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1. Introduction. The theory of equations over finite fields is a basic
topic in classical number theory. In this theory the congruences of the form

y2 ≡ f(x) (modulo a prime number),

where f(x) is a polynomial or a quotient of polynomials with integer co-
efficients, were one of the first objects of study. Assuming an analogue of
Riemann’s hypothesis for the zeta function that he had introduced, E. Artin
conjectured an upper bound for the number N of solutions of such congru-
ences.

A celebrated theorem of A. Weil proving, in particular, the conjecture of
E. Artin says: Let X be a nonsingular, projective, geometrically irreducible
algebraic curve of genus g defined over a finite field Fq. Then the number
N := #X (Fq) of Fq-rational points of X satisfies

|N − (q + 1)| ≤ 2g
√
q.

The particular case of elliptic curves (i.e., g = 1) was first proved by
H. Hasse.

Particularly interesting is the case of maximal curves, i.e., curves X
over Fq, with q a square, attaining the Hasse–Weil upper bound:

N = q + 1 + 2g
√
q.

According to Ihara [I], the genus g of a maximal curve over Fq satisfies

g ≤ √q(√q − 1)/2.

In this same paper [I], the following upper bound is also shown for N :=
#X (Fq):

N ≤ q + 1 + (
√

(8q + 1)g2 + 4(q2 − q)g − g)/2.
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The interest in curves over finite fields with many rational points (i.e.,
with the numberN close to known upper bounds) was renewed after Goppa’s
construction of linear codes with good parameters from such curves
(see [Go]). Other applications are: estimates of exponential sums over fi-
nite fields, finite geometries and sequences with low discrepancy (see [Mo],
[Hi] and [Li-Ni]).

The aim of this paper is to introduce an effective method for the con-
struction of curves over finite fields with many rational points. The method
is motivated by a recent paper of van der Geer and van der Vlugt [G-V]. In
our method we assign a curve X over Fqn to each polynomial g(x) ∈ Fqn [x]
with deg(g(x)) ≥ qn and this curve X quite frequently has many rational
points over Fqn . This is done by introducing a reduced polynomial R(g(x))
and then considering the curve X given by the Kummer extension of the
type

(1.1) ym =
g(x)

R(g(x))
, m a divisor of qn − 1.

We illustrate the method with several examples and some of the con-
structed curves X are really good (i.e., the number of rational points of X
over the finite field in question is strictly greater than the previously known
largest number for a curve of the same genus). In the last section we apply
the method of [G-V] to certain polynomials from [G-S] and we get some
other examples of curves with many rational points.

We refer to Section III.7 of [S] for the theory of Kummer extensions of
function fields over finite fields (see also [H]).

2. The construction. For a polynomial g(x) ∈ Fl[x] of degree greater
than or equal to l, we define the associated reduced polynomial R(g(x)) as
the polynomial of degree ≤ l − 1 obtained from g(x) by operating on its
monomials as follows:

• R(xj) = xj for all j ≤ l − 1.
• R(xl+j) = R(x1+j) for all j ≥ 0.

For example,

R(x2l−1) = R(xl+l−1) = R(x1+l−1) = R(xl) = R(x) = x,

R(x2l−2) = R(xl+l−2) = R(x1+l−2) = R(xl−1) = xl−1.

More generally, one can easily show that R(xm) = xn if m ≡ n
(mod (l − 1)) and 1 ≤ n ≤ l − 1. Note that by the definition of R, for
every α ∈ Fl we have

g(x)(α) = 0 if and only if R(g(x))(α) = 0.
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Remark 1. The main property of the right hand side of (1.1) is the
following:

g(x)
R(g(x))

(α) = 1 for all α ∈ Fl with g(x)(α) 6= 0.

