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1. Introduction. The subject of “class number relations” started with
investigations of Dirichlet [4] in 1842 into the class number h of quartic
fields of the form Q(

√
d,
√
−1) for a positive integer d which is not a square.

Dirichlet observed that either h or 2h is equal to the product of the class
numbers hd and h−d of Q(

√
d) and Q(

√
−d). Eisenstein [5] proved a similar

statement for Q(
√
d,
√
−3) in 1844. A much more general result, valid for

arbitrary Galois extensions of number fields, was given independently by
Brauer [2] and Kuroda [10] in 1950. Their theorem is an easy consequence of
Artin’s formalism of L-functions and the formula for the residues at 1 of zeta
functions of number fields. It says that for any linear relation between the
permutation characters associated with the subgroups of the Galois group
an expression of class numbers of intermediate fields, such as h/(hdh−d)
in Dirichlet’s case, will be equal to a certain expression involving only the
regulators and numbers of root of unity of the intermediate fields. See (2.1)
below for a precise statement.

For many specific types of Galois groups, this regulator expression can
be written in terms of a unit index. In Dirichlet’s case, 2h/(hdh−d) is the
index in the unit group of Q(

√
d,
√
−1) of the subgroup generated by the

roots of unity and the unit group of Q(
√
d). Such an index formula gives

rise to a divisibility relation between products of class numbers: hdh−d di-
vides 2h. These explicit results get more complicated when the base field
has non-trivial class group or positive unit rank. Even for the well stud-
ied case of abelian extensions of type (2, 2), a correct index formula only
appeared in full generality in a paper of Lemmermeyer [12] in 1994. See
Scholz [14], Walter [16, 17], Jehne [8] and Jaulent [7] for further examples
and references.
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In this paper we will show how to deduce index formulas and divisibility
results for class numbers from the result of Brauer and Kuroda in a sys-
tematic way. The method also works in the more general setting of S-class
numbers. We will apply our result to arbitrary elementary abelian extensions
and thus find Kuroda’s class number formula for S-class numbers.

Both the index formula and the divisibility relation will depend on the
choice of a homomorphism ϕ between permutation modules. The symbolic
computations one needs to perform for specific small Galois groups in or-
der to find those ϕ that give the strongest results on class numbers, can be
carried out by computer. We refer to [1] for computational aspects, imple-
mentation issues, further examples, and an improvement in certain cases of
the bound B in (2.2).

For the special case of number fields with identical zeta functions we get
a more conceptual approach to techniques that have been used by Perlis
in the seventies [13, 9]. A certain functoriality in ϕ now becomes clear. In
Section 5 we show how this leads to sharp inequalities involving the class
numbers of the well known fields of the form Q( 8

√
a) and Q( 8

√
16a) that were

considered by Perlis.

2. Main theorem. Let K be a number field and let G be a finite group
that acts on K by field automorphisms. Let S be a finite G-stable set of
primes of K that includes the infinite primes of K.

By a G-set we mean a finite set with a left action of G. For a G-set X
the set KX of G-equivariant maps X → K is a finite étale algebra, i.e., a
product of number fields. We call these number fields the components of
KX . For instance, for a subgroup H of G the G-set X = G/H corresponds
to a field KX which is isomorphic to the field KH of H-invariants in K. For
a general G-set X the components of KX correspond to G-orbits of X, and
for x ∈ X the component corresponding to the orbit Gx is isomorphic as a
field to KH , where H is the stabilizer of x in G.

All invariants for number fields can be extended to étale algebras: we
write h(KX) and R(KX) for the product of the S-class numbers and S-
regulators of the components of KX . We write µ(KX) for the torsion sub-
group of K∗X , and denote its order by w(KX). We let U(KX) be the product
of the groups of S-units of the components of KX .

For a G-set X the permutation character πX of G is the map from G to
Z that sends g ∈ G to the number of fixed points of g in X.

