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1. Introduction. Several authors have considered (in [3], [5]–[7], [9],
for example) sums of one of the types

(1.1) Σf (x) =
∑

nf(P (n))≤x
n>1

1, Σ′f (x) =
∑

1<n≤x

1
f(P (n))

for certain special functions f , such as f(w) = wγ or (logw)γ with γ > 0,
where

P (1) = 1, P (n) = max
p|n

p for n > 1 (p prime).

Their aim was to find the order of magnitude of the sum or the main term in
its asymptotic formula. However the error term obtained usually depended
on that in Lemma 2.5 below and so was rather weak. The results below
show that in fact the magnitude of their error terms is best possible (see
Corollaries 1 and 2 in Section 4).

The motivation for writing this paper is twofold. There are many stan-
dard functions f(w) between and beyond powers of w or of logw, and it
is interesting to discover how the magnitude of the sums in (1.1) changes
as the size of f(w) increases. This is illustrated in the example given after
the statement of Theorem 1 in this section. For a general function of the
type considered in the present paper this question is answered in Lemma 3.4
together with equation (1.12) and Lemma 3.7. To establish these results, we
pick out those n contributing the bulk of this magnitude, and this turns out
to be the integers n whose largest prime factor lies in a certain range.

Our second objective is to obtain an error term that is much smaller
than the error terms of previous investigations. This is accomplished by
finding explicitly a second term in the asymptotic formulae for the sums
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(1.1) which, like the main term, involves the extensively studied Dickman
function %(u), defined in (1.15). We establish our main results both uncondi-
tionally and on the assumption of the Riemann Hypothesis. We concentrate
on the slightly more complicated sum Σf (x); the corresponding formulae
for Σ′f (x) then follow by a similar argument. Our proof depends on using a
result (Lemma 2.7) due to E. Saias [8] instead of the less precise formula in
Lemma 2.5.

We begin by describing the class of functions f considered, which includes
the special cases quoted above. The idea is to consider unbounded functions
f(w) such that log f(w) is approximately a fixed power of logw so that f(w)
is not too large. Throughout this paper we assume the following

Conditions on f .

(i) f(w) is positive and strictly increasing on w ≥ 1 with a continuous
derivative on w ≥ w0 for some fixed w0 ≥ 1;

(ii) there exists a fixed ν ≥ 0 such that

(1.2) log f(w) = (logw)νη(w)

where

(1.3) η(w) = (logw)δ(w) with δ(w) = o(1) as w →∞,
η(w) is monotonic, and, when ν = 0, η(w)→∞ as w →∞;

(iii) we have

(1.4) ξ(w) :=
η′(w)
η(w)

w logw = o(1) as w →∞;

(iv) when ν > 0, for any positive bounded d with d� 1,

(1.5) η(wd) = η(w)(1 +O(|ξ(w)|)).
It follows from (1.5) that when ν > 0,

(1.6) log f(wd) = (dν +O(|ξ(w)|)) log f(w)

for positive d with 1� d� 1.

Conditions (iii) and (iv) hold for the “obvious” choices for η(w) in (1.2);
we illustrate this with the following

Examples. Let γ > 0 and λ 6= 0 be constants with λ > 0 when ν = 0
but λ of either sign otherwise.

(1) log f(w) = γ(logw)ν , so η(w) = γ, δ(w) = 0, ξ(w) = 0 and, by (i)
and (ii), ν > 0. When ν = 1, f(w) = wγ .

(2) log f(w) = (logw)ν(log2 w)λ, so

η(w) = (log2 w)λ, δ(w) =
λ log3 w

log2 w
, ξ(w) =

λ

log2 w
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where log2 w = log(logw) for w > 1, log3 w = log(log2 w) for w > e. When
ν = 0 and λ = 1, f(w) = logw.

Combining examples (1) and (2), f(w) = (logw)γ when ν = 0 and
η(w) = γ log2 w.