Hence the curves X over Fl given by

(2.1) ym =
g(x)

R(g(x))
with m a divisor of l − 1,

are such that the number N of rational points over Fl satisfies

N ≥ m ·#{α ∈ Fl | g(x)(α) 6= 0}.
The exact value for N is obtained after analyzing the rationality of

the points with first coordinate x = ∞ or x = α, with α ∈ Fl satisfying
g(x)(α) = 0. We will always take

g(x) = f(x)r for some polynomial f(x) and some r ≥ 2.

This is done with the objective that the curve X given by (2.1) has “low
genus”.

Hence the curves X we will be considering here (over the finite field Fl
with l elements) are of the type

(2.2) ym =
f(x)r

R(f(x)r)
with r ≥ 2 and m a divisor of l − 1.

It will always be the case, in the examples considered here, that in the
function field extension Fl(x, y)|Fl(x), given by (2.2), there is a fully ramified
place and hence it follows that equation (2.2) is indeed absolutely irreducible
(see Corollary III.7.4 of [S]).

In the next theorem we write l = qn and we denote by Fq the algebraic
closure of Fq.

Theorem 2.1. Let f(x) ∈ Fqn [x] be a separable polynomial and let qj

be a power of the characteristic such that qj · deg(f) ≥ qn. Suppose that the
reduced polynomial R(f(x)q

j

) is also separable and that the curve X given
by

ym =
f(x)q

j

R(f(x)qj )
, m a divisor of qn − 1,

is absolutely irreducible. Then the genus g and the number N of rational
points of the curve X over Fqn satisfy

2g = (δ+ δ′− 2c− 2)(m− 1) + c(m− d) + (m− d′) and N ≥ (qn− c1)m,

where δ = deg(f(x)), δ′ = deg(R(f(x)q
j

)), d = gcd(m, qj − 1), d′ =
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gcd(m, qj · δ − δ′) and moreover c1 ≤ c are given by

c1 = #{α ∈ Fqn | f(x)(α) = 0},
c = #{α ∈ Fq | f(x)(α) = R(f(x)q

j

)(α) = 0}.
Proof. The assertion on g follows from the Riemann–Hurwitz formula

applied to the extension Fqn(x, y)|Fqn(x) of degree m. The assertion on N
follows directly from Remark 1.

We end up this section with the only situation that we are going to
consider here in which the exponent r in (2.2) is not a power of the charac-
teristic p. We consider the curve X given by (2.2) with r being a divisor of
l − 1 and with

(2.3) f(x) = x(x(l−1)/r − 1).

Assumption. We assume below that p is an odd prime, that r2 ≤ l − 1
and that x = 0 is the unique multiple root of the polynomial R(f(x)r).

Because of the Assumption above, the multiplicity of x = 0 in R(f(x)r)
is r if r is even, and r+(l−1)/r if r is odd. Then the number S of nonrational
roots (i.e., not belonging to Fl) of the polynomial R(f(x)r) satisfies

S =





l − 1
r

(r − 2) if r is even,

l − 1
r

(r − 3) if r is odd.

In fact, note that the hypothesis r2 ≤ l − 1 means that

R(f(x)r) = f(x)r − xl−1+r + xr.

In particular, deg(R(f(x)r)) = l − 1−
(
l−1
r − r

)
.

Then the genus g of the curve X (given by (2.2), with f(x) chosen as in
(2.3) and satisfying the Assumption above) satisfies

2g = (m− 1)(S − 2) +
l − 1
r

(m− d) + δ1(m− d′),

where d = gcd(m, r − 1), d′ = gcd(m, (l − 1)/r), δ1 = 1 if r is even and
δ1 = 2 if r is odd.

The number N of rational points over Fl on X is

N =
(
l − 1− l − 1

r

)
m+N1 +N0 +N∞,

where N1 is the number of rational points with the first coordinate satisfying
x(l−1)/r = 1, N0 is the number of rational points with x = 0 and N∞ is the
number of rational points with x =∞.
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A careful analysis gives the following possible values for N1, N0 and N∞:

N1 =
{
d(l − 1)/r if −r is a d-power,
0 otherwise,

N0 =

{
m if r is even and 2 is an m-power,
d′ if r is odd and −r is a d′-power,
0 otherwise,

N∞ =
{
d′ if −r is a d′-power,
0 otherwise.