Let X and Y be two G-sets for which πX = πY . Such G-sets are called
linearly equivalent . Giving X and Y is our way to give what several authors
call a “character relation”, or “Brauer relation”. If we let H be a set of
representatives of the conjugacy classes of subgroups of G, and we define for
H ∈ H the integer aH(X) to be the number of G-orbits of X containing a
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point whose stabilizer is equal to H, then the linear equivalence of X and
Y can be expressed more traditionally by the character relation

∑

H∈H
aH(X) · 1GH =

∑

H∈H
aH(Y ) · 1GH .

The S-zeta function of a subfield F of K is the meromorphic function
on C which for Re(s) > 1 is defined by

ζF,S(s) =
∑

a

(Na)−s,

where a ranges over all integral ideals of F that are coprime to the finite
primes in S, and Na is the norm of a. See Tate [15, Chap. I] for details. The S-
zeta function of KX is the product of the S-zeta functions of its components,
which is also equal to the Artin L-series LS(s, πX). Since πX = πY , the
algebras KX and KY have the same S-zeta function. This is sometimes
expressed by saying that KX and KY are arithmetically equivalent. The
absolute value of the leading coefficient Taylor expansion at 0 of the S-zeta
function of KX is equal to h(KX)R(KX)/w(KX); see [15, Chap. I, Cor. 2.2].
Thus, we have a version for S-class numbers and S-regulators of the theorem
of Brauer and Kuroda [2, 10]:

(2.1)
h(KX)R(KX)

w(KX)
=
h(KY )R(KY )

w(KY )
.

For any ring R we denote the group ring of G over R by RG or R[G],
and for any G-set T we define the left RG-module RT = R[T ] as the free
R-module on T with G permuting T . The fact that πX = πY implies that
QX is isomorphic to QY as a QG-module; see [11, Chap. XVIII, Th. 2.3].
This means that we can choose an injective ZG-linear homomorphism

ϕ : ZX → ZY

with a finite cokernel Cokϕ. It will be important later to choose ϕ in a
particular way, but since there is no canonical way, we just formulate our
results in terms of ϕ.

For two ZG-modules P and M we write (P,M) = HomZG(P,M). Let
U be the group of S-units of K. Then the group U(KX) = (ZX,U) is the
product of the groups of S-units of the components of KX , and our map ϕ
induces a group homomorphism

(ϕ,U) : U(KY ) = (ZY,U)→ (ZX,U) = U(KX).

When we tensor this map with Q we obtain the map (ϕ,U⊗ZQ), which is an
isomorphism because ϕ induces an isomorphism QX → QY . Since U(KY )
and U(KX) are finitely generated abelian groups, it follows that the map
(ϕ,U) has finite kernel and cokernel.
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For a finite ZG-module E we define

B(S,E) =
#(ZS,E)
#(Z, E)

.

Here we view Z as a ZG-module by letting G act trivially, so (Z, E) ∼= EG.
Similarly, (ZS,E) is the product, over a set of G-orbit representatives p of S,
of EDp , where Dp is the stabilizer of p in G. Since S is non-empty, B(S,E)
is a positive integer. The main result of this paper is the following.

(2.2) Theorem. Let B = B(S,Cokϕ). Then

h(KY )
h(KX)

= B · # Ker(ϕ,U)
# Cok(ϕ,U)

∣∣∣∣B ·
w(KY )
w(KX)

.

Here the symbol “|” means “divides”, so for x, y ∈ Q∗ we have x | y if
and only if y/x ∈ Z. We prove this Theorem in Section 3.

It is a famous result of Brauer [2] that the left hand side in (2.2) only
assumes finitely many values when G and the G-sets X and Y are fixed, and
K ranges over the Galois extensions of Q with Galois group G. The Theorem
gives an explicit upper bound for h(KX)/h(KY ) depending on the choice of
the map ϕ. To get a lower bound one switches the roles of X and Y .

To get the best bound possible in (2.2) one has to choose ϕ in such a
way that B(S,Cokϕ) becomes minimal. For a specific Brauer relation the
computational problem that this leads to is to minimize, for each prime
p dividing the order of G, the number of factors p in the value of a cer-
tain multivariate polynomial with coefficients in Z outside the zero-set of
some other multivariate polynomial. We refer to [1] for details and a better
algorithm.