(3) log f(w) = (logw)ν exp((log3 w)λ) = exp(ν log2 w + (log3 w)λ), so

η(w) = exp((log3 w)λ), δ(w) =
(log3 w)λ

log2 w
, ξ(w) =

λ(log3 w)λ−1

log2 w
.

When λ = 1, we have η(w) = log2 w, which is included in (2).

(4) log f(w) = (logw)ν exp((log2 w)λ) = exp(ν log2 w + (log2 w)λ), with
λ < 1 (in order that (1.3) is satisfied), so

η(w) = exp((log2 w)λ), δ(w) = (log2 w)λ−1, ξ(w) = λδ(w).

When λ is near 1, the functions of the form η(w) in (4) are among the largest
permitted.

In examples (2)–(4), (logw)−ν log f(w) is strictly monotonic when λ 6= 0.

It is interesting to compare the sums Σf (x), Σ′f (x) for the class of func-
tions f described above. In [10] we obtained the rather surprising result that
for f satisfying conditions (i) and (ii) above,

(1.7) Σf (x) ∼ Σ′f (x) as x→∞
if and only if

log f(w)
logw

log2 w = o(1) as w →∞.

Thus (1.7) holds when ν < 1 or ν = 1 and η(w) log2 w = o(1). We were
actually able to consider a wider class of functions in that paper, but here
we require stronger conditions on f in order to obtain good error terms.

Before stating our main result, we need some further definitions. Assume
throughout that x is sufficiently large and that ε > 0 is fixed but sufficiently
small. The iterative logarithms are defined in example (2) above.

Definitions. Define X = X(x) and W = W (x) by

(1.8) Xf(X) = x, W 2f(W ) = x.

When ν > 0, define L = L(x) by

(1.9) (1 + ν) logL log f(L) = log x log2 x.

When 0 ≤ ν < 3/5, define M = M(x) by

(1.10) (8/5− ε)(logM)8/5−ε = log x log2 x

(where ε < 3/5− ν).
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We note that

(1.11) logL =
(

log x log2 x

1 + ν

)1/(1+ν)+o(1)

,

(1.12) log f(L) =
(

log x log2 x

1 + ν

)ν/(1+ν)+o(1)

,

(1.13)
log x log2 x

logM
=
(

8
5
− ε
)5/(8−5ε)

(log x log2 x)(3−5ε)/(8−5ε).

We observe that when 0 < ν < 3/5,

(1.14) M < L and log f(L) <
log x log2 x

logM

provided ε is sufficiently small and x sufficiently large.
The well known Dickman function %(u) is defined by the differential-

difference equation

(1.15)




%(u) = 0 for u < 0,
%(u) = 1 for 0 ≤ u ≤ 1,
u%′(u) + %(u− 1) = 0 for u > 1.

Let

(1.16) u(x,w) =
log x− log f(w)

logw
− 1,

(1.17) H(x) =
x�

2

1
wf(w) logw

×
{
%(u(x,w))−

x�

1

t− [t]
t2 logw

%′
(
u

(
x

t
, w

))
dt

}
dw,

(1.18) H0(x) =
X�

W

(
x

wf(w)
−
[

x

wf(w)

])
1

logw
dw.

Note that %(u(x,w)) = 0 when w > X and %′(u(x/t, w)) = 0 when w2f(w) >
x/t, wf(w) 6= x/t.

Our main aim in this paper is to prove

Theorem 1. Let ε>0 be sufficiently small and L, M be defined by (1.9),
(1.10) respectively.

(i) When ν ≥ 3/5,

Σf (x) = xH(x) +O(xH(x) exp(−(logL)3/5−ε)).
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(ii) When 3/8 ≤ ν < 3/5,

Σf (x) = xH(x) +O

(
x exp

(
−(1 + o(1))

logx log2 x

logM

))
.

(iii) When 0 ≤ ν < 3/8,

Σf = xH(x)−H0(x) +O

(
x exp

(
−(1 + o(1))

logx log2 x

logM

))
.

We remark that the O-terms in (ii) and (iii) are indeed error terms by
Lemmas 3.4 and 3.7 and (1.14). To give the reader some idea of their size
compared to that of the main term in Theorem 1, we look at the basic
functions f(w) with η(w) = 1.

