} - c) = 2}} 1.$$

If $n_1/d_1 \neq 4$ or $d_2 \not\equiv 0 \mod 10$, then by Lemma 3, $\deg(T_1, x^{d_2} - c) = 2$ implies $c^{d_1} = c_1^{d_1}$, hence by Theorem 1 of [4],

$$\sum_{\substack{e(c) \ge 1 \\ \deg(T_1, x^{d_2} - c_1) = 2}} 1 \le \deg(T_2(x^{1/d_2}), x^{d_1} - c_1^{d_1}) \le \min\{2, d_1\},$$

which together with (11) proves the second inequality of (1) and *a fortiori*, the third.

If $n_1/d_1 = 4$ and $d_2 \equiv 0 \mod 10$, then by Lemma 3 there exists a c_2 , possibly equal to c_1 , such that $\deg(T_1, x^d - c) = 2$ implies $c^{d_1} = c_i^{d_i}$ for an $i \leq 2$. If $c_2^{d_1} = c_1^{d_1}$ we are in the previous case, otherwise

(12)
$$\sum_{\substack{e(c) \ge 1 \\ \deg(T_1, x^{d_2} - c) = 2}} 1 \le \sum_{i=1}^2 \deg(T_2(x^{1/d_2}), x^{d_1} - c_i^{d_1}).$$

However, since $d_2 \equiv 0 \mod 10$ we have $d_1 \not\equiv 0 \mod 10$, hence, by Lemma 3, $C(T_2(x^{1/d_2}), d_1) \leq 1$ and the right hand side of (12) does not exceed 3. Since it also does not exceed deg $T_2(x^{1/d_2}) = n_2/d_2$ the third of the inequalities (1) follows.

LEMMA 4. Let n > m > 0, d = (n, m), $F = (1 - t^m)x^n + (t^n - 1)x^m + t^m - t^n$. All zeros of F in $\mathbb{C}((t))$ are given by the Puiseux expansions

$$\begin{split} \zeta_{d}^{\delta}, \ \zeta_{d}^{\delta}t : & 0 \le \delta < d; \\ \zeta_{m}^{\mu}t + \frac{\zeta_{m}^{\mu n} - 1}{m}\zeta_{m}^{\mu}t^{n-m+1} + \ldots : & 0 \le \mu < m, \ \mu \not\equiv 0 \ \text{mod} \ \frac{m}{d}; \\ \zeta_{n-m}^{\nu} + \frac{\zeta_{n-m}^{\nu n} - 1}{n-m}\zeta_{n-m}^{\nu}t^{m} + \ldots : & 0 \le \nu < n-m, \ \nu \not\equiv 0 \ \text{mod} \ \frac{n-m}{d}. \end{split}$$

Proof. One applies the usual procedure (Newton polygons) for finding Puiseux expansions.

LEMMA 5. Let $n_i > m_i > 0$, $d_i = (n_i, m_i)$, and $F_i = (1 - t^{m_i})x^{n_i} + (t^{n_i} - 1)x^{m_i} + t^{m_i} - t^{n_i}$ (i = 1, 2). If $(d_1, d_2) = 1$ then either $F_1 = F_2$, or $(F_1, F_2) = (t - 1)(x - 1)(x - t)$.

A. Schinzel

Proof. The content $C(F_i)$ of F_i viewed as a polynomial in x is $t^{d_i} - 1$, hence $(C(F_1), C(F_2)) = t - 1$. On the other hand, by Lemma 4, F_1 and F_2 have two common zeros in $\mathbb{C}((t))$, namely 1 and t, each with multiplicity 1; if there are any other common zeros we have either