For specific G it is often helpful to use what may be described as “func-
toriality in ϕ” rather than a single application of (2.2). We will illustrate
this in Sections 4 and 5.

3. Proof of the Theorem. First, we define a norm map in a general
setting. Let P and M be left ZG-modules. Then HomZ(P,Z) is a right
ZG-module, and we write 〈P,M〉 = HomZ(P,Z)⊗ZGM . We now define the
norm homomorphism as the map

〈P,M〉 = HomZ(P,Z)⊗ZGM N−→ HomZG(P,M) = (P,M)

that sends ϕ⊗m to the homomorphism x 7→∑
g∈G ϕ(g−1x)gm. Note that

this map is a natural transformation of functors in M and of contravariant
functors in P . For P = Z[G/H] we recover the familiar norm map NH :
MH →MH from the H-coinvariants to the H-invariants of M . We first give
a purely algebraic result.
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(3.1) Lemma. For any G-set T the cokernel of 〈ϕ,ZT 〉 is canonically
isomorphic to the Q/Z-dual of (ZT,Cokϕ). In particular , # Cok〈ϕ,ZT 〉 =
#(ZT,Cokϕ).

Proof. One obtains the map 〈ϕ,ZT 〉 from ϕ in two steps: one first ap-
plies the functor HomZ(−,Z) from the category of left ZG-modules to the
category of right ZG-modules, and then the functor −⊗ZG ZT .

For f ∈ Hom(ZX,Z) we consider the composite map

ZY → ZY ⊗Q (ϕ⊗1)−1

−→ ZX ⊗Q f⊗1−→ Q→ Q/Z.

Since this composition vanishes on ϕ(ZX), we obtain from f an induced
homomorphism Cokϕ → Q/Z. Write M = HomZ(Cokϕ,Q/Z). It is not
hard to see that we thus get an exact sequence of right ZG-modules

0→ HomZ(ZY,Z)→ HomZ(ZX,Z)→M → 0.

By taking the tensor product over ZG with the left ZG-module ZT we get a
right exact sequence showing that Cok〈ϕ,ZT 〉 ∼= M ⊗ZG ZT . The Q/Z-dual
of this abelian group is

HomZ(M ⊗ZG ZT,Q/Z) = HomZG(ZT,Hom(M,Q/Z))

and by duality of finite abelian groups, this last group is (ZT,Cokϕ). This
proves the lemma.

We now prove (2.2). For p ∈ S let ‖ · ‖p be the normalized valuation
on K. This means that for a Haar measure on the completion Kp, an open
set O ⊂ Kp and any x ∈ K∗, we have vol(xO) = ‖x‖p vol(O). The product
formula says that

∏
p∈S ‖u‖p = 1 for all u ∈ US(K). For p ∈ S let np be

the local degree of p, i.e., the degree of the completion of K at p as an
extension field of the completion of Q. Now let n =

∑
p∈S np and define the

map l = l(K) by

l : Z⊕ U → RS, (a, u) 7→
∑

p∈S

(
a
np

n
+ log ‖u‖p

)
· p.

It follows from the Dirichlet unit theorem for S-units that the image of l
is a cocompact lattice in RS and that the kernel of l is µ(K). If we write
S = {p1, . . . , pr} and we have a system {ε1, . . . , εr−1} of fundamental S-units
for K, then the image of l is generated by the columns of the matrix



np1/n log ‖ε1‖p1 . . . log ‖εr−1‖p1

...
...

...
npr/n log ‖ε1‖pr . . . log ‖εr−1‖pr


 .

Recall thatR(K) = det(log ‖εi‖pj )r−1
i,j=1 and that

∑r
i=1 npi/n = 1. By adding
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rows 1 through r − 1 to row r and using the product formula we see that

(3.2) R(K) =
covol(Im l(K))

covol(ZS)

for any Haar measure on the real vector space RS. This interpretation of the
S-regulator of K is based on comparing the images of two G-linear maps

Z⊕ U l−→ RS i←− ZS.
Applying the functor (Z[X],−) we get homomorphisms

(ZX,Z)⊕ U(KX)→ (ZX,RS)← (ZX,ZS).

