Integers free of prime divisors from an interval, I

by
Andreas Weingartner (Cedar City, UT)

1. Introduction. Let $\Gamma(x, y, z)$ be the number of positive integers not exceeding x which are free of prime divisors from the interval $(z, y]$. Our interest in this function is two-fold. On the one hand it constitutes a generalization of the functions

$$
\Psi(x, z)=\sum_{\substack{n \leq x \\ P^{+}(n) \leq z}} 1 \quad \text { and } \quad \Phi(x, y)=\sum_{\substack{n \leq x \\ P^{-}(n)>y}} 1
$$

where $P^{+}(n)$ and $P^{-}(n)$ denote the largest and smallest prime divisor of n, respectively. These functions play an important role in various applications of number theory, such as an improvement of the Selberg sieve by Jurkat and Richert [7], a study of the distribution of k th power residues of primes by Davenport and Erdős [5] and a general convolution method by Daboussi [4]. The behaviour of Ψ and Φ has been studied intensively by several authors (see, for example, [1, 2]). For an overview on results on Ψ and Φ see Tenenbaum [14].

On the other hand, the behaviour of $\Gamma(x, y, z)$ is worth studying in its own right. The quantity $\Gamma(x, y, z)$ arises in applications such as the construction of large prime gaps (see Rankin $[8,9]$ or Schönhage [13]).

Throughout we will use the notation

$$
u=\frac{\log x}{\log y} \quad \text { and } \quad v=\frac{\log x}{\log z}
$$

Dickman's function ϱ is defined to be the unique continuous solution to the difference-differential equation

$$
v \varrho^{\prime}(v)+\varrho(v-1)=0 \quad(v>1)
$$

2000 Mathematics Subject Classification: Primary 11N25.
together with the initial condition

$$
\varrho(v)=1 \quad(0 \leq v \leq 1)
$$

Let $\varrho(v)=0$ for $v<0$ and extend $\varrho^{\prime}(v)$ to $v=1$ by right continuity.
For $u>1$, the Buchstab function $\omega(u)$ is defined as the unique continuous solution to the difference-differential equation

$$
(u \omega(u))^{\prime}=\omega(u-1) \quad(u>2)
$$

with initial condition

$$
u \omega(u)=1 \quad(1 \leq u \leq 2)
$$

Let $\omega(u)=0$ for $u<1$. Define ω at 1 and ω^{\prime} at 1 and 2 by right continuity.
The functions $\varrho(v)$ and $\omega(u)$ arise in well known estimates for the functions $\Psi(x, z)$ and $\Phi(x, y)$. We will make use of the following two results. The first estimate is an easy consequence of a well known estimate of de Bruijn [2] (for a slightly weaker estimate see Theorem III.5.6 in Tenenbaum [14]). The function Φ was first studied by Buchstab [3] and later by de Bruijn [1]. For the estimate on Φ below see also Theorem III.6.3 in Tenenbaum [14].

Theorem 1.1. Uniformly for $x \geq z \geq 2$, we have

$$
\Psi(x, z)=x \varrho(v)+O\left(\frac{x \log z}{\log ^{2} x}\right)
$$

Theorem 1.2. Uniformly for $x \geq y \geq 2$, we have

$$
\Phi(x, y)=\frac{x \omega(u)-y}{\log y}+O\left(\frac{x}{\log ^{2} y}\right)
$$

Theorems 1.1 and 1.2 allow us to derive an asymptotic formula for $\Gamma(x, y, z)$. This formula involves a function $\eta(u, v)$, defined for $0<u \leq v$ by

$$
\begin{equation*}
\eta(u, v):=\varrho(v)+\int_{0}^{u} \varrho(t v / u) \omega(u-t) d t \quad(0<u \leq v) \tag{1}
\end{equation*}
$$

For $0<u \leq 1$, the integral vanishes and we have $\eta(u, v)=\varrho(v)$. We extend the definition of $\eta(u, v)$ to all real values of u and v by setting $\eta(0, v):=\varrho(v)$, $\eta(u, v):=0$ for $u<0$ or $v<0$ and finally $\eta(u, v)=1$ for $0 \leq v<u$. Note that $\eta(u, v)$ is continuous for $0<u<v$ since $\varrho(v)$ is continuous for $v>0$ and the integrand is uniformly bounded. The function $\eta(u, v)$ is also continuous at $0<u=v$ due to the well known convolution identity (see [14], p. 420)

$$
1=\varrho(u)+\int_{0}^{u} \varrho(t) \omega(u-t) d t
$$

Also, $\eta(u, v)>0$ for $0 \leq u \leq v$.
A function closely related to $\Gamma(x, y, z)$ is the function $\theta(x, y, z)$, which denotes the number of positive integers not exceeding x all of whose prime
divisors are in the interval $(z, y]$. The latter function has been studied by Friedlander [6] and, more recently, by Saias [10-12]. Like $\Gamma(x, y, z), \theta(x, y, z)$ is also a generalization of the functions Ψ and Φ.

The function

$$
\begin{equation*}
\sigma(u, v):=\frac{u}{v} \varrho^{\prime}(u)+\int_{0}^{\infty} \varrho\left(u-\frac{u}{v} t\right) d \omega(t) \quad(v \geq u>0, u \neq 1) \tag{2}
\end{equation*}
$$

arises in the study of $\theta(x, y, z)$. For results on $\sigma(u, v)$ see Friedlander [6] and Saias [10].