We omit the details.

Remark. Because of the Assumption above, the roots of (x(l−1)/r − 1)
are zeros of multiplicity r − 1 for the rational function f(x)r/R(f(x)r).
Particularly interesting here seems to be the case when

d1 = gcd(r − 1, l − 1) > 1.

In this case, taking a divisor m ≥ 2 of d1, one sees that d = m; i.e., one does
not have ramification in the extension Fl(x, y)|Fl(x) over the points with
x(l−1)/r = 1.

3. Examples of curves with many rational points. In this section
we are going to construct curves over Fqn with many rational points by
applying the method of the preceding section, with r being a power of q (say
r = qj) and with the polynomial f(x) carefully chosen, so that both f(x) and
R(f(x)q

j

) have “low degrees”. From the genus formula in Theorem 2.1, we
see that one wants the sum δ+ δ′ of their degrees to be small. All examples
here will satisfy the hypotheses of Theorem 2.1.

Remark. When we say that a curve over Fqn of genus g gives a new
record (resp., meets the record), we mean that its number of rational points
over the finite field is strictly greater than (resp., is equal to) the largest
number previously known for curves of genus g. When we say that a curve
over Fqn of genus g completes some table, we mean that there was no entry
on that table for the number N of rational points over the finite field and
that we got a curve of genus g whose N satisfies:

• If g < qn, then N ≥ min{N1/
√

2, N2/
√

2}, where N1 = qn+1+g[2
√
qn]

is Serre’s bound and N2 = qn + 1 + [(
√

(8qn + 1)g2 + 4(q2n − qn)g − g)/2]
is Ihara’s bound.
• If g ≥ qn, then N/g ≥ √qn − 1, where

√
qn − 1 is the Drinfeld–Vladut

bound.

The tables that we are going to use here are:

1. For p = 2 or p = 3, the table from Geer–Vlugt [Ge-Vl].
2. For p = 5, the table from Shabat [Sh].
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3.1. Curves over Fq2

Example 1. Consider the curve

ym =
(xq+1 + x+ 1)q

xq+1 + xq + 1
with m a divisor of q2 − 1.

The common roots of the numerator and denominator belong to Fq and
satisfy x2 + x + 1 = 0. We then have three cases to consider. We write
d := gcd(m, q − 1).

Case 1. If q ≡ 1 (mod 3), then c = c1 = 2. Hence

g = (q − 2)(m− 1) + (m− d)

and

N =
{

(q2 − 1)m if (q − 1)/d 6≡ 0 (mod 3),
(q2 − 1)m+ 2d if (q − 1)/d ≡ 0 (mod 3).

Case 2. If q ≡ 0 (mod 3), then c = c1 = 1. Hence

g = (q − 1)(m− 1) + (m− d)/2 and N = q2m+ d.

Case 3. If q ≡ 2 (mod 3), then c = c1 = 0. Hence

g = q(m− 1) and N = (q2 + 1)m.

From this example we have the following tables (concerning the first
table below, the former record was a curve with 64 rational points):

New record

Finite field m g N

F9 8 17 74

Complete the table

Finite field m g N

F25 6 25 156
F25 8 35 208

Meet the record

Finite field m g N

F4 3 4 15
F16 3 4 45
F16 15 40 225
F9 2 2 20

Example 2. Suppose that p 6= 2 and consider

ym =
(xq+1 + x− 1)q

xq+1 + xq − 1
with m a divisor of q2 − 1.

The common roots of the numerator and denominator are exactly the ele-
ments α in Fq satisfying α2 + α − 1 = 0. Hence, if p 6= 5 and q is a square
or if p ≡ ±1 (mod 5), we get c = c1 = 2. Hence

g = (q − 2)(m− 1) + (m− d) with d = gcd(m, q − 1).