Example. Let f(w) = exp((logw)ν) with ν > 0. The magnitude of the
main term xH(x) in Theorem 1 is

x exp
(
−(1 + ν + o(1))

(
log x log2 x

1 + ν

)ν/(1+ν))

whenever ν > 0 (see Lemma 3.4). The form of an estimate for Σf (x)−xH(x)
depends on the size of ν, for the dominant error term changes.

(i) ν ≥ 3/5. The error term is obtained by multiplying the main term
xH(x) by

exp(−(logL)3/5−ε) = exp
(
−
(

log x log2 x

1 + ν

)(3−5ε)/(5(1+ν)))

by (1.9).
(ii) 0 < ν < 3/5. From (1.13), the O-term is

x exp(−(c+ o(1))(logx log2 x)3/8−ε1)

where ε1 = 25ε/(8(8− 5ε)) and c = (8/5− ε)5/(8−5ε).
Note that 0 < ν/(1 + ν) < 3/8 if and only if 0 < ν < 3/5, so that this

O-term is smaller than xH(x). However this O-term is less than that in (i)
above when ν ≥ 3/5.

(iii) 0 < ν < 3/8. In this case 0 < ν/(1 + ν) < 3/11 < 3/8 and the
O-term is as in (ii). Consider the extra main term H0(x) defined in (1.18)
where W , X are given in (1.8). On using the substitution v = x/(wf(w))
and observing that

−x
v2

dv

dw
= (1 + ν(logw)ν−1) exp((logw)ν)

and that v = 1 when w = X, v = W when w = W , we find by a simple
calculation that
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(C + o(1))
x

logx
exp(−(1 + o(1))(logx)ν) ≤ H0(x)

≤ (2C + o(1))
x

logx
exp
(
−(1 + o(1))

(
1
2 log x

)ν)

where

C =
∞�

1

v − [v]
v2 dv.

Thus H0(x) = o(xH(x)) since ν > ν/(1 + ν) but H0(x) exceeds the error
term in (ii) since ν < 3/8.

Next we state the corresponding result when the Riemann Hypothesis
is assumed. The shape of the results is similar but the boundary values for
ν in the three cases increase from 3/8, 3/5 to 1/2, 1 respectively, and the
error terms are stronger (for compare (1.13) with (1.20)). We replace M by
a quantity N given by the

Definition. When

lim
w→∞

log f(w)
logw

= k with 0 ≤ k <∞,

define N = N(x) by

(1.19) logN =
(

log x log2 x

2k + 1− 2ε

)1/2

where ε is sufficiently small and in particular 0 < ε < 1/2.

Note that

(1.20)
log x log2 x

logN
= ((2k + 1− 2ε) log x log2 x)1/2

and, since ν < 1 or ν = 1 and limw→∞ η(w) = k, for ν > 0 we have

(1.21) N < L and log f(L) <
log x log2 x

logN
.

Moreover, when N is defined, log f(W )≥ (log x log2 x)/(logN) when ν>1/2
and for some f when ν = 1/2 but not otherwise.

Theorem 2. Assume the Riemann Hypothesis. Let ε > 0 be sufficiently
small.

(i) When
log f(w)

logw
→∞ as w →∞,

Σf (x) = x(1 +O(L−1/2+ε))H(x).
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(ii) When lim
w→∞

log f(w)
logw

is finite and log f(W ) ≥ log x log2 x

logN
,

Σf = xH(x) +O

(
x exp

(
−(1 + o(1))

logx log2 x

logN

))
.

(iii) When lim
w→∞

log f(w)
logw

= 0 and log f(W ) <
log x log2 x

logN
,

Σf (x) = xH(x)−H0(x) +O

(
x exp

(
−(1 + o(1))

log x log2 x

logN

))
.

As in Theorem 1, (1.21) implies that the O-terms in (ii) and (iii) are
error terms.