In this paper we establish an asymptotic estimate for $\Gamma(x, y, z)$ by expressing this function in terms of the functions Ψ and Φ and estimating the latter functions by means of Theorems 1.1 and 1.2 . In a sequel to this paper (see [15]), we will use complex integration together with the saddle-point method to sharpen many of the results obtained here.
2. Some observations. Let $P=\prod_{z<p \leq y} p$. The Möbius inversion formula allows us to write the characteristic function of the set of integers n which are free of prime divisors from the interval $(z, y]$ as

$$
\sum_{\substack{d|P \\ d| n}} \mu(d)
$$

Summing over $n \leq x$, we obtain

$$
\begin{align*}
\Gamma(x, y, z) & =\sum_{d \mid P} \mu(d)\left[\frac{x}{d}\right]=\sum_{d \mid P} \mu(d) \frac{x}{d}-\sum_{d \mid P} \mu(d)\left\{\frac{x}{d}\right\} \tag{3}\\
& =x \prod_{z<p \leq y}\left(1-\frac{1}{p}\right)-\sum_{d \mid P} \mu(d)\left\{\frac{x}{d}\right\}
\end{align*}
$$

Let us first consider the trivial estimate

$$
\left|\sum_{d \mid P} \mu(d)\left\{\frac{x}{d}\right\}\right| \leq \sum_{d \mid P} 1 \leq 2^{y-z}
$$

If $y-z \leq \log x$ we have $2^{y-z} \leq x^{\log 2}<x^{3 / 4}$. The main term in (3) is $\gg x / \log x$, by Mertens' formula. This gives

$$
\begin{equation*}
\Gamma(x, y, z) \sim x \prod_{z<p \leq y}\left(1-\frac{1}{p}\right) \tag{4}
\end{equation*}
$$

for $y-z \leq \log x$.
With $u=\log x / \log y$, the fundamental lemma of the combinatorial sieve (see [14], Theorem I.4.3) implies that, uniformly for $x \geq y \geq z \geq 3 / 2$,

$$
\begin{equation*}
\Gamma(x, y, z)=x \prod_{z<p \leq y}\left(1-\frac{1}{p}\right)\left\{1+O\left(u^{-u / 2}\right)\right\}+O(\theta(x, y, z)) \tag{5}
\end{equation*}
$$

Since $\theta(x, y, z) \leq \Psi(x, y) \ll x e^{-u / 2}$ (see Theorem III.5.1 of [14]), it follows from (5) that (4) holds in the domain $1 \leq z \leq y \leq \exp \left\{c \log x / \log _{2} x\right\}$, for some suitable constant c.

It is easy to see, however, that (4) does not hold uniformly for $1 \leq z \leq$ $y \leq \sqrt{x}$. To this end choose $z=1$ and $y=\sqrt{x}$. Then the prime number theorem gives

$$
\Gamma(x, y, z) \sim \frac{x}{\log x}
$$

but Mertens' formula shows that

$$
x \prod_{1<p \leq \sqrt{x}}\left(1-\frac{1}{p}\right) \sim \frac{2 x e^{-\gamma}}{\log x}
$$

where γ denotes Euler's constant.
3. An asymptotic formula for $\Gamma(x, y, z)$. In this section we will derive the following result for $\Gamma(x, y, z)$.

Theorem 3.1. Uniformly for $x \geq y \geq z \geq 3 / 2$, we have

$$
\Gamma(x, y, z)=x \eta(u, v)+O\left(\frac{x}{\log y}\right)
$$

Theorem 3.1 and the lower bound on $\eta(u, v)$ in Lemma 3.4 (see below) will allow us to deduce the following asymptotic result.

Theorem 3.2. Uniformly for $y \geq z \geq 3 / 2$, we have

$$
\Gamma(x, y, z)= \begin{cases}x \eta(u, v)\left\{1+O\left(\frac{1}{\log z}\right)\right\} & \text { for } x \geq y z \\ x \eta(u, v)\left\{1+O\left(\frac{1}{\log (x / y)+\varrho(v) \log x}\right)\right\} & \text { for } y \leq x<y z\end{cases}
$$

The proof of Theorem 3.1 is based on the following identity for $\Gamma(x, y, z)$, which allows us to derive the result from the known estimates for $\Psi(x, z)$ and $\Phi(x, y)$ given in Theorems 1.1 and 1.2.

Lemma 3.3. For $x \geq y \geq z \geq 1$ we have

$$
\Gamma(x, y, z)=\Psi(x, z)-\Psi(x / y, z)+\sum_{\substack{n \leq x / y \\ P^{+}(n) \leq z}} \Phi(x / n, y)
$$

Proof. If the integer $m \geq 1$ is counted in $\Gamma(x, y, z)$, we can write $m=n d$ with $P^{+}(n) \leq z$ and $P^{-}(d)>y$. For each $n \leq x / y$ there are $\Phi(x / n, y)$
possible choices for d. If $x / y<n \leq x$ then $d=1$ is the only choice and the contribution from these n is $\Psi(x, z)-\Psi(x / y, z)$.