(13)
$$\zeta_{m_1}^{\mu_1} t + \frac{\zeta_{m_1}^{\mu_1 n_1} - 1}{m_1} \zeta_{m_1}^{\mu_1} t^{n_1 - m_1 + 1} = \zeta_{m_2}^{\mu_2} t + \frac{\zeta_{m_2}^{\mu_2 n_2} - 1}{m_2} \zeta_{m_2}^{\mu_2} t^{n_2 - m_2 + 1},$$

where $\mu_i \not\equiv 0 \mod \frac{m_i}{d_i}$ (i = 1, 2), or

(14)
$$\zeta_{n_1-m_1}^{\nu_1} + \frac{\zeta_{n_1-m_1}^{\nu_1n_1} - 1}{n_1 - m_1} \zeta_{n_1-m_1}^{\nu_1} t^{m_1} = \zeta_{n_2-m_2}^{\nu_2} + \frac{\zeta_{n_2-m_2}^{\nu_2n_2} - 1}{n_2 - m_2} \zeta_{n_2-m_2}^{\nu_2} t^{m_2},$$

where $\nu_i \neq 0 \mod \frac{n_i - m_i}{d_i}$ (i = 1, 2).

If (13) holds, we have

(15)
$$\begin{aligned} \zeta_{m_1}^{\mu_1} &= \zeta_{m_2}^{\mu_2}, \quad n_1 - m_1 + 1 = n_2 - m_2 + 1, \\ \frac{\zeta_{m_1}^{\mu_1 n_1} - 1}{m_1} &= \frac{\zeta_{m_2}^{\mu_2 n_2} - 1}{m_2}. \end{aligned}$$

Dividing the last equality by its complex conjugate we obtain

$$-\zeta_{m_1}^{\mu_1 n_1} = -\zeta_{m_2}^{\mu_2 n_2} \neq -1,$$

hence $m_1 = m_2$, which together with (15) gives $F_1 = F_2$.

If (14) holds, we have

(16)
$$\begin{aligned} \zeta_{n_1-m_1}^{\nu_1} &= \zeta_{n_2-m_2}^{\nu_2}, \quad m_1 = m_2, \\ \frac{\zeta_{n_1-m_1}^{\nu_1n_1} - 1}{n_1 - m_1} &= \frac{\zeta_{n_2-m_2}^{\nu_2n_2} - 1}{n_2 - m_2}. \end{aligned}$$

Dividing the last equality by its complex conjugate we obtain

$$-\zeta_{n_1-m_1}^{\nu_1 n_1} = -\zeta_{n_2-m_2}^{\nu_2 n_2} \neq -1,$$

hence $n_1 - m_1 = n_2 - m_2$, which together with (16) gives $F_1 = F_2$.

Proof of Theorem 2. Let $n_i > m_i > 0$, $(n_i, m_i) = d_i$ (i = 1, 2), $(d_1, d_2) = 1$ and $\langle n_1, m_1 \rangle \neq \langle n_2, m_2 \rangle$. In the notation of Lemma 5 and by virtue of that lemma the polynomials $F_i/(t-1)(x-1)(x-t)$ (i = 1, 2) are coprime, hence their resultant R with respect to x is non-zero. We set

$$S = \left\{ \left\langle \frac{-n_1}{m_1}, \frac{n_1 - m_1}{m_1}, \frac{-n_2}{m_2}, \frac{n_2 - m_2}{m_2} \right\rangle \right\}$$
$$\cup \left\{ \left\langle \frac{\zeta_{d_2}^{r_2n_1} - 1}{1 - \zeta_{d_2}^{r_2m_1}}, \frac{\zeta_{d_2}^{r_2m_1} - \zeta_{d_2}^{r_2m_1}}{1 - \zeta_{d_2}^{r_2m_1}}, \frac{\zeta_{d_1}^{r_1n_2} - 1}{1 - \zeta_{d_1}^{r_1m_2}}, \frac{\zeta_{d_1}^{r_1m_2} - \zeta_{d_1}^{r_1m_2}}{1 - \zeta_{d_1}^{r_1m_2}} \right\rangle :$$
$$r_2m_1 \not\equiv 0 \mod d_2, r_1m_2 \not\equiv 0 \mod d_1 \right\}$$

$$\cup \left\{ \left\langle \frac{t^{n_1} - 1}{1 - t^{m_1}}, \frac{t^{m_1} - t^{n_1}}{1 - t^{m_1}}, \frac{t^{n_2} - 1}{1 - t^{m_2}}, \frac{t^{m_2} - t^{n_2}}{1 - t^{m_2}} \right\rangle : R(t) = 0, \ t^{m_1} \neq 1 \neq t^{m_2} \right\}.$$