For completeness, we state the corresponding results for the second sum
Σ′f (x) in (1.1). Corresponding to H(x), H0(x), we define

H ′(x) =
x�

2

1
wf(w) logw

{
%

(
log x
logw

− 1
)

−
x�

1

t− [t]
t2 logw

%′
(

log (x/t)
logw

− 1
)
dt

}
dw,

H ′0(x) =
x�
√
x

(
x

w
−
[
x

w

])
1

f(w) logw
dw.

Theorem 3. In the statements of Theorems 1 and 2 replace Σf (x),
H(x), H0(x) by Σ′f (x), H ′(x), H ′0(x) respectively. Then the corresponding
results hold.

It may be helpful to the reader to outline the main steps in the proofs
of these theorems, which depend on expressing the sums Σf (x), Σ′f (x) in
terms of the well known function

(1.22) Ψ(x, y) = #{n ≤ x : P (n) ≤ y},
investigated by de Bruijn. We use the standard approximation for it given
in Lemma 2.5 and a more precise result given in Lemma 2.7. We see from
(3.1) that

(1.23) Σf (x) =
∑

pf(p)≤x
Ψ

(
x

pf(p)
, p

)
.

Our first aim, accomplished in Section 3, is to determine the order of mag-
nitude of the sum on the right by first identifying the dominant range for p.
When ν > 0 this turns out to be a range containing the quantity L given
by (1.9) (see Lemmas 3.3, 3.4 in which an estimate for Σf (x) is obtained). In
Lemma 3.5 a weak asymptotic formula for Σf (x) is then derived. The case
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ν = 0 is investigated at the end of Section 3, but here the dominant range
for p in the sum (1.23) contains the largest primes p satisfying pf(p) ≤ x.

The goal in Section 4 is to replace the asymptotic formula in Lemma 3.5
(for ν > 0) or Lemma 3.7(ii) (for ν = 0) by one with further terms and a
much stronger error term. This is achieved by using the formula for Ψ(x, y)
in Lemma 2.7 instead of that in Lemma 2.5 and applying partial summation
to obtain in Lemma 4.1 a more precise formula for the dominant part of the
sum in (1.23). We find we need to distinguish between the ranges ν ≥ 3/5,
3/8 ≤ ν < 3/5 and 0 ≤ ν < 3/8, which lead to the three cases of Theorem 1,
for in these three ranges different error terms dominate, as they did in the
example above. In addition, when 0 ≤ ν < 3/8 there is a secondary main
term H2(x) in Lemma 4.1 that measures the contribution from the largest
primes in the sum (1.23). Theorem 1 then follows.

In Section 5 we assume the Riemann Hypothesis and indicate how The-
orem 2 is proved by the method used to establish Theorem 1. The corre-
sponding results for the sum Σ′f (x) in (1.1), stated in Theorem 3, can be
derived by similar methods (see the end of Section 4).

Subsidiary results required in later sections are given in Section 2.

The author thanks the referee for his helpful suggestions concerning the
presentation of this paper.

2. Preliminary lemmas

Lemma 2.1.
f ′(w)
f(w)

=
log f(w)
w logw

(ν + ξ(w)).

This follows from conditions (ii) and (iii) on f .

Lemma 2.2. The function %(u) defined in (1.15) has the following prop-
erties:

(i) As u→∞,

%(u) = exp
(
−u
(

log u+ log2 u− 1 +O

(
log2 u

log u

)))
.

(ii) %(u) is continuous except at u = 0;
%′(u) is defined for u 6= 0 and continuous except at u = 1;
0 < %(u) ≤ 1 for u ≥ 0 and −1 ≤ %′(u) < 0 for u > 1;
%(u) decreases strictly and %′(u) increases strictly on u > 1.