We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1. The result being trivial for bounded y, we assume that $y>y_{0}$ for a sufficiently large constant y_{0}. If $x \leq y z$, it follows from Lemma 3.3 and Theorems 1.1 and 1.2 that

$$
\begin{align*}
\Gamma(x, y, z)= & \Psi(x, z)-\Psi(x / y, z)+\sum_{n \leq x / y} \Phi(x / n, y) \tag{6}\\
= & x \varrho(v)+O\left(\frac{x}{\log y}\right) \\
& +\sum_{n \leq x / y}\left\{\frac{\frac{x}{n} \omega\left(\frac{\log (x / n)}{\log y}\right)-y}{\log y}+O\left(\frac{x / n}{\log ^{2} y}\right)\right\} .
\end{align*}
$$

Hence

$$
\begin{equation*}
\Gamma(x, y, z)=x \varrho(v)+\sum_{n \leq x / y} \frac{x \omega\left(\frac{\log (x / n)}{\log y}\right)}{n \log y}+O\left(\frac{x}{\log y}\right) \tag{7}
\end{equation*}
$$

for $x \leq y z$. Now $\omega(\log (x / t) / \log y) / t$ is a monotonic function in t, since

$$
\left(\frac{\omega\left(\frac{\log (x / t)}{\log y}\right)}{t}\right)^{\prime}=\frac{1}{t^{2}}\left(-\omega^{\prime}\left(\frac{\log (x / t)}{\log y}\right)(\log y)^{-1}-\omega\left(\frac{\log (x / t)}{\log y}\right)\right)<0
$$

for $y>y_{0}$. Thus, we can write

$$
\begin{equation*}
\sum_{n \leq x / y} \frac{x \omega\left(\frac{\log (x / n)}{\log y}\right)}{n \log y}=\int_{1}^{x / y} \frac{x \omega\left(\frac{\log (x / t)}{\log y}\right)}{t \log y} d t+O\left(\frac{x}{\log y}\right) \tag{8}
\end{equation*}
$$

For $0 \leq v \leq 1$ we have $\varrho(v)=1$. Thus (7) and (8) imply, for $x \leq y z$,

$$
\begin{aligned}
\Gamma(x, y, z) & =x \varrho(v)+\int_{1}^{x / y} \frac{x \omega\left(\frac{\log (x / t)}{\log y}\right)}{t \log y} \varrho\left(\frac{\log t}{\log z}\right) d t+O\left(\frac{x}{\log y}\right) \\
& =x \varrho(v)+x \int_{0}^{u-1} \omega(u-t) \varrho(t v / u) d t+O\left(\frac{x}{\log y}\right) \\
& =x \eta(u, v)+O\left(\frac{x}{\log y}\right)
\end{aligned}
$$

In the remainder of the proof we establish the theorem for $x>y z$. From Lemma 3.3 and Theorem 1.1 we have

$$
\begin{equation*}
\Gamma(x, y, z)=x \varrho(v)+\sum_{\substack{n \leq x / y \\ P^{+}(n) \leq z}} \Phi(x / n, y)+O\left(\frac{x}{\log y}\right) \tag{9}
\end{equation*}
$$

Theorem 1.2 implies

$$
\begin{align*}
\sum_{\substack{n \leq x / y \\
P^{+}(n) \leq z}} \Phi(x / n, y) & =\sum_{\substack{n \leq x / y}}\left\{\frac{\frac{x}{n} \omega\left(\frac{\log (x / n)}{\log y}\right)-y}{\log y}+O\left(\frac{x / n}{\operatorname{Pog}^{2} y}\right)\right\} \tag{10}\\
& =\int_{1}^{x / y} \frac{x \omega\left(\frac{\log (x / t)}{\log y}\right)}{t \log y} d \Psi(t, z)+O\left(\frac{x}{\log y}\right)
\end{align*}
$$

By Theorem 1.1, we have
$\int_{1}^{x / y} \frac{x \omega\left(\frac{\log (x / t)}{\log y}\right)}{t \log y} d \Psi(t, z)$

$$
\begin{aligned}
= & \int_{1}^{z} \frac{x \omega\left(\frac{\log (x / t)}{\log y}\right)}{t \log y} d[t]+\int_{z}^{x / y} \frac{x \omega\left(\frac{\log (x / t)}{\log y}\right)}{t \log y} d\left\{t \varrho\left(\frac{\log t}{\log z}\right)+E(t)\right\} \\
= & \int_{1}^{z} \frac{x \omega\left(\frac{\log (x / t)}{\log y}\right)}{t \log y} \varrho\left(\frac{\log t}{\log z}\right) d(t-\{t\})+\int_{z}^{x / y} \frac{x \omega\left(\frac{\log (x / t)}{\log y}\right)}{t \log y} \varrho\left(\frac{\log t}{\log z}\right) d t \\
& +\int_{z}^{x / y} \frac{x \omega\left(\frac{\log (x / t)}{\log y}\right)}{t \log y} \cdot \frac{\varrho^{\prime}\left(\frac{\log t}{\log z}\right)}{\log z} d t+\int_{z}^{x / y} \frac{x \omega\left(\frac{\log (x / t)}{\log y}\right)}{t \log y} d E(t)
\end{aligned}
$$

where $E(t)=O\left((t \log z) / \log ^{2} t\right)$.
Use integration by parts on the first and last integral, noting that ω and ω^{\prime} are uniformly bounded, and observe that

$$
\int_{1}^{x / y} \frac{x \omega\left(\frac{\log (x / t)}{\log y}\right)}{t \log y} \varrho\left(\frac{\log t}{\log z}\right) d t=x \int_{0}^{u-1} \omega(u-t) \varrho(t v / u) d t=x(\eta(u, v)-\varrho(v)) .
$$