Denoting by O(α) the order of the element α in F∗q with α2 +α− 1 = 0, we
see that the number N of rational points over Fq2 is

N =
{

(q2 − 1)m+ 2d if O(α) divides 4(q − 1)/d,
(q2 − 1)m otherwise.
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For example, if p = 3 and q is a square, then O(α) = 8 and we get 2d extra
rational points if (q − 1)/d is even. Hence for q = 9 and m = 2 we get a
curve over F81 with g = 7 and N = 164, which is a new record. The former
record was a curve with 160 rational points.

New record

Finite field m g N

F81 2 7 164

Example 3. Let p 6= 2, q ≥ 5 and choose α ∈ F∗q \ {±1}. We consider
the curve

ym =
(xq+1 + xq − x− α2)q

xq+1 + x− xq − α2 with m a divisor of q2 − 1.

The only common roots of the numerator and denominator are x = ±α,
hence c = c1 = 2. The genus is then

g = (q − 2)(m− 1) + (m− d) with d = gcd(m, q − 1).

It is possible to choose α in Fq such that
(
α−1
α+1

)2(q−1)/d
= 1, and for this

choice of α we get

N = (q2 − 1)m+ 2d.

The condition on α above is just to make sure that the 2d points above
x = ±α are indeed rational points over Fq2 .

This example produces the next table:

Complete the tables

Finite field m g N

F81 8 49 656
F25 2 3 52
F25 4 9 104
F25 6 19 148
F25 8 25 200

Remark. There exists a curve of genus 3 over F25 with 56 rational
points (see Theorem 5.1 of [G-S-X]).

Example 4. Suppose that p ≥ 2 and consider

ym =
(xq + x+ α)q

xq + x+ αq
with α ∈ Fq2 \ Fq and m | (q2 − 1).

We have c = c1 = 0 and δ = δ′ = q, hence

g = (q − 1)(m− 1) + (m− d)/2 with d = gcd(m, q − 1).
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The number N of rational points over Fq2 is

N = q2m+ d.

So we get the following tables (concerning the first table below, the
former record was a curve with 101 rational points):

New record

Finite field m g N

F25 4 12 104

Complete the tables

Finite field m g N

F16 15 48 243
F25 8 30 204
F25 12 48 304

Meets the record

Finite field m g N

F9 2 2 20

Remark. For q = 9 and for m = 16, 20, 40 or 80, Example 4 produces
curves such that N/g ≥

√
q2 = q = 9.

Remark. In characteristic p ≥ 3 the curves given by

ym =
(xq − x+ 1)q

x− xq + 1
or ym =

(xq+1 + xq − x)q

xq+1 + x− xq ,

with m | (q2−1), provide curves over Fq2 with the same genus and the same
number of rational points as the curve in Example 4.

Example 5. Let m be a divisor of q2 − 1, let a ∈ F∗q2 and consider the
curve

ym =
(xq − ax)q

x− aqxq .

There are two cases to consider.

Case 1. aq+1 = 1 and gcd(m, q−1) = 1. In this case we have c = c1 = q
and hence

g = (m− 1)(q − 1)/2 and N = (q2 − q)m+ (q + 1).

Case 2. aq+1 6= 1. In this case c = c1 = 1 and hence

g = (q − 2)(m− 1) + (m− d) with d = gcd(m, q − 1).

The number N of rational points over Fq2 is

N =
{

(q2 − 1)m if d = q − 1,
(q2 − 1)m+ 2d if d < q − 1 and a(q2−1)/d = 1.

For q = 9 and m = 2 we get a curve of genus g = 7 with N = 164
rational points over F81, which is a new record (already obtained here in
Example 2).