(iii) (a) %′(u) = −%(u)(log u+O(log2 u)) for u ≥ 3.
(b) %(u− v) = %(u) exp(v(log u+O(log2 u))) for |v| ≤ 2u/3,

u− v ≥ 3, u ≥ 3.
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Proof. A stronger form of (i) is due to de Bruijn [2], (ii) follows from
the definition (1.15) of %(u), and (iii)(a) is the case k = 1 of Lemma 3(viii)
of [8]. Part (b) of (iii) follows from (a) on noting that

log
%(u− v)
%(u)

=
u�

u−v
−%
′(t)
%(t)

dt =
u�

u−v
(log t+O(log2 t)) dt

= v(log u+O(log2 u))

under the conditions stated.

Definitions. Define Z = Z(x) by

(2.1) logZ = (log2 x)2.

When ν ≥ 3/5, define α, L2, Y by

(2.2) αν = 3
2 (1 + ν), L2 = Lα, Y = f(L2),

where L is given by (1.9).
When 0 ≤ ν < 3/5, define Y and L2 by

(2.3) log Y =
log x log2 x

logM
, f(L2) = min(Y, f(X)),

where M is given by (1.10).

We observe that L2 = X in (2.3) if and only if 0 ≤ ν < 3/8.
Let K(x,w) denote a function (not always the same one) satisfying

K(x,w) = log
(

log x
logw

)
+O

(
log2

(
log x
logw

))
.

We defined u(x,w) in (1.16).

Lemma 2.3. For Z ≤ w ≤ min(L2, x
1/5) and 1 ≤ t ≤ Y ,

(2.4) %′(u(x/t, w)) = −K(x,w)%(u(x,w)) exp
(

log t
logw

K(x,w)
)
.

When L2 > x1/5, x1/5 < w = o(x) and 1 ≤ t ≤ Y , both sides of (2.4) are
bounded and bounded away from zero.

Note. L2 < x1/5 if and only if ν ≥ 3/8.

Proof. In the ranges preceding (2.4),

tw4f(w) < x, t3/2wf(w) < x

and hence

u(x/t, w) ≥ 3,
log t
logw

≤ 2
3
u(x,w).
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Thus the conditions of Lemma 2.2(iii) hold with u = u(x/t, w) in (a) and
u = u(x,w), v = log t/logw in (b). Since

log u(x/t, w) = log
log x
logw

+O(1),

it follows that
%′(u(x/t, w)) = −K(x,w)%(u(x/t, w))

= −K(x,w)%(u(x,w)) exp
(

log t
logw

K(x,w)
)

as required.
Let

(2.5) I(w) = −
Y�

1

t− [t]
t2 logw

%′(u(x/t, w)) dt

where Y is given by (2.2), (2.3). By Lemma 2.2(ii), I(w) ≥ 0. When
1� I(w) logw � 1, we write I(w) � 1/logw.

Lemma 2.4. For Z ≤ w ≤ min(L2, x
1/5),

I(w) = (C + o(1))
K(x,w)

logw
%(u(x,w))

where

C =
∞�

1

t− [t]
t2

dt.

When L2 > x1/5 and 2 < log x/logw � 1, I(w) � 1/logw.

Proof. Let K1(x,w) = K(x,w)/logw, Y1 = exp((log2 x)1/2). For w ≥ Z,
1 ≤ t ≤ Y1, we have K1(x,w) log t = o(1). By Lemma 2.3, when Z ≤ w ≤
min(L2, x

1/5),

I(w) =
K(x,w)

logw
%(u(x,w))

Y�

1

t− [t]
t2−K1(x,w)

dt

and this integral equals

(1 + o(1))
Y1�

1

t− [t]
t2

dt+O

(Y�

Y1

1
t2−K1(x,w)

dt

)
= C + o(1).

The last sentence of this lemma is a consequence of the last sentence of the
previous lemma.

Note. When ν ≥ 3/8, we see that L2 < x1/5 and I(w) is increasing on
[Z,L2]. When ν < 3/8, L2 = X > x1/5; by considering the integrand, we
find that there exists a fixed γ, 0 < γ ≤ 1/5, such that I(w) is increasing on
[Z, xγ ].