We obtain

$$
\begin{aligned}
& \int_{1}^{x / y} \frac{x \omega\left(\frac{\log (x / t)}{\log y}\right)}{t \log y} d \Psi(t, z) \\
& =x \eta(u, v)-x \varrho(v)+O\left(\frac{x}{\log y}\right)+O\left(\frac{x}{\log y} \int_{z}^{x / y} \frac{\varrho^{\prime}\left(\frac{\log t}{\log z}\right)}{t \log z} d t\right) \\
& \quad+O\left(\frac{x}{\log y} \int_{z}^{x / y} \frac{t \log z}{\log ^{2} t} d\left\{\frac{\omega\left(\frac{\log (x / t)}{\log y}\right)}{t}\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & x \eta(u, v)-x \varrho(v)+O\left(\frac{x}{\log y}\right)+O\left(\left.\frac{x}{\log y} \varrho\left(\frac{\log t}{\log z}\right)\right|_{z} ^{x / y}\right) \\
& +O\left(\frac{x}{\log y} \int_{z}^{x / y} \frac{t \log z}{\log ^{2} t} \cdot \frac{1}{t^{2}} d t\right)
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\int_{1}^{x / y} \frac{x \omega\left(\frac{\log (x / t)}{\log y}\right)}{t \log y} d \Psi(t, z)=x \eta(u, v)-x \varrho(v)+O\left(\frac{x}{\log y}\right) . \tag{11}
\end{equation*}
$$

So (10) and (11) show that for $x>y z$ we have

$$
\sum_{\substack{n \leq x / y \\ P^{+}(n) \leq z}} \Phi(x / n, y)=x \eta(u, v)-x \varrho(v)+O\left(\frac{x}{\log y}\right)
$$

Together with (9) this gives

$$
\Gamma(x, y, z)=x \eta(u, v)+O\left(\frac{x}{\log y}\right)
$$

for $x>y z$, and hence for all $x \geq y \geq z \geq 3 / 2$. This completes the proof of Theorem 3.1.

Lemma 3.4. If $u \leq v$, then

$$
\begin{array}{ll}
\eta(u, v) \leq e^{\gamma} \frac{u}{v} & \text { for } u \geq 1 \\
\eta(u, v) \geq \frac{u}{2 v} & \text { for } u \geq \frac{v}{v-1} \tag{ii}
\end{array}
$$

Proof. (i) Since $\omega(u) \leq 1$ we have, for $u \geq 1$,

$$
\begin{aligned}
\eta(u, v) & =\varrho(v)+\int_{0}^{u-1} \varrho(t v / u) \omega(u-t) d t \leq \varrho(v)+\int_{0}^{u-1} \varrho(t v / u) d t \\
& =\varrho(v)+\frac{u}{v} \int_{0}^{v(1-1 / u)} \varrho(t) d t \leq \varrho(v)+\frac{u}{v} e^{\gamma}-\frac{u}{v} \int_{v(1-1 / u)}^{\infty} \varrho(t) d t \\
& \leq \varrho(v)+\frac{u}{v} e^{\gamma}-u \frac{1}{v} \int_{v-1}^{v} \varrho(t) d t=\frac{u}{v} e^{\gamma}+\varrho(v)-u \varrho(v) \leq \frac{u}{v} e^{\gamma}
\end{aligned}
$$

(ii) Since $\omega(u) \geq 1 / 2$ for $u \geq 1$, we have, for $u \geq v /(v-1)$,

$$
\eta(u, v) \geq \int_{0}^{u-1} \varrho(t v / u) \omega(u-t) d t \geq \frac{u}{2 v} \int_{0}^{v-v / u} \varrho(t) d t \geq \frac{u}{2 v} \int_{0}^{1} \varrho(t) d t=\frac{u}{2 v}
$$

Proof of Theorem 3.2. If $y \leq x<y z$, then $1 \leq u<v /(v-1)$ and

$$
\begin{aligned}
\eta(u, v) & =\varrho(v)+\int_{0}^{u} \varrho(t v / u) \omega(u-t) d t=\varrho(v)+\int_{0}^{u-1} \frac{1}{u-t} d t \\
& =\varrho(v)+\log u>\varrho(v)+(u-1) / 2
\end{aligned}
$$

which gives

$$
\eta(u, v) \log y>(\log y) \varrho(v)+\frac{\log (x / y)}{2}>\frac{1}{2}((\log x) \varrho(v)+\log (x / y))
$$

If $x \geq y z$ then $u \geq v /(v-1)$ and Lemma 3.4 shows that

$$
\eta(u, v) \log y \geq(\log y) u /(2 v)=(\log z) / 2
$$

Theorem 3.1 yields

$$
\Gamma(x, y, z)=x \eta(u, v)\left\{1+O\left(\frac{1}{\eta(u, v) \log y}\right)\right\}
$$

which concludes the proof of Theorem 3.2.
4. The difference-differential equations for $\eta(u, v)$. Like $\Psi(x, z)$ and $\Phi(x, y), \Gamma(x, y, z)$ also satisfies functional equations.

Proposition 4.1. (i) Let $z \leq y_{1} \leq y_{2} \leq x$. Then

$$
\Gamma\left(x, y_{1}, z\right)-\Gamma\left(x, y_{2}, z\right)=\sum_{y_{1}<p \leq y_{2}} \Gamma(x / p, p-1, z)
$$

(ii) Let $z_{1} \leq z_{2}<y<x$. Then

$$
\Gamma\left(x, y, z_{2}\right)-\Gamma\left(x, y, z_{1}\right)=\sum_{z_{1}<p \leq z_{2}} \Gamma(x / p, y, p)
$$

Proof. Part (i) follows from grouping the integers contributing to the left hand side according to their smallest prime divisor in $\left[y_{1}, x\right]$. Part (ii) follows from grouping the integers contributing to the left hand side according to their largest prime divisor in $\left[2, z_{2}\right]$.