We now define the maps lX and iX by first composing with norm maps:

〈ZX,Z〉 ⊕ U(KX) lX−→ (ZX,RS) iX←− 〈ZX,ZS〉.
The kernel of lX is the torsion subgroup of U(KX), and iX is injective.

(3.3) Lemma. For any Haar measure on (ZX,RS) we have

covol(Im lX)
covol(Im iX)

= R(KX).

Proof. It suffices to consider transitive X, so take X = G/H for some
subgroup H of G. Then KX = KH and the set of primes of KX which
extend to primes in S is T = H\S, the set of H-orbits of S. We therefore
have ZT = (ZS)H . For every q ∈ S restricting to p ∈ T we have nq = [Kq :
(KH)p] · np, and for every x ∈ KH we have ‖x‖q = ‖x‖nq/np

p . One deduces
from this that the diagram

Z⊕ UH l(KH)−→ (RS)H ←− (ZS)Hy(#H, id)

yNH
yNH

Z⊕ UH l(K)−→ (RS)H ←− (ZS)H

commutes. Note that the induced maps from the upper corners to (RS)H

are the maps lX and iX . Lemma (3.3) now follows by applying (3.2) with
K replaced by KH .

We continue the proof of (2.2). By the functorial properties of N the
homomorphism ϕ induces a commutative diagram

〈ZY,Z〉 ⊕ U(KY ) lY−→ (ZY,RS) iY←− 〈ZY,ZS〉y〈ϕ,Z〉⊕(ϕ,U)

yϕ∗
y〈ϕ,ZS〉

〈ZX,Z〉 ⊕ U(KX) lX−→ (ZX,RS) iX←− 〈ZX,ZS〉
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where ϕ∗ is an isomorphism of finite-dimensional real vector spaces. Now
choose a Haar measure on (ZX,RS). Since iX and iY are injective we have

(3.4)
covol(Im(ϕ∗ ◦ iY ))

covol(Im iX)
= # Cok〈ϕ,ZS〉.

The kernels of lX and lY are µ(KX) and µ(KY ). Let Q be the index of
the subgroup of U(KX) generated by µ(KX) and the image under (ϕ,U) of
U(KY ). Then we have

covol(Im(ϕ∗ ◦ lY ))
covol(Im lX)

= Q ·# Cok〈ϕ,Z〉.

Dividing this equation by (3.4) and using Lemma (3.3) twice we find

R(KY )
R(KX)

=
Q ·# Cok〈ϕ,Z〉
# Cok〈ϕ,ZS〉 .

By (3.1) this is equal to Q/B. Using (2.1) we deduce that

h(KY )
h(KX)

=
R(KX)
R(KY )

· w(KY )
w(KX)

=
B

Q
· w(KY )
w(KX)

.

Since Q is a positive integer this gives the divisibility relation in (2.2). In or-
der to obtain the equality one considers the following commutative diagram
with exact rows:

0 −→ µ(KY ) −→ U(KY ) −→ U(KY )/µ(KY ) −→ 0y
y(ϕ,U)

y
0 −→ µ(KX) −→ U(KX) −→ U(KX)/µ(KX) −→ 0

The rightmost vertical map is injective, and its cokernel has order Q, so by
the snake lemma we have

w(KY )
Q · w(KX)

=
# Ker(ϕ,U)
# Cok(ϕ,U)

.

This completes the proof of (2.2).

4. Kuroda’s formula for S-class numbers. In this section we apply
the Theorem to a particular character relation for an abelian Galois group
G of type (p, p, . . . , p) with p a prime number.