Sums involving the largest prime divisor of n 323

Lemma 2.5. Let ε > 0. Uniformly for y satisfying

(2.6) (log2 x)5/3+ε ≤ log y ≤ log x and x ≥ x0(ε),

we have

Ψ(x, y) = x%(u)
(

1 +O

(
log(u+ 1)

log y

))

where u = log x/log y and Ψ(x, y) is defined in (1.22).

For this range, the result is due to Hildebrand [4]. The error term is rather
weak. Various other better approximations to Ψ(x, y) have been developed.
We employ one based on a function introduced by de Bruijn [1].

Definition. Let

Λ(x, y) =




x

∞�

0

%

(
log (x/t)

log y

)
d

(
[t]
t

)
for x 6∈ N,

1
2 (Λ(x− 0, y) + Λ(x+ 0, y)) for x ∈ N.

Lemma 2.6. Let u = log x/log y. For x 6∈ N,

Λ(x, y) = x

{
%(u)−

x�

1

t− [t]
t2 log y

%′
(
u− log t

log y

)
dt

}
.

Proof. Recall that %(u − log t/log y) = 0 for t > x and [t] = 0 for
0 ≤ t < 1. Thus for x 6∈ N,

Λ(x, y) = x

x+0�

1−0

%

(
u− log t

log y

)
d

(
[t]− t
t

)
.

The result of the lemma is obtained by integrating by parts.

Lemma 2.7. Let ε > 0. Uniformly for y satisfying (2.6)

Ψ(x, y) = Λ(x, y)(1 +Oε(exp(−(log y)3/5−ε))).

This result is due to Saias [8]. De Bruijn proved in [1] that

Ψ(x, y) = Λ(x, y) +Oε(x exp(−(log y)3/5−ε))

for x > 1, y ≥ 2; this agrees with Lemma 2.7 when log y ≥ (log x)5/8+ε,
x ≥ x0(ε).

Throughout this paper, p denotes a prime.

Definition. For ε > 0, write

(2.7) R(x, ε) = exp(−(log x)3/5−ε).
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Lemma 2.8. Let ε > 0, with ε < 3/5− ν if ν < 3/5, and let h(w) be a
positive increasing function with a continuous derivative on w ≥ 2. Then

S(x) =
∑

p≤x

1
ph(p)

= J(x) + C +O

(
1

h(x)
R(x, ε/2)

)
,

where C = C(h) is a constant given by (2.9) and

J(x) =
x�

2

1
wh(w) logw

dw.

Proof. We use the prime number theorem in the form

(2.8) θ(x) =
∑

p≤x
log p = x(1 +E(x)) with E(x) = Oε(R(x, ε/2)).

By partial summation

S(x) =
E(x)

h(x) logx
+ J(x) + C +

∞�

x

wE(w)
d

dw

(
1

wh(w) logw

)
dw

where

(2.9) C =
1

h(2) log 2
−
∞�

2

wE(w)
d

dw

(
1

wh(w) logw

)
dw.

This infinite integral converges, as we now show.
For z > x,
∣∣∣∣
z�

x

wE(w)
d

dw

(
1

wh(w) logw

)
dw

∣∣∣∣

�ε

z�

x

wR(w, ε/2)
d

dw

( −1
wh(w) logw

)
dw = I1(x, z), say.

Since
d
dw (wR(w, ε/2))
R(w, ε/2)

= 1− 3/5− ε/2
(logw)2/5+ε/2

,

integration by parts yields

I1(x, z) =
[−R(w, ε/2)
h(w) logw

]z

x

+
z�

x

R(w, ε/2)
wh(w) logw

(1 +O((logw)−2/5)) dw

� R(x, ε/2)
h(x)

+
1

h(x)

z�

x

d

dw
(−R(w, ε/2)) dw

� R(x, ε/2)
h(x)

as required.
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Lemma 2.9. Let g(w) be a positive increasing function with a continuous
derivative on w ≥ 2 and suppose that h(w) = f(w) or f(w)/R(w, ε/2).
Then for x > v ≥ 2

∑

v<p≤x

g(p)
ph(p)

=
x�

v

g(w)
wh(w) logw

(1 +O(R(w, 3ε/4))) dw

+O

(
max
w=v,x

(
g(w)
h(w)

R(w, ε/2)
))

.