The smooth versions of the functional equations in Proposition 4.1 are the following difference-differential equations.

Proposition 4.2. For $1<u<v$ the partial derivatives $\partial \eta / \partial u$ and $\partial \eta / \partial v$ are continuous and satisfy

$$
\begin{equation*}
u \frac{\partial}{\partial u} \eta(u, v)=\eta\left(u-1, v\left(1-u^{-1}\right)\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
v \frac{\partial}{\partial v} \eta(u, v)=-\eta\left(u\left(1-v^{-1}\right), v-1\right) \tag{13}
\end{equation*}
$$

Proof. From the definition of $\eta(u, v)$ in (1) we have

$$
\eta(u, v)=\varrho(v)+\int_{0}^{1} \varrho(v(1-t)) u \omega(u t) d t
$$

Hence

$$
\begin{aligned}
\frac{\partial}{\partial u} \eta(u, v) & =\frac{1}{u} \int_{0}^{1} \varrho(v(1-t)) d(u t \omega(u t)) \\
& =\frac{1}{u} \varrho\left(v\left(1-u^{-1}\right)\right)+\int_{1 / u}^{1} \varrho(v(1-t)) \omega(u t-1) d t \\
& =\frac{1}{u} \varrho\left(v\left(1-u^{-1}\right)\right)+\frac{1}{u} \int_{0}^{u-1} \varrho(t v / u) \omega(u-1-t) d t \\
& =\frac{1}{u} \eta\left(u-1, v\left(1-u^{-1}\right)\right)
\end{aligned}
$$

which proves (12). To show (13) we write

$$
\begin{aligned}
v \frac{\partial}{\partial v} \eta(u, v) & =v \varrho^{\prime}(v)+v \int_{0}^{u} \varrho^{\prime}(t v / u) t u^{-1} \omega(u-t) d t \\
& =-\varrho(v-1)-\int_{0}^{u} \varrho(t v / u-1) \omega(u-t) d t \\
& =-\varrho(v-1)-\int_{0}^{u\left(1-v^{-1}\right)} \varrho(t v / u) \omega\left(u\left(1-v^{-1}\right)-t\right) d t \\
& =-\eta\left(u\left(1-v^{-1}\right), v-1\right)
\end{aligned}
$$

Remark 4.3. Note that we could have defined $\eta(u, v)$ for $0<u<v$ as the unique continuous solution of the difference-differential equation (12) for $u>1$ together with the initial condition $\eta(u, v)=\varrho(v)$ for $0<u \leq 1$. The natural way to obtain an asymptotic formula for $\Gamma(x, y, z)$ would then be to employ the functional equation in Proposition 4.1 and then induct on the variable u. However, the explicit definition in (1) together with Lemma 3.3 allows us to make direct use of well known results on $\Psi(x, z)$ and $\Phi(x, y)$.

REmark 4.4. With the definition of $\eta(u, v)$ extended to the whole (u, v) plane, one easily verifies that the difference-differential equations (12) and (13) hold for all $u, v \in \mathbb{R}$ except for $u \in\{0,1\}, v \in\{0,1\}$ or $u=v$.

In the following we will use the notation $\eta_{r}(u)=\eta(u, u / r)$ for $0<r \leq 1$. For $r=0$ we define $\eta_{0}(u)=0$.

Lemma 4.5. Let $\eta_{r}^{\prime}(u)=\frac{\partial}{\partial u} \eta_{r}(u)$. For $0 \leq r \leq 1$ and $u>1$ we have

$$
\begin{equation*}
u \eta_{r}^{\prime}(u)=\eta_{r}(u-1)-\eta_{r}(u-r) \tag{14}
\end{equation*}
$$

Proof. The result is trivial when $r=0,1$ since both sides vanish. By the previous results $\partial \eta / \partial u$ and $\partial \eta / \partial v$ exist and are continuous for $v>u>1$. The result follows from the chain rule.

By differentiating (14) $n-1$ times we obtain
Corollary 4.6. Let $0 \leq r \leq 1$ and let

$$
D_{n, r}=\{i+j r: i, j \geq 0, i+j \leq n\}
$$

Then $\eta_{r}(u)$ is n times continuously differentiable on $\mathbb{R} \backslash D_{n, r}$. Furthermore

$$
\begin{array}{r}
u \eta_{r}^{(n)}(u)=\eta_{r}^{(n-1)}(u-1)-\eta_{r}^{(n-1)}(u-r)-(n-1) \eta_{r}^{(n-1)}(u) \tag{15}\\
\text { for } n \geq 1,0 \leq r \leq 1, u \in \mathbb{R} \backslash D_{n, r}
\end{array}
$$

We define $\eta_{r}^{(n)}(u)$ on $D_{n, r}$ by right continuity. Then (15) is valid for all $u \in \mathbb{R}$.
5. Results on $\eta(u, v)$ derived from the difference-differential equations

Lemma 5.1. We have, for $0 \leq r \leq 1$,

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \eta_{r}(u)=r \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \eta_{r}^{(n)}(u)=0 \quad \text { for } n \geq 1 \tag{ii}
\end{equation*}
$$

Proof. If $r=0$, then (i) is trivial. Let $0<r \leq 1$. Now $\omega(u) \rightarrow e^{-\gamma}$ and $\varrho(u) \rightarrow 0$ as $u \rightarrow \infty$. Thus

$$
\begin{aligned}
\eta_{r}(u) & =\varrho(u / r)+\int_{0}^{u} \varrho(t / r) \omega(u-t) d t \\
& =e^{-\gamma} \int_{0}^{u} \varrho(t / r) d t+o(1)=r e^{-\gamma} \int_{0}^{u / r} \varrho(t) d t+o(1)
\end{aligned}
$$

as u tends to infinity. Part (i) follows, since $\int_{0}^{\infty} \varrho(t) d t=e^{\gamma}$ by Theorem III.5.7 in [14]. Part (ii) follows from (i) and Corollary 4.6 by induction on n.