We proceed to show that the set S has the property asserted in the theorem. Since $R \in \mathbb{Q}[t]$ we have $S \subset \overline{\mathbb{Q}}^4$. Assume that $\deg(T_1, T_2) \geq 3$. If (T_1, T_2) has a double zero ξ_0 we set

$$T_i^*(x) = \xi_0^{-n_i} T_i(\xi_0 x) \quad (i = 1, 2)$$

and from the equations $T_i^*(1) = 0 = \frac{dT_i^*}{dx}(1)$ (i = 1, 2) we find that

$$a_i^* = -\frac{n_i}{m_i}, \quad b_i^* = \frac{n_i - m_i}{m_i} \quad (i = 1, 2),$$

hence $\langle a_1^*, b_1^*, a_2^*, b_2^* \rangle \in S$ and (2) holds with $u = \xi_0$.

If (T_1, T_2) has three distinct zeros ξ_0, ξ_1, ξ_2 we set

$$T_i^*(x) = \xi_0^{-n_i} T_i(\xi_0 x) \quad (i = 1, 2).$$

Changing, if necessary, the role of T_1 and T_2 we have one of the three cases:

(i) $(\xi_1/\xi_0)^{d_1} = 1$ and $(\xi_2/\xi_0)^{d_2} = 1$, (ii) $(\xi_1/\xi_0)^{d_1} = 1$ and $(\xi_2/\xi_0)^{d_2} \neq 1$, (iii) $(\xi_1/\xi_0)^{d_1} \neq 1$ and $(\xi_1/\xi_0)^{d_2} \neq 1$.

In case (i) we have $\xi_j/\xi_0 = \zeta_{d_j}^{r_j}$ (j = 1, 2) and the equations $T_i^*(\xi_j/\xi_0) = 0$ (i = 1, 2) give

$$a_{i}^{*} = \frac{\zeta_{d_{3-i}}^{r_{3-i}n_{i}} - 1}{1 - \zeta_{d_{3-i}}^{r_{3-i}m_{i}}}, \quad b_{i}^{*} = \frac{\zeta_{d_{3-i}}^{r_{3-i}m_{i}} - \zeta_{d_{3-i}}^{r_{3-i}n_{i}}}{1 - \zeta_{d_{3-i}}^{r_{3-i}m_{i}}},$$
$$r_{3-i}m_{i} \neq 0 \mod d_{3-i} \quad (i = 1, 2).$$

Hence $\langle a_1^*, b_1^*, a_2^*, b_2^* \rangle \in S$ and (2) holds with $u = \xi_0$. In case (ii) we have $(\xi_2/\xi_0)^{d_1} \neq 1$, since otherwise T_2 would have three common zeros with $x^{d_1} - \xi_0^{d_1}$, contrary to Theorem 1 of [4].

Hence $(\xi_2/\xi_0)^{d_i} \neq 1$ (i = 1, 2) and the equations $T_i^*(\xi_2/\xi_0) = 0$ (i = 1, 2) give

$$(\xi_2/\xi_0)^{m_1} \neq 1 \neq (\xi_2/\xi_0)^{m_2}$$

and

$$a_i^* = \frac{(\xi_2/\xi_0)^{n_i} - 1}{1 - (\xi_2/\xi_0)^{m_i}}, \quad b_i^* = \frac{(\xi_2/\xi_0)^{m_i} - (\xi_2/\xi_0)^{n_i}}{1 - (\xi_2/\xi_0)^{m_i}}$$

The polynomials $T_i^*/(x-1)(x-\xi_2/\xi_0)$ (i=1,2) have a common zero ξ_1/ξ_0 , hence $R(\xi_2/\xi_0) = 0$. It follows that $\langle a_1^*, b_1^*, a_2^*, b_2^* \rangle \in S$ and (2) holds with $u = \xi_0$.

In case (iii) we have $(\xi_1/\xi_0)^{d_i} \neq 1$ (i = 1, 2) and we reach the desired conclusion replacing in the above argument ξ_2 by ξ_1 .