Proof. Write

E1(x) = S(x)− J(x)− C

so E1(x)� R(x, ε/2)/h(x) by Lemma 2.8. By partial summation,

∑

v<p≤x

g(p)
ph(p)

=
[
E1(w)g(w)

]x
v

+
x�

v

g(w)
wh(w) logw

dw −
x�

v

E1(w)g′(w) dw.

For n = 1, 2 we have, using Lemma 2.1,

d
dw

(
1

f(w)R
n(w, ε/2)

)

1
f(w)R

n(w, ε/2)

= − 1
w logw

(
(ν + ξ(w)) log f(w) + n

(
3
5
− ε

2

)
(logw)3/5−ε/2

)
.

Hence
∣∣∣
x�

v

E1(w)g′(w) dw
∣∣∣�

x�

v

1
h(w)

R(w, ε/2)g′(w) dw

and the right side equals
[

1
h(w)

R(w, ε/2)g(w)
]x

v

+
x�

v

g(w)
wh(w) logw

R(w, ε/2)O(log f(w) + (logw)3/5−ε/2) dw

� max
w=v,x

(
g(w)
h(w)

R(w, ε/2)
)

+
x�

v

g(w)
wh(w) logw

R(w, 3ε/4) dw.

The result of the lemma now follows.
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Lemma 2.10. Suppose that limw→∞ log f(w)/logw = 0. Then

∑

p>W

[
x

pf(p)

]
=

X�

W

1
logw

[
x

wf(w)

]
dw +O

(
xR(W, 3ε/4)

f(W )

)
.

Proof. Recall that W 2f(W ) = x = Xf(X) by (1.8), so for p > X,
[

x

pf(p)

]
= 0.

For 1 ≤ m < x/(Wf(W )) = W , define X(x/m) by

X

(
x

m

)
f

(
X

(
x

m

))
=

x

m
,

so X = X(x). Then
∑

p>W

[
x

pf(p)

]
=

∑

W<p≤X

∑

m≤x/(pf(p))

1 =
∑

m<W

∑

W<p≤X(x/m)

1.

If we apply Lemma 2.9 with h(w) = f(w), g(w) = wf(w) to the inner sum,
the double sum becomes

∑

m<W

{X(x/m)�

W

1
logw

(1 +O(R(w, 3ε/4))) dw +O( max
w=W,X(x/m)

(wR(w, ε/2)))
}

=
X�

W

1
logw

(1 +O(R(w, 3ε/4)))
[

x

wf(w)

]
dw

+O

( ∑

m<W

X

(
x

m

)
R

(
X

(
x

m

)
,
ε

2

)
+W 2R(W, ε/2)

)
.

For m < W ,

W = X

(
x

W

)
< X

(
x

m

)
=

x/m

f(X(x/m))
<

x

mf(W )
,

and so
∑

m<W

X

(
x

m

)
R

(
X

(
x

m

)
,
ε

2

)
<

x

f(W )
R(W, ε/2)

∑

m<W

1
m

<
x

f(W )
R(W, 3ε/4).

Also
X�

W

R(w, 3ε/4)
logw

[
x

wf(w)

]
dw <

xR(W, 3ε/4)
f(W )

X�

W

1
w logw

dw � xR(W, 3ε/4)
f(W )
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since log2 X − log2 W ∼ log 2 when log f(w)/logw → 0 as w → ∞. On
noting that R(W, 3ε/4) > R(W, ε/2) and W 2 = x/f(W ), we obtain the
result of the lemma.

3. Magnitude of Σ(x). On writing n = pm where p = P (n), we see
from the definition (1.22) of Ψ(x, y) that

Σ(x) = Σf (x) =
∑

nf(P (n))≤x
n>1

1 =
∑

pf(p)≤x

∑

m≤x/(pf(p))
P (m)≤p

1(3.1)

=
∑

pf(p)≤x
Ψ

(
x

pf(p)
, p

)
.