With $\sigma_{r}(u):=\sigma(u, u / r), 0<r \leq 1$ it follows from the definition (2) of $\sigma(u, v)$ that, for $0 \leq r \leq 1, u>1, u \neq 2 r, 1+r, 2$,

$$
\left(u \sigma_{r}(u)\right)^{\prime}=\sigma_{r}(u-r)-\sigma_{r}(u-1)
$$

This allows us to bound $\eta_{r}^{\prime}(u)$ in terms of $\sigma_{r}(u)$. The behaviour of $\sigma_{r}(u)$ is well understood due to the work of Friedlander [6] and Saias [10].

Lemma 5.2. For $1 \leq u \leq 3$ and $r \leq 1 / 3$ we have $\sigma_{r}(u) \gg 1$.
Proof. This follows directly from Theorem 2 and Theorem 5 in [6].
Proposition 5.3. Let $\eta_{r}^{\prime}=\partial \eta_{r} / \partial u$. Then, for $0 \leq r \leq 1$,

$$
\begin{array}{ll}
\eta_{r}^{\prime}(u) \ll r \sigma_{r}(u) & \text { for } u \geq 2 \\
\eta_{r}^{\prime}(u) \ll \sigma_{r}(u) & \text { for } u>1 \tag{ii}
\end{array}
$$

Proof. (i) We first consider the case $r \leq 1 / 3$. For $2 \leq u \leq 3$ and $r \leq 1 / 3$ we have $\sigma_{r}(u) \gg 1$, by Lemma 5.2. Lemmas 4.5 and 3.4 imply $\eta_{r}^{\prime}(u)=$ $\left(\eta_{r}(u-1)-\eta_{r}(u-r)\right) / u \ll r$ for $2 \leq u \leq 3$. Thus we have $\eta_{r}^{\prime}(u) \ll r \sigma_{r}(u)$ for $2 \leq u \leq 3$ and $r \leq 1 / 3$. Now assume that $\eta_{r}^{\prime}(u) \leq c r \sigma_{r}(u)$ for some positive constant c and $u \leq N$, where $N \geq 3$. For $N<u \leq N+r$ we have

$$
\left|\eta_{r}^{\prime}(u)\right|=\left|\frac{1}{u} \int_{u-1}^{u-r} \eta_{r}^{\prime}(t) d t\right| \leq \frac{c r}{u}\left|\int_{u-1}^{u-r} \sigma_{r}(t) d t\right|=c r \sigma_{r}(u)
$$

which proves (i) in the case $r \leq 1 / 3$.
Assume $r>1 / 3$. For $0<u \leq 1$ we have $\sigma_{r}(u)=\sigma(u, v)=\omega(v)$ from the definition of $\sigma(u, v)$ in (2). Also, $\varrho^{\prime}(v) \ll \omega(v)$. Indeed, $\varrho^{\prime}(v)=0=\omega(v)$ for $0 \leq v<1$, and $\left|\varrho^{\prime}(v)\right|=\varrho(v-1) / v \leq 1 / v$ and $1 / 2 \leq \omega(v)$ for $1 \leq v$. Thus

$$
\eta_{r}^{\prime}(u)=\frac{1}{r} \varrho^{\prime}\left(\frac{u}{r}\right) \leq 3 \varrho^{\prime}(v) \ll \omega(v)=\sigma_{r}(u) \leq r \sigma_{r}(u)
$$

Now assume that $\eta_{r}^{\prime}(u) \leq c r \sigma_{r}(u)$ for some positive constant c and $u \leq N$, where $N \geq 1$. For $N<u \leq N+r$ we have

$$
\left|\eta_{r}^{\prime}(u)\right|=\left|\frac{1}{u} \int_{u-1}^{u-r} \eta_{r}^{\prime}(t) d t\right| \leq \frac{c r}{u}\left|\int_{u-1}^{u-r} \sigma_{r}(t) d t\right|=\operatorname{cr} \sigma_{r}(u)
$$

This shows that, in the case $r>1 / 3$, we have $\eta_{r}^{\prime}(u) \ll r \sigma_{r}(u)$ for $u>0$, which completes the proof of part (i).
(ii) In view of (i), it suffices to consider $1<u<2$ and $r \leq 1 / 3$. We have $\sigma_{r}(u) \gg 1$, by Lemma 5.2. On the other hand we clearly have $\eta_{r}^{\prime}(u) \ll 1$ for $u>1$. This concludes the proof of Proposition 5.3.