A. Schinzel

Proof of Corollary 1. Since f and $f(x^d)$ have for every $f \in \mathbb{C}[x]$ and every $d \in \mathbb{N}$ the same number of non-zero coefficients we may assume that $(n_1, m_1, n_2, m_2) = 1$. If $T_1 = T_2$ then $(T_1, T_2) = T_1$ has three non-zero coefficients. If $T_1 \neq T_2$, but $\langle n_1, m_1 \rangle = \langle n_2, m_2 \rangle$, then by Theorem 2 of [4],

$$(T_1, T_2) = ((a_1 - a_2)x^{m_1} + b_1 - b_2, (a_1 - a_2)x^{n_1} + a_1b_2 - a_2b_1)$$

has at most two non-zero coefficients. If $\langle n_1, m_1 \rangle \neq \langle n_2, m_2 \rangle$ then by Theorem 2 either deg $(T_1, T_2) \leq 2$, or (2) holds. However in the latter case

$$\operatorname{inv} T_i = \operatorname{inv} T_i^* \in \overline{\mathbb{Q}} \quad (i = 1, 2)$$

and

$$T_1(0)^{-\deg T_2}T_2(0)^{\deg T_1} = T_1^*(0)^{-\deg T_2}T_2^*(0)^{\deg T_1} \in \overline{\mathbb{Q}}.$$

Proof of Corollary 2. The second equality is clear. In order to prove the first, note that $A(3,3,\overline{\mathbb{Q}}) \geq 3$. On the other hand, if (T_1,T_2) has more than three non-zero coefficients, then by Corollary 1,

inv
$$T_i \in \overline{\mathbb{Q}}$$
 $(i = 1, 2),$

hence

$$T_i = u_i^{\deg T_i} T_i^{**}\left(\frac{x}{u_i}\right), \quad \text{where } u_i \in \mathbb{C}^*, \ T_i^{**} \in \overline{\mathbb{Q}}[x].$$

Moreover, also by Corollary 1,

$$\left(\frac{u_2}{u_1}\right)^{\deg T_1 \deg T_2} T_1^{**}(0)^{-\deg T_2} T_2^{**}(0)^{\deg T_1} \in \overline{\mathbb{Q}},$$

hence $v = u_2/u_1 \in \overline{\mathbb{Q}}$ and (T_1, T_2) has the same number of non-zero coefficients as $(T_1^{**}, T_2^{**}(x/v))$, where both terms belong to $\overline{\mathbb{Q}}[x]$.

LEMMA 6. Let n, m be positive integers, n > m and $a, b \in K^*$, where K is a finite extension of \mathbb{Q} . If F is a monic factor of $x^{n/(n,m)} + ax^{m/(n,m)} + b$ in K[x] of maximal possible degree $d \leq 2$ and $n/(n,m) > \max\{6, 9 - 3d\}$, then

$$\frac{x^n + ax^m + b}{F(x^{(n,m)})}$$

is reducible over K if and only if there exists a positive integer $l \mid (n, m)$ such that

$$a = u^{(n,m)/l}a_0, \quad b = u^{n/l}b_0, \quad F = u^d F_0\left(\frac{x}{u}\right),$$

where $u \in K^*$, $\langle a_0, b_0, F_0 \rangle \in F^d_{n/l, m/l}(K)$ and $F^d_{n/l, m/l}(K)$ is a certain finite set, possibly empty.

Proof. See [3], Theorem 3.

LEMMA 7. Let $a, b \in K^*$, n > m > 0, d = (n, m). Let f(x) be a factor of $x^{n/d} + ax^{m/d} + b$ of degree at most 2. If n > 2d, then (n, m) is the greatest

common divisor of the exponents of powers of x occurring with non-zero coefficients in $(x^n + ax^m + b)/f(x^{(n,m)}) =: Q(x)$.

Proof. We may assume that f is monic and d = 1. If f(x) = 1 the assertion is obvious. If f(x) = x - c, then Q(x) contains terms x^{n-1} and cx^{n-2} , unless m = n-1 and a = -c. But in the latter case $x - c \mid b$, which is impossible. If $f(x) = x^2 - px - q$, we first observe that $p \neq 0$. Otherwise, we should have $q^{n/2} + aq^{m/2} + b = 0$ and also $(-1)^n q^{n/2} + a(-1)^m q^{m/2} + b = 0$, which, since at least one of the numbers n, m is odd, gives ab = 0. Now $(x^n + ax^m + b)/(x^2 - px - q)$ contains the terms x^{n-2} and px^{n-3} , unless m = n - 1 and a = -p. It also contains the terms -b/q and $(b/q^2)px$, unless m = 1, a = (b/q)p. However m = n - 1 and m = 1 give n = 2, contrary to the assumption.