From this example we have the following tables:
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Complete the tables

(all examples being from Case 2)

Finite field m g N

F64 7 36 441
F25 2 3 52
F25 6 19 148
F25 8 25 192
F25 12 41 288

Meet the record

Finite field m g N Case
F4 3 1 9 1
F16 5 6 65 1
F16 3 4 45 2
F64 3 7 177 1
F64 9 28 513 1
F9 2 1 16 2
F9 4 5 32 2
F9 8 13 64 2
F81 5 16 370 1
F25 3 4 66 1

3.2. Curves over Fq3

Example 6. We consider the curve over Fq3 given by

ym =
(xq+1 + x+ 1)q

2

xq2+1 + xq2 + 1
with m a divisor of q3 − 1.

In this case c = c1 = q + 1, δ = q + 1 and δ′ = q2 + 1. Hence

g =
(q − 2)(q + 1)(m− 1) + (q + 1)(m− d)

2
with d = gcd(m, q − 1).

The number N of rational points over Fq3 is

N =





(q3 − q)m+ (q + 1)d if p = 2,
(q3 − q)m+ (q + 1)d if p ≥ 3 and (q − 1)/d is even,
(q3 − q)m if p ≥ 3 and (q − 1)/d is odd.

Hence we get the tables below:

Complete the tables

Finite field m g N

F64 7 45 425
F125 2 9 252

Meet the record

Finite field m g N

F8 7 9 45
F27 2 2 48

Example 7. For p ≥ 3 we consider the curve over Fq3 given by

ym =
−(xq − x+ 1)q

2

xq2 − x− 1
with m a divisor of q3 − 1.

For p = 3 we have c = c1 = q and for p ≥ 5 we have c = c1 = 0. Hence (with
d := gcd(m, q − 1))

2g =
{

(q − 2)(q + 1)(m− 1) + (q + 1)(m− d) if p = 3,
(q + 2)(q − 1)(m− 1) + (m− d) if p ≥ 5.
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The number N of rational points over Fq3 equals

N =





(q3 − q)m+ (q + 1)d if p = 3 and (q − 1)/d is even,
(q3 − q)m if p = 3 and (q − 1)/d is odd,
q3m+ d if p ≥ 5 and (q − 1)/d is even,
q3m if p ≥ 5 and (q − 1)/d is odd.

Remark. Note that Example 7 in characteristic p = 3 has the same
invariants g and N as in Example 6. In particular, for q = 3 and m = 2, we
get again a curve over F27 with g = 2 and N = 48 rational points; i.e., a
curve meeting the record.

Example 8. In characteristic p ≥ 3 we consider the curve

ym =
(xq + x)q

2

xq2 + x
with m a divisor of q3 − 1.

Then x = 0 is the only common root for the numerator and denominator,
and we have c = c1 = 1, δ = q and δ′ = q2. Hence for the genus g and the
number N of rational points of Fq3 we get

g =
(q2 + q − 4)(m− 1)

2
+ (m− d),

N = (q3 − 1)m+ 2d with d = gcd(m, q − 1).

Remark. If one considers the curve in Example 8 in characteristic p = 2,
then one has c = c1 = q. This curve (for p = 2) has the same invariants g
and N as the curve in Example 6.

3.3. Curves over Fqn

Example 9. For an odd integer n ≥ 3, we consider the curve over Fqn
given by

ym =
(xq

(n+1)/2 − x)q
(n−1)/2

x− xq(n−1)/2 with m a divisor of qn − 1.

The only common roots for the denominator and numerator are exactly the
elements in Fq. The genus equals

g = [(q(n+1)/2 + q(n−1)/2 − 2q − 2)(m− 1) + (q + 1)(m− d)]/2

with d = gcd(m, q − 1). The number of rational points over Fqn is

N =





(qn − q)m+ (q + 1)d if p = 2,
(qn − q)m+ (q + 1)d if p ≥ 3 and (q − 1)/d is even,
(qn − q)m if p ≥ 3 and (q − 1)/d is odd.

This example produces the next tables:
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Completes the table

Finite field q m g N

F125 5 2 9 252

Meet the record

Finite field q m g N

F8 2 7 9 45
F27 3 2 2 48

Example 10. For an even integer n ≥ 4, we consider the curve over Fqn
given by

ym =
(xq

(n−2)/2 − x)q
(n+2)/2

x− xq(n+2)/2 with m a divisor of qn − 1.