For ordinary class numbers (the case where S has only infinite primes),
this class number formula has a long history. The case p = 2 with base fieldQ
was analyzed by Herglotz [6] in 1921. In 1950 Kuroda [10] gave the formula
for Galois extensions of type (p, p, . . . , p) without ramification at infinity.
Walter [17] gave a version in 1979 that does allow ramification at infinity,
but Lemmermeyer [12] pointed out that Walter’s formula has a mistake for
type (2, 2), and he gave a correct formula for arbitrary extensions of type
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(2, 2). We now give a general formula which also allows for more general
S-class numbers.

Let p be a prime number and let m ≥ 2. Let K/F be a Galois extension
of number fields with Galois group G ∼= (Z/pZ)m, and let S be a finite
G-stable set of primes of K, containing the infinite primes. For k ≥ 0 let
q(k) = (pk−1)/(p−1). The group G has g = q(m) subgroups H1, . . . ,Hg of
index p. The fields Ki = KHi , with i = 1, . . . , g are the cyclic extensions of
F within K of degree p. For k = 0, . . . ,m let sk be the number of G-orbits
of S of length pm−k, i.e., the number of primes of F extending to a prime
of L in S with relative local degree pk. Thus, s2 = . . . = sm = 0 when S
consists only of infinite primes.

(4.1) Proposition. For k ≥ 2 let tk be given by

tk = −g + 1
2 ((2m− k − 1)pk + q(k) + 1).

Define r ∈ {0, . . . ,m} by pr = [K ∩ F ( p
√
U(F )) : F ] and A by

A = q(r)− r − t0 + tms0 + tm−1s1 + . . .+ t0sm.

Then
h(K)h(F )g−1

h(K1) . . . h(Kg)
= p−A [U(K) : U(K1) . . . U(Kg)].

(4.2) Remark. In the case of an extension of type (2, 2) we have g = 3
and

A =
{

2 + s0 − s2 if K ⊂ F (
√
U(F )),

1 + s0 − s2 otherwise.

Proof of Proposition (4.1). First let us specify a ZG-linear homomor-
phism

ϕ : ZG⊕ Zg → Z⊕
g∏

i=1

Z[G/Hi]

by setting ϕ(σ, 0) = (1, (σHi)i) for σ ∈ G, and ϕ(0, (ni)i) = (0, (niNi)i)
where Ni =

∑
x∈G/Hi x ∈ Z[G/Hi].

We will first show that the ZG-module E = Cokϕ is finite, and compute
#E. For a cyclic group C of order p let Z(C) = Z[C]/NCZC, where NC =∑

c∈C c ∈ ZC. It is clear that ϕ is injective on 0 ⊕ Zg. By considering the
map ϕ modulo the image of 0⊕ Zg, we see that ϕ has the same kernel and
cokernel as the induced map

ψ : ZG→ Z×
g∏

i=1

Z(G/Hi).

Note that ψ ⊗Q is the ring isomorphism giving the product decomposition
of the étale algebra QG into components. Thus, ϕ is injective, and #E =
# Cokψ is finite.
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(4.3) Lemma. For every k ∈ {0, . . . ,m} and every subgroup D of G of
index pk we have #ED = ptk+g.

Proof. Recall that for algebras A1 ⊂ A2 that are finitely generated and
free as Z-modules, we have an index formula for discriminants:

∆(A1) = ∆(A2)[A2 : A1]2.

We have |∆(ZG)| = pmp
m

and |∆(Z(C))| = pp−2 for a cyclic group C of
order p. It follows that #E = pe(m), where for l ≥ 0 we let

e(l) = 1
2 (lpl − q(l)(p− 2)) = 1

2 ((l − 1)pl + q(l) + 1).

Let ND ∈ ZG be the formal sum of the elements of D. Then (ZG)D =
(ZG) ·ND and the sequence

0→ ZG ·ND ψD−→ Z×
∏

i=1,...,g
Hi⊃D

Z(G/Hi)→ ED → 0

is exact becauseH1(D,ZG) = 0. Applying what we have shown already with
G replaced by G/D, we see that the canonical image R of the ring Z[G/D]
in the middle group has index pe(k). The image of ψD is (#D)R = pm−kR
and R has Z-rank pk, so it follows that #ED = (pm−k)p

k

pe(k) = ptk+g. This
proves the lemma.