LEMMA 8. If n > m > 0, n > 3, $abc \neq 0$, then $(x^n + ax^m + b)(x - c)$ has six non-zero coefficients, unless either m = n - 1 or m = 1, when there are at least four non-zero coefficients. Only in the former case does x^{n-1} occur with a non-zero coefficient.

Proof. We have

$$(x^{n} + ax^{m} + b)(x - c) = x^{n+1} - cx^{n} + ax^{m+1} - ax^{m} + bx - cb.$$

The cancellation can occur only between the second and the third term (if m = n - 1), or between the fourth and the fifth term (if m = 1).

LEMMA 9. If n > m > 0, n > 6, $abpq \neq 0$, then $(x^n + ax^m + b)(x^2 - px + q)$ has nine non-zero coefficients, unless $m \ge n-2$ or $m \le 2$, when there are at most eight. If m = n-1 there are at least five non-zero coefficients, including that of x^{n-1} ; if m = n-2 there are at least seven non-zero coefficients, including that of x^{n-2} . If $m \le 2$ the coefficients of x^{n-1} and x^{n-2} are zero.

Proof. We have

$$(x^{n} + ax^{m} + b)(x^{2} - px + q)$$

= $x^{n+2} - px^{n+1} + qx^{n} + ax^{m+2} - apx^{m+1} + aqx^{m} + bx^{2} - bpx + bq.$

The cancellation can occur only if $m \ge n-2$ or $m \le 2$ and all the assertions are easily checked.

LEMMA 10. Let $d_i = (n_i, m_i)$ (i = 1, 2) and let $f_i(x)$ be a monic factor of degree ≤ 2 of $x^{n_i/d_i} + a_i x^{m_i/d_i} + b_i$. If $n_i/d_i > 6$ and

(17)
$$\frac{x^{n_1} + a_1 x^{m_1} + b_1}{f_1(x^{d_1})} = \frac{x^{n_2} + a_2 x^{m_2} + b_2}{f_2(x^{d_2})},$$

then

(18)
$$x^{n_1} + a_1 x^{m_1} + b_1 = x^{n_2} + a_2 x^{m_2} + b_2.$$

Proof. By Lemma 7, $d_1 = d_2$, hence we may assume without loss of generality that $d_1 = d_2 = 1$. Then the equality (17) gives

(19)
$$(x^{n_1} + a_1 x^{m_1} + b_1) f_2(x) = (x^{n_2} + a_2 x^{m_2} + b_2) f_1(x)$$

and we may assume without loss of generality that deg $f_1 \ge \text{deg } f_2$. Moreover, since (19) is equivalent to

$$(x^{n_1} + a_1b_1^{-1}x^{n_1 - m_1} + b_1^{-1})\frac{x^{\deg f_2}f_2(x^{-1})}{f_2(0)}$$

= $(x^{n_2} + a_2b_2^{-1}x^{n_2 - m_2} + b_2^{-1})\frac{x^{\deg f_1}f_1(x^{-1})}{f_1(0)},$

we may assume that

 $(20) 2m_2 \ge n_2.$

If deg $f_2 = 0$, then the left hand side of (19) has only three non-zero coefficients, thus by Lemmas 8 and 9 applied to the right hand side deg $f_1 = 0$ and (18) follows.

If deg $f_2 = 1 < 2 = \text{deg } f_1$, then the left hand side of (19) has at most six non-zero coefficients, which by Lemma 9 and condition (20) gives $m_2 = n_2 - 1$. Since $n_2 > 6$ taking the residues mod x^4 of both sides of (19) we obtain

(21)
$$(a_1 x^{m_1} + b_1) f_2(x) \equiv b_2 f_1(x) \mod x^4$$

hence $m_1 = 1$ and subtracting (21) from (19) gives

$$x^{n_1} f_2(x) = (x^{n_2} + a_2 x^{n_2 - 1}) f_1(x),$$

a contradiction mod f_1 .