Corollary 5.4. For $u \geq 1,0 \leq r \leq 1$, we have

$$
\begin{array}{ll}
\eta_{r}(u)=r\left(1+O\left(\int_{u}^{\infty} \sigma_{r}(t) d t\right)\right) & \text { for } u \geq 2 \\
\eta_{r}(u)=r(1+O(\varrho(u))) & \text { for } u \geq 1 \tag{ii}
\end{array}
$$

Proof. (i) follows from Proposition 5.3 and Lemma 5.1.
(ii) For $u \geq 2$ we have

$$
\int_{u}^{\infty} \sigma_{r}(t) d t \ll \int_{u}^{\infty} \varrho(t) d t \ll \varrho(u)
$$

If $1 \leq u<2$, (ii) follows from Lemma 3.4.
Theorem 5.5. We have, for $0<u \leq v$,

$$
\eta(u, v)=e^{\gamma} \omega(u) \frac{u}{v}+O\left(\frac{\log v}{v^{2}} \max \left(1, \frac{1}{u-1}, u-1\right)\right)
$$

Proof. For $0<u \leq 1$ the left hand side is equal to $\varrho(v)<1 / \Gamma(v+1)=$ $O\left(1 / v^{2}\right)$. On the right side we have $\omega(u)=0$ in this case. For $1<u \leq 2$ we have

$$
\begin{aligned}
\eta(u, v) & =\varrho(v)+\int_{0}^{u-1} \varrho(t v / u) \frac{d t}{u-t}=\varrho(v)+\int_{0}^{v(1-1 / u)} \varrho(s) \frac{d s}{v-s} \\
& =\varrho(v)+\int_{0}^{\log v} \varrho(s) \frac{d s}{v-s}+\int_{\log v}^{v(1-1 / u)} \varrho(s) \frac{d s}{v-s} \\
& \leq \varrho(v)+\frac{1}{v-\log v} e^{\gamma}+\frac{1}{v / 2} \int_{\log v}^{\infty} \varrho(s) d s \\
& \leq \varrho(v)+\frac{e^{\gamma}}{v}+e^{\gamma} \frac{\log v}{v(v-\log v)}+O\left(\frac{1}{v^{2}}\right) \leq \frac{e^{\gamma}}{v}+O\left(\frac{\log v}{v^{2}}\right)
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
\eta(u, v) & =\varrho(v)+\int_{0}^{v(1-1 / u)} \varrho(s) \frac{d s}{v-s} \geq \varrho(v)+\frac{1}{v} \int_{0}^{v(1-1 / u)} \varrho(s) d s \\
& =\varrho(v)+\frac{e^{\gamma}}{v}-\frac{1}{v} \int_{v(1-1 / u)}^{\infty} \varrho(s) d s \geq \varrho(v)+\frac{e^{\gamma}}{v}-\frac{1}{v^{2}(1-1 / u)} \\
& \geq \varrho(v)+\frac{e^{\gamma}}{v}-\frac{1}{v^{2}(u-1)}
\end{aligned}
$$

This proves the result for $1<u \leq 2$.
For $2<u \leq 3$ we use (12) to write

$$
\eta(u, v)=\eta(2, v)+\int_{2}^{u} \eta\left(t-1, v\left(1-t^{-1}\right)\right) \frac{d t}{t}
$$

$$
\begin{aligned}
= & e^{\gamma} \omega(2) \frac{2}{v}+O\left(\frac{\log v}{v^{2}}\right)+\int_{2}^{2+2(\log v) / v} \eta\left(t-1, v\left(1-t^{-1}\right)\right) \frac{d t}{t} \\
& +\int_{2+2(\log v) / v}^{u} \eta\left(t-1, v\left(1-t^{-1}\right)\right) \frac{d t}{t}
\end{aligned}
$$

From Lemma 3.4 we know that $\eta(u, v)=O(u / v)$. Thus,

$$
\int_{2}^{2+2(\log v) / v} \eta\left(t-1, v\left(1-t^{-1}\right)\right) \frac{d t}{t}=O\left(\frac{\log v}{v^{2}}\right)
$$

Next, note that $t \geq 2+2(\log v) / v$ implies

$$
v\left(1-\frac{1}{t}\right)\left(1-\frac{1}{t-1}\right) \geq \log \left(v\left(1-\frac{1}{t}\right)\right)
$$

Thus, for $t \geq 2+2(\log v) / v$,

$$
\begin{aligned}
\eta\left(t-1, v\left(1-t^{-1}\right)\right) \geq & \frac{e^{\gamma}}{v\left(1-t^{-1}\right)}+\varrho\left(v\left(1-t^{-1}\right)\right) \\
& -\frac{1}{v\left(1-t^{-1}\right)} \int_{\log \left(v\left(1-t^{-1}\right)\right)}^{\infty} \varrho(s) d s \\
\geq & \frac{e^{\gamma}}{v\left(1-t^{-1}\right)}+O\left(1 / v^{2}\right)
\end{aligned}
$$

Together with the upper bound for $\eta(u, v)$ in the region $1<u \leq 2$ this implies, for $t \geq 2+2(\log v) / v$,

$$
\eta\left(t-1, v\left(1-t^{-1}\right)\right)=\frac{e^{\gamma}}{v\left(1-t^{-1}\right)}+O\left(\frac{\log \left(v\left(1-t^{-1}\right)\right)}{v^{2}\left(1-t^{-1}\right)^{2}}\right)
$$