The common roots of the denominator and numerator are exactly all the
elements in Fq if n ≡ 0 (mod 4), or all the elements in Fq2 if n ≡ 2 (mod 4).
Hence

2g =





(q(n+2)/2 + q(n−2)/2 − 2q − 2)(m− 1) + (q + 1)(m− d)
if n ≡ 0 (mod 4),

(q(n+2)/2 + q(n−2)/2 − 2q2 − 2)(m− 1) + (q2 + 1)(m− d′)
if n ≡ 2 (mod 4),

where d = gcd(m, q− 1) and d′ = gcd(m, q2− 1). The number N of rational
points over Fqn satisfies

N =
{

(qn − q)m+ (q + 1)d if n ≡ 0 (mod 4),
(qn − q2)m+ (q2 + 1)d′ if n ≡ 2 (mod 4).

So we get the following table:

Meets the record

Finite field q m g N

F16 2 15 49 213

Example 11. Suppose that n is an even integer and that m is a divisor
of qn − 1 such that gcd(m, qn/2 − 1) = 1. Consider the curve over Fqn given
by the equation

ym = (xq
n/2 − x)q

n/2−1.

This curve has

g = (qn/2 − 1)(m− 1)/2 and N = (qn − qn/2)m+ (qn/2 + 1).

This produces the following table:

Meet the record

Finite field q m g N

F4 2 3 1 9
F16 2 5 6 65
F64 2 3 7 177
F64 2 9 28 513
F81 3 5 16 370
F25 5 3 4 66
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Remark. The curve in Example 11 is a generalization of the curve in
Case 1 of Example 5.

4. Other examples of curves with many points. In this last section
we will get other interesting curves by similar constructions, specially the
one in [G-V] which inspired this work.

Example 12. Let n = 2l, with l ≥ 2. The curve over Fq2l given by

yq
l+1 =

w · (∑l−1
i=0 x

ql−1−qi)
xql−1 with wq

l−1 = −1,

has genus g = ql(ql−1 − 1)/2 and N = q3l−1 + 1 rational points over Fq2l ;
i.e., it is a maximal curve.

In fact, consider the polynomial

f(x) :=
2l−1∑

i=0

xq
0+q+q2+...+q̂i+...+q2l−1

,

where the symbol q̂i means that we omit qi from the sum q0 +q+ . . .+q2l−1.
This polynomial has all its roots in Fq2l (see [G-S]). We split the polynomial
f(x) as f(x) = f1(x) + f2(x) with

f1(x) =
2l−1∑

i=l

x1+q+...+q̂i+...+q2l−1
and f2(x) =

l−1∑

i=0

xq
0+q+...+q̂i+...+q2l−1

,

and we then apply the method of [G-V]. This method gives us the following
equation:

yq
2l−1 = −f1(x)

f2(x)
= − x1+q+...+q2l−2

(
∑l−1
i=0 x

ql−1−qi)q
l

x1+q+...+q̂l−1+...+q2l−1(
∑l−1
i=0 x

ql−1−qi)
.

Hence

(yq
l+1)q

l−1 = −
(∑l−1

i=0 x
ql−1−qi

xql−1

)ql−1

.

Taking the (ql− 1)th root of this equation we get the curve of this example.
The genus of this curve comes from a straightforward calculation and the
number N of rational points comes from the fact that f(x) has x = 0 as its
only multiple root; its multiplicity is 1 + q + q2 + . . .+ q2l−2 and hence the
polynomial f(x) has q2l−1−1 simple roots in Fqn . From these considerations
we get

N = ((q2l−1 − 1)− (ql−1 − 1))(ql + 1) + (ql−1 + 1) = q3l−1 + 1.
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Remark. Let m be a divisor of ql + 1. Then the curve over Fq2l given
by

ym = w · (
∑l−1
i=0 x

ql−1−qi)
xql−1 with wq

l−1 = −1

has genus g = (ql−1 − 1)(m− 1)/2 and N = ql(ql−1 − 1)(m − 1) + q2l + 1
rational points over Fq2l .