If deg $f_2 = 1 = \text{deg } f_1$, then $n_1 = n_2$. If $m_2 \neq n_2 - 1$, then by Lemma 8 and (20) the right hand side of (19) has six non-zero coefficients, thus also on the left hand side no terms coalesce and we have $b_1 f_2 = b_2 f_1$, hence $f_2 = f_1$ and (18) follows. If $m_2 = n_2 - 1$, then on the right hand side of (19) we have five or four non-zero coefficients, including that of x^{n_2-1} , hence by Lemma 8, $m_1 = n_1 - 1$. Taking the residues of both sides of (19) mod x^3 we find $b_1 f_2 = b_2 f_1$, hence $f_2 = f_1$ and (18) follows. If deg $f_1 = \text{deg } f_2 = 2$, then again $n_1 = n_2$. If $m_2 < n_2 - 2$, then on the right hand side of (19) we have nine non-zero coefficients, hence also on the left hand side no two terms coalesce and taking residues mod x^3 we obtain $b_1 f_2 = b_2 f_1$, hence $f_2 = f_1$ and (18) follows. If $m_2 \ge n_2 - 2$, then by Lemma 9 the number of non-zero coefficients on the right hand side of (19) is at most eight and x^{m_2} occurs with a non-zero coefficient, hence also on the left hand side we have at most eight non-zero coefficients and either x^{n_1-1} or x^{n_1-2} occurs with a non-zero coefficient. Again by Lemma 9, $m_1 \ge n_1 - 2$. Taking the residues of both sides of (19) mod x^3 we find $b_1f_2 = b_2f_1$, hence $f_2 = f_1$ and (18) follows.

Proof of Theorem 3. Put

$$F_{n,m}(K) = K \cap \{P_{n,m}(\zeta_q^r) : 0 \le r < q, \ 1 \ne \zeta_q^{rm} \ne \zeta_q^{rm} \ne 1\}$$

The set $F_{n,m}(K)$ is finite since by Lemma 2 the condition $P_{n,m}(\zeta_q^r) \in K$ implies

either
$$\frac{q}{(q,r)} = 10$$
 or $\frac{1}{2}\varphi\left(\frac{q}{(q,r)}\right) \le [K:\mathbb{Q}]$

and this leaves only finitely many possibilities for ζ_q^r . We set

$$E_{n,m}(K) = F_{n,m}(K) \bigcup_{d \le 2} \bigcup_{l \mid (n,m)} \bigcup_{\langle a_0, b_0, F_0 \rangle \in F_{n/l,m/l}^d(K)} \{a_0^{-n/(n,m)} b_0^{(n-m)/(n,m)}\},$$

where $F^d_{\nu,\mu}(K)$ are as in Lemma 6.

Now, let $d_i = (n_i, m_i)$ and let f_i be a monic polynomial over K of maximal possible degree $\delta_i \leq 2$ dividing $T_i(x^{1/d_i})$ (i = 1, 2). We may assume without loss of generality that $n_2/d_2 \leq n_1/d_1$.

If $n_2/d_2 \leq 9$, then, since inv $T_2 \notin F_{n_2,m_2}(K)$, by Theorem 1 we have

(22)
$$\deg(T_1, T_2) \le n_2/d_2 \le 9.$$

If $n_2/d_2 > 9$, then by Lemma 6 either $T_i/f_i(x^{d_i})$ is irreducible over K or there exists an integer $l | d_i$, an element u of K^* and $\langle a_0, b_0, F_0 \rangle \in F_{n_i/l, m_i/l}^{\delta_i}(K)$ such that

$$T_i(x) = x^{n_i} + u^{(n_i - m_i)/l} a_0 x^{m_i} + u^{n_i/l} b_0, \quad f_i = u^{\delta_i} F_0\left(\frac{x}{u}\right).$$