Hence,

$$
\begin{aligned}
& \int_{2+2(\log v) / v}^{u} \eta\left(t-1, v\left(1-t^{-1}\right)\right) \frac{d t}{t} \\
&=\int_{2+2(\log v) / v}^{u}\left(\frac{e^{\gamma}}{v\left(1-t^{-1}\right)}+O\left(\frac{\log v}{v^{2}}\right)\right) \frac{d t}{t} \\
&=\frac{e^{\gamma}}{v}\left(\log (u-1)-\log \left(1+\frac{2 \log v}{v}\right)\right)+O\left(\frac{\log v}{v^{2}}\right) \\
&=\frac{e^{\gamma}}{v} \log (u-1)+O\left(\frac{\log v}{v^{2}}\right)
\end{aligned}
$$

Therefore,

$$
\eta(u, v)=\frac{e^{\gamma}}{v}(1+\log (u-1))+O\left(\frac{\log v}{v^{2}}\right)=e^{\gamma} \frac{u}{v} \omega(u)+O\left(\frac{\log v}{v^{2}}\right)
$$

in the region $2<u \leq 3$.
For $u>3$ we proceed by induction. Let $N \geq 3$ and assume that, for $N-1<u \leq N$, there exists a constant c such that

$$
\left|\eta(u, v)-e^{\gamma} \omega(u) \frac{u}{v}\right| \leq c \frac{(N-2) \log v}{v^{2}} .
$$

Then, for $N<u \leq N+1$,

$$
\begin{aligned}
&\left|\eta(u, v)-e^{\gamma} \omega(u) \frac{u}{v}\right| \\
&=\left|\eta(N, v)+\int_{N}^{u} \eta\left(t-1, v\left(1-t^{-1}\right)\right) \frac{d t}{t}-e^{\gamma} \omega(u) \frac{u}{v}\right| \\
&= \left\lvert\, \eta(N, v)-e^{\gamma} \omega(N) \frac{N}{v}\right. \\
&+\int_{N}^{u}\left(\eta\left(t-1, v\left(1-t^{-1}\right)\right)-e^{\gamma} \omega(t-1) \frac{t-1}{v\left(1-t^{-1}\right)}\right) \frac{d t}{t} \\
& \left.+\int_{N}^{u} \frac{e^{\gamma}}{v} \omega(t-1) d t+e^{\gamma} \omega(N) \frac{N}{v}-e^{\gamma} \omega(u) \frac{u}{v} \right\rvert\,
\end{aligned}
$$

Since $\omega(u)$ satisfies $(u \omega(u))^{\prime}=\omega(u-1)$, the last three terms in the previous expression combine to zero and we complete the proof of Theorem 5.5 as follows:

$$
\begin{aligned}
\left|\eta(u, v)-e^{\gamma} \omega(u) \frac{u}{v}\right| \leq & \left|\eta(N, v)-e^{\gamma} \omega(N) \frac{N}{v}\right| \\
& +\int_{N}^{u}\left|\eta\left(t-1, v\left(1-t^{-1}\right)\right)-e^{\gamma} \omega(t-1) \frac{t-1}{v\left(1-t^{-1}\right)}\right| \frac{d t}{t} \\
\leq & c \frac{(N-2) \log v}{v^{2}}+c \int_{N}^{u} \frac{(N-2) \log \left(v\left(1-t^{-1}\right)\right)}{v^{2}\left(1-t^{-1}\right) t} d t \\
\leq & c \frac{(N-2) \log v}{v^{2}}\left(1+\int_{N}^{u} \frac{d t}{t-2+t^{-1}}\right) \\
\leq & c \frac{(N-2) \log v}{v^{2}}\left(1+\frac{1}{N-2}\right)=c \frac{(N-1) \log v}{v^{2}}
\end{aligned}
$$

References

[1] N. G. de Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Proc. Konink. Nederl. Akad. Wetensch. 53 (1950), 803-812.
[2] -, On the number of positive integers $\leq x$ and free of prime factors $>y$, ibid. 54 (1951), 50-60.
[3] A. A. Buchstab, An asymptotic estimation of a general number-theoretic function, Mat. Sb. (2) 44 (1937), 1239-1246.
[4] H. Daboussi, On a convolution method, in: E. Aparicio, C. Calderón and J. C. Peral (eds.), Congreso de Teoria de los Números (Universitad del País Vasco), 1989, 110-137.
[5] H. Davenport and P. Erdős, The distribution of quadratic and higher residues, Publ. Math. Debrecen 2 (1952), 252-265.
[6] J. B. Friedlander, Integers free from small and large primes, Proc. London Math. Soc. (3) 33 (1976), 565-576.
[7] W. B. Jurkat and H. E. Richert, An improvement of Selberg's sieve method I, Acta Arith. 11 (1965), 217-240.
[8] R. A. Rankin, The difference between consecutive prime numbers, J. London Math. Soc. 13 (1938), 242-247.
[9] -, The difference between consecutive prime numbers V, Proc. Edinburgh Math. Soc. (2) 13 (1963), 331-332.
[10] E. Saias, Entiers sans grand ni petit facteur premier I, Acta Arith. 61 (1992), 347-374.
[11] -, Entiers sans grand ni petit facteur premier II, ibid. 63 (1993), 287-312.
[12] -, Entiers sans grand ni petit facteur premier III, ibid. 71 (1995), 351-379.
[13] A. Schönhage, Eine Bemerkung zur Konstruktion großer Primzahllücken, Arch. Math. (Basel) 14 (1963), 29-30.
[14] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Univ. Press, Cambridge, 1995.
[15] A. Weingartner, Integers free of prime divisors from an interval II, preprint.
Department of Mathematics
Southern Utah University
Cedar City, UT 84720, U.S.A.
E-mail: weingartner@suu.edu

Received on 17.3.1999
and in revised form on 21.11.2000