This curve is covered by the curve of Example 12, hence it is also maximal
(see [L]).

Remark. Notice that the curve of Example 12 is covered by the Hermi-
tian curve (see [G-S-X]). In fact, let z = 1/x in Example 12, so we get the
equation

yq
l+1 = w(z + zq + . . .+ zq

l−1
).

Now, let z = v/w− (v/w)q to obtain the Hermitian curve given by vq
l

+v =
yq
l+1. This shows that the Hermitian curve is a degree q Galois covering of

the curve of Example 12.

Example 13. Let n = 2l+ 1 with l ≥ 1. The curve over Fq2l+1 given by

yq
2l+1−1 = − (

∑l−1
i=0 x

ql−1−qi)q
l+1

xq2l−ql(
∑l
i=0 x

ql−qi)

has

g =
q3l+1 + q3l − 2q2l+1 − 2ql − 2ql−1 − 2q + 8

2
,

N =
{

(q2l − 1)(q2l+1 − 1) + 2(q − 1) if q is even,
(q2l − 1)(q2l+1 − 1) if q is odd.

This example is a direct application of the method in [G-V] for

f(x) =
2l∑

i=0

xq
0+q+...+q̂i+...+q2l

split as f(x) = f1(x) + f2(x) with

f1(x) =
2l∑

i=l+1

xq
0+q+...+q̂i+...+q2l

and f2(x) =
l∑

i=0

xq
0+q+...+q̂i+...+q2l

.

We omit the details here.

Example 14. Let l be a divisor of n and write n = lk. We consider the
curve over Fqn given by

ym = (xq
l(k−1)

+ xq
l(k−2)

+ . . .+ xq
l

+ x)q
l−1,
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where m is a divisor of qn − 1 satisfying gcd(m, ql − 1) = 1. Note that the
polynomial in x on the right hand side of the equation above is inspired by
the trace of the extension Fqn |Fql . We then have

g = (ql(k−1) − 1)(m− 1)/2 and N = (qn − ql(k−1))m+ ql(k−1) + 1.

Hence we get the table below:

Meet the record

Finite field m l g N

F4 3 1 1 9
F16 5 2 6 65
F64 3 3 7 177
F64 9 3 28 513
F81 5 2 16 370
F25 3 1 4 66

Remark. For large values of the integer m, the best performance in
Example 14 for the quotient N/g is obtained by taking l as the greatest
proper divisor of n; for example, if n is even one should take (for large
values of m) l = n/2. In this case the curve obtained here has the same
invariants g and N as the curve in Example 11.

References

[G] A. Garcia, The curves yn = f(x) over finite fields, Arch. Math. (Basel) 54
(1990), 36–44.

[G-S] A. Garcia and H. Stichtenoth, A class of polynomials over finite fields, Finite
Fields Appl. 5 (1999), 424–435.

[G-S-X] A. Garcia, H. Stichtenoth and C. P. Xing, On subfields of the Hermitian function
field , Compositio Math. 120 (2000), 137–170.

[G-V] G. van der Geer and M. van der Vlugt, Kummer covers with many points, Math.
AG/9909037.

[Ge-Vl] —, —, Tables of curves with many points, available at http://www.wins.uva.
nl/˜geer.

[Go] V. D. Goppa, Codes on algebraic curves, Soviet Math. Dokl. 24 (1981), 170–172.
[H] H. Hasse, Theorie der relativ zyklischen algebraischen Funktionenkörper, J.

Reine Angew. Math. 172 (1934), 37–54.
[Hi] J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Oxford Univ.

Press, Oxford, 1979.
[I] Y. Ihara, Some remarks on the number of rational points of algebraic curves

over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 721–724.
[L] G. Lachaud, Sommes d’Eisenstein et nombre de points de certaines courbes
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