We continue the proof of Proposition (4.1). We will apply our main
theorem not only to ϕ, but also to the induced map ϕG on G-coinvariants.
Note that we have a commutative diagram of ZG-modules

ZG⊕ Zg −→ Zg+1
yϕ

yϕG

Z⊕∏g
i=1 Z[G/Hi] −→ Zg+1

where the horizontal maps are given by the augmentation map on each
summand. Note that CokϕG = EG because taking coinvariants is right
exact, and that CokϕG ∼= (Z/pZ)g. Applying the functor (−, U(K)) to the
diagram we obtain a commutative diagram with exact rows

0 −→ U(F )g+1 −→ U(F )⊕∏U(Ki) −→
∏
U(Ki)/U(F ) −→ 0y(ϕG,U)

y(ϕ,U)

yf

0 −→ U(F )g+1 −→ U(K)⊕ U(F )g −→ U(K)/U(F ) −→ 0

where the products are taken over i ∈ {1, . . . , g} and the rightmost verti-
cal map f is the homomorphism induced by the inclusions U(Ki)/U(F ) ⊂
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U(K)/U(F ). Applying (2.2) to ϕ and to ϕG we see that

h(K)h(F )g−1

h(K1) . . . h(Kg)
=
(
B(S,E)# Ker(ϕ,U)

# Cok(ϕ,U)

)−1(
B(S,EG)# Ker(ϕG, U)

# Cok(ϕG, U)

)

=
B(S,EG)
B(S,E)

· # Cok f
# Ker f

.

The last equality follows by applying the snake lemma to the diagram above.
In order to compute the B-factors, note first that #EG = # CokϕG =

pg. Let S′ ⊂ S be a set of representatives for the G-orbits of S and for p ∈ S ′
let Dp be the stabilizer of p in G. Then by Lemma (4.3) we see that

B(S,E)
B(S,EG)

=
#EG
#EG

∏

p∈S′

#EDp

#EG
= p−t0+tms0+...+t0sm .

It is clear that # Cok f = [U(K) : U(K1) . . . U(Kg)], so it remains to
show that # Ker f = pq(r)−r. Suppose ui ∈ U(Ki) for i = 1, . . . , g with
u1 . . . ug ∈ U(F ). For j 6= i we have #(Hi ∩ Hj) = pm−2, so the norm

map NHi maps U(Kj) into U(F )p
m−2

. Since NHi(ui) = up
m−1

i we deduce

that up
m−1

i ∈ U(F )p
m−2

for all i. This means that for each i we can write

upi = ζivi with ζi ∈ Ki, vi ∈ U(F ) and ζp
m−2

i = 1. Now let i be such that
#〈ζi〉 is maximal. Then for j 6= i we have ζj ∈ Kj ∩Ki = F and upj ∈ U(F ).
Since ζ1 . . . ζg ∈ F , it follows that also ζi ∈ F and upi ∈ U(F ). This proves
that the kernel of f is annihilated by p. Kummer theory tells us that the
p-torsion subgroups of the domain and codomain of f have ranks q(r) and
r respectively. Again by Kummer theory, f gives a surjection from the first
to the second, so Ker f has rank q(r)− r. This proves Proposition (4.1).

5. An application to arithmetically equivalent fields. The best
known examples of non-isomorphic number fields with the same zeta func-
tion are the fields of the form K = Q( 8

√
a) and K ′ = Q( 8

√
16a), where a is

an integer for which both |a| and 2|a| are not squares.

(5.1) Proposition. The class numbers h and h′ of K and K ′ satisfy
h/h′ ∈ {1/2, 1, 2}.

All three values 1/2, 1, 2 actually occur for some a; see [3]. For instance,
for a = −15 and for a = 66 we have h/h′ = 2. Replacing a by 16a switches
K and K ′.