These conditions give

inv
$$T_i = a_0^{-n_i/d_i} b_0^{(n_i - m_i)/d_i} \in E_{n_i, m_i}(K),$$

contrary to the assumption. Therefore $T_i/f_i(x^{d_i})$ is irreducible over K for i = 1, 2 and we have

either
$$T_1/f_1(x^{d_1}) = T_2/f_2(x^{d_2})$$
 or $(T_1/f_1(x^{d_1}), T_2/f_2(x^{d_2})) = 1$

In the former case we have $T_1 = T_2$ by Lemma 10; in the latter case

(23)
$$(T_1, T_2) = \frac{(T_1, f_2(x^{d_2}))(T_2, f_1(x^{d_1}))}{(f_1(x^{d_1}), f_2(x^{d_2}))}$$

However, by Lemma 3 if deg $f_{3-i} = 1$, or if deg $f_{3-i} = 2$ and $f'_{3-i}(0) = 0$ and by Theorem 1 otherwise, we have

$$\deg(T_i, f_{3-i}(x^{d_{3-i}})) \le \deg f_{3-i} \le 2,$$

which by (23) gives

(24)
$$\deg(T_1, T_2) \le 2 + 2 = 4.$$

The alternative (22) or (24) gives the theorem.

We shall now give the promised examples.

EXAMPLE 1. Let $n_i > m_i > 0$, $d_i = (n_i, m_i)$, $0 \neq m_i \neq n_i \neq 0 \mod d_{3-i}$ for $i = 1, 2, (d_1, d_2) = 1$, and

$$T_i(x) = x^{n_i} + \frac{\zeta_{d_{3-i}}^{r_{3-i}n_i} - 1}{1 - \zeta_{d_{3-i}}^{r_{3-i}m_i}} x^{m_i} + \frac{\zeta_{d_{3-i}}^{r_{3-i}m_i} - \zeta_{d_{3-i}}^{r_{3-i}n_i}}{1 - \zeta_{d_{3-i}}^{r_{3-i}m_i}} \quad (i = 1, 2),$$

where r_{3-i} is chosen so that

$$1 \neq \zeta_{d_{3-i}}^{r_{3-i}m_i} \neq \zeta_{d_{3-i}}^{r_{3-i}m_i} \neq 1 \quad (i = 1, 2).$$

Here (T_1, T_2) has the following distinct zeros: 1, $\zeta_{d_1}^{r_1}$, $\zeta_{d_2}^{r_2}$, $\zeta_{d_1}^{r_1}\zeta_{d_2}^{r_2}$, hence

$$\deg(T_1, T_2) \ge 4.$$

If $n_2/d_2 = 2$ this shows that the second and the third inequality of (1) are exact in infinitely many essentially different cases and the condition for the first inequality is not superfluous.

EXAMPLE 2. Let $T_1 = x^4 - 5x + 5$ and $T_2 = x^{20} + 5^4 x^{10} + 5^5$. Here $(T_1, T_2) = T_1$, hence

$$\deg(T_1, T_2) = 4 > n_2/d_2 + \min\{2, d_1\}.$$

This shows that the condition for the second inequality of (1) is not superfluous.

EXAMPLE 3 (due to S. Chaładus [1]). Let $T_1 = x^7 + 9x^2 + 27$ and $T_2 = x^{15} - 27x^6 + 729$. Here

$$(T_1, T_2) = x^5 + 3x^4 + 6x^3 + 9x^2 + 9x + 9.$$

Since inv $T_1 = 3$, $d_2 = 3$, and $P_{n_1,m_1}(\zeta_3^{\pm 1}) = 1$, in this case the first inequality of (1) is exact. Moreover (T_1, T_2) has six non-zero coefficients, which is the present record.

References

- [1] S. Chaładus, Letter to the author of July 7, 1994.
- [2] R. Dvornicich, On an equation in cyclotomic numbers, this issue, 71–94.
- [3] A. Schinzel, On reducible trinomials, III, Period. Math. Hungar. 43 (2001), 43–69.
- [4] —, On the greatest common divisor of two univariate polynomials, I, in: A Tribute to Alan Baker, to appear.

Institute of Mathematics Polish Academy of Sciences P.O. Box 137 00-950 Warszawa, Poland E-mail: schinzel@impan.gov.pl

Received on 25.9.2000

(3882)