We first identify the Galois group. Let α = 8
√
a, and let ζ be a primitive

8th root of unity. Then L = Q(α, ζ) is the Galois closure of K, and we
have an embedding K ′ ⊂ L that identifies 8

√
16a with (ζ + ζ−1)α. The

Galois group G of L over Q is the group of affine linear transformations
of Z/8Z, i.e., the group of permutations T ba : x 7→ ax + b of Z/8Z with
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a ∈ (Z/8Z)∗ and b ∈ Z/8Z. The group G permutes the roots of X8 − a
by T ba(ζiα) = ζai+bα. Putting H = Gal(L/K) and H ′ = Gal(L/K ′), one
checks that H = {T ba ∈ G : b = 0}, and H ′ = 〈T 0

−1, T
4
3 〉. Let S be the G-set

of infinite primes of L.
Assume for the moment that we have an injective G-linear homomor-

phism

ϕ : Z[G/H]→ Z[G/H ′].

We will explicitly give such a ϕ below.
By (2.2) we then have h′ |B(S,E)h, where E = Cokϕ. One can now

minimize B(S,E) over all choices of ϕ. This rephrases Perlis’ method [13],
and it gives h′ | 16h if a > 0 and h′ | 4h if a < 0. It turns out that with double
modules, i.e., a map Z[G/H]2 → Z[G/H ′]2, one can improve the result for
a > 0 to h′ | 8h. Rather than applying (2.2) directly we will use a relative
version of this argument, which uses the fact that K and K ′ both contain
the field F = Q(α2) = Q( 4

√
a).

Let N = Gal(L/F ) ⊂ G. The center of G is Z = 〈T 4
1 〉, and we have

N = ZH = ZH ′. Taking Z-coinvariants we obtain a commutative diagram
of ZG-modules

(5.2)

Z[G/H]
ϕ−→ Z[G/H ′]yπ

yπ′

Z[G/H]Z = Z[G/N ]
ϕZ−→ Z[G/N ] = Z[G/H ′]Z

where π and π′ are the canonical projection maps. Put E = Cokϕ. Then
we have EZ = CokϕZ . We now apply the functor HomZG(−, U), where U
is the group of units of L, and we obtain an induced diagram

0 −→ U(F ) −→ U(K ′) −→ U(K ′)/U(F ) −→ 0y(ϕZ , U)

y(ϕ,U)

yf
0 −→ U(F ) −→ U(K) −→ U(K)/U(F ) −→ 0

We claim that U(K ′)/U(F ) is torsion free. To see this, suppose that the
image of u ∈ U(K ′) in U(K ′)/U(F ) is a non-trivial p-torsion element for a
prime number p. Writing v = up ∈ F we see that v2 = NK′/F (u)p ∈ F p. If p
is odd then it follows that v ∈ F p so that up = wp for some w ∈ F . But then
u/w ∈ µ(K ′) ⊂ µ(F ) so that u ∈ F . So we have p = 2, and K ′ = F (

√
v),

which implies that K ′/F is only ramified at primes of F that lie over 2. But
our assumption on a is that ordl(a) is odd for some odd prime number l,
and this l is then totally ramified in K ′/Q. Thus, U(K ′)/U(F ) is torsion
free. Since (ϕ,U)⊗Q is an isomorphism, it follows that f is injective.
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Just as in the previous section we apply (2.2) twice, and from the snake
lemma we find that

h′

h
=

B(S,E)
B(S,EZ)

· 1
# Cok f

.

It remains to show that there exists an injective G-linear homomorphism
ϕ : Z[G/H] → Z[G/H ′] such that B(S,E)/B(S,EZ) = 2 for E = Cokϕ.
We would then have h′ | 2h, and replacing a by 16a we also see that h | 2h′,
so that the proposition follows.

The element t = T 1
1 of G generates a group C of order 8, and Z[G/H]

and Z[G/H ′] are free ZC-modules of rank 1. The H-orbits of G/H ′ are
{H ′, t4H ′} and {tiH ′, t−iH ′} for i = 1, 2, 3. It follows that ϕ(H) = x · H ′
with x ∈ ZC of the form

(5.3) x = a1(1 + t4) + a2(t+ t7) + a3(t2 + t6) + a4(t3 + t5)

for certain ai ∈ Z. Conversely, such an element x gives rise to a G-linear
homomorphism Z[G/H]→ Z[G/H ′] given by gH 7→ g · xH ′ for g ∈ G. Let
E be its cokernel.

(5.4) Lemma. If E is finite, then

B(S,E)
B(S,EZ)

= 2(a2 − a4)2.

Proof. Let V = Kerπ and V ′ = Kerπ′ in diagram (5.2). Then both V
and V ′ are free modules of rank 1 over the ring Z[t]/(t4 + 1) ∼= Z[ζ], with
generators H − t4H and H ′ − t4H ′. On this basis, the map V

ϕ−→ V ′ is
multiplication by the image of x in Z[ζ], which is (a2−a4)(ζ−ζ3). It follows
that

[V ′ : ϕ(V )] = |NQ(ζ)/Q((a2 − a4)(ζ − ζ3))| = 4(a2 − a4)4.

Let D = 〈δ〉 be the decomposition group of an infinite prime of L. The
image of δ in G/C = Gal(Q(ζ)/Q) = (Z/8Z)∗ is −1, so DZ is abelian of
type (2, 2). The DZ-sets G/H and G/H ′ are linearly equivalent, and they
do not have orbits of length 1. The characters πDZ/J with J ( DZ are
linearly independent, so the DZ-sets G/H and G/H ′ are isomorphic. This
implies that V and V ′ are isomorphic as ZD-modules. Let V + = V D =
{v ∈ V : δ(v) = v} and V − = {v ∈ V : δ(v) = −v}. Then we have
[V : V + ⊕ V −] = [V ′ : V ′+ ⊕ V ′−] <∞, so that

4(a2 − a4)4 = [V ′ : ϕ(V )] = [V ′+ : ϕ(V +)][V ′− : ϕ(V −)].

Without having to distinguish the different possibilities for δ we can exploit
a symmetry between V + and V −: we have an isomorphism V + → V − given
by v 7→ t2v because δt2 = t−2δ = −t2δ in Aut(V ). The same holds for V ′,
and since ϕ commutes with t2 it follows that

[V ′+ : ϕ(V +)] = [V ′− : ϕ(V −)] = 2(a2 − a4)2.



Brauer–Kuroda relations for S-class numbers 145

One checks that the kernel of the canonical map V → Z[G/H]D is V −.
Doing the same for V ′ one sees that we have a commutative diagram of free
Z-modules with exact rows:

0 −→ V − −→ V −→ Z[G/H]D
πD−→ Z[G/H]DZ −→ 0y

y
yϕD

yϕDZ

0 −→ V ′− −→ V ′ −→ Z[G/H ′]D
π′D−→ Z[G/H ′]DZ −→ 0

The vertical maps are injective, and the cokernels have orders 2(a2 − a4)2,
4(a2 − a4)4, #ED, and #EDZ , respectively. It follows that #ED/#EDZ =
2(a2−a4)2. SinceD is cyclic we have #ED = #ED and #EDZ = #(EZ)D =
#(EZ)D. By taking G-invariants in the diagram (5.2) we get a diagram of
cyclic groups and one sees that #EG = #(EZ)G. Thus, we obtain

B(S,E)
B(S,EZ)

=
#ED/#EG

#(EZ)D/#(EZ)G
=

#ED
#EDZ

= 2(a2 − a4)2

and the lemma follows.

Let us take a2 = 1 and a4 = 0 in the lemma. The element x in (5.3) gives
rise to an injective homomorphism ϕ if x is not a zero-divisor in the ring
ZC = Z[t]/(t8 − 1). This means that we should choose a1, a3 ∈ Z such that
a1(1+t4)+(t+t7)+a3(t2+t6) does not vanish when plugging in any 8th root
of unity for t. If, for instance, a1 = 2 and a3 = 0 then this is the case, so we
have produced an injective homomorphism ϕ with B(S,E)/B(S,EZ) = 2.
This completes the proof of Proposition (5.1).
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