Our first goal is to determine the dominant range for p in the above sum
and the magnitude of Σ(x). We shall need to treat the cases ν > 0, ν = 0
separately. We begin by investigating the size of

(3.2) F (w) =
1

f(w)
%(u(x,w))

when ν > 0, where u(x,w) is given by (1.16). Recall that L = L(x) is given
by (1.9). Define κ by

(3.3) κ3 =
log3 x

log2 x
+ |ξ(L)|+ |δ(L)|

so 0 < κ = o(1) by (1.3) and (1.4).

Lemma 3.1. Let ν > 0. The maximum value of F (w) occurs when
logw ∼ logL and is of the form

(3.4) exp(−(1 + ν +O(κ3)) log f(L)).

Proof. Consider first F (Ld) when β ≤ d ≤ α where α satisfies (2.2) and

(3.5) β =
2ν

3(1 + ν)
,

so that 0 < β < 1 < α; thus d is bounded and its range includes 1. By (1.6),

(3.6) log f(Ld) = (dν +O(|ξ(L)|)) log f(L).

We see from (1.16) that

u = u(x,Ld) =
log x
d logL

(
1− log f(Ld) + d logL

log x

)

=
log x
d logL

(
1 +O

(
1

log2 x

))
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by (1.11) and (1.12); we do not need the better error term that could be
given here. It follows that

log u+ log2 u = log2 x− log2 L+ log3 x+O(1)

=
ν + δ(L)

1 + ν + δ(L)
(log2 x+ log3 x) +O(1).

Hence by Lemma 2.2(i),

− log %(u) = u(logu+ log2 u+O(1))(3.7)

=
log x log2 x

d logL

(
ν

1 + ν
+O

(
log3 x

log2 x
+ |δ(L)|

))

=
(
ν

d
+O

(
log3 x

log2 x
+ |δ(L)|

))
log f(L).

Combining equations (3.2), (3.3), (3.6), (3.7) we obtain

(3.8) F (Ld) = exp(−(dν + ν/d+O(κ3)) log f(L)).

The minimum value of dν +ν/d occurs when d = 1. Hence when β ≤ d ≤ α,
(3.4) is an upper bound of F (Ld), and F (L) is of the form (3.4).

It remains to show that F (w) is of a smaller order of magnitude than
(3.4) when w < Lβ or w > Lα. As w increases, u(x,w) decreases and so
%(u(x,w)) increases. Hence for w < Lβ ,

F (w)� %(u(x,w)) ≤ %(u(x,Lβ)) = exp(−(ν/β + o(1)) log f(L))(3.9)

= o(F (L))

by (3.7) and since ν/β > 1 + ν. When w > Lα,

(3.10) F (w)� 1
f(w)

≤ 1
f(Lα)

= exp(−(αν + o(1)) log f(L)) = o(F (L))

by (3.6) and since αν > 1 + ν. The lemma now follows.

We remark that the derivative F ′(w) has no sign changes in the intervals
Lβ ≤ w ≤ L1−κ, L1+κ ≤ w ≤ Lα, and hence F (w) has its maximum value
for some w in the range L1−κ ≤ w ≤ L1+κ. From (3.8) we deduce the

Corollary.

(3.11) F (L1±κ) = exp
(
−
(
1 + ν + 1

2ν(ν + 1)κ2 +O(κ3)
)

log f(L)
)
.

Proof. This follows since

(1± κ)ν +
ν

1± κ = 1 + ν + 1
2ν(ν + 1)κ2 +O(κ3).

We shall also need an estimate for the maximum value of

(3.12) Gε(w) = F (w)R(w, ε)
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where R(w, ε) is given by (2.7). We note that as w →∞,

f(w)R(w, ε)→∞ if ν ≥ 3/5, f(w)R(w, ε)→ 0 if 0 ≤ ν < 3/5.

Lemma 3.2. (i) When ν ≥ 3/5, the maximum value of Gε(w) occurs
when logw ∼ logL and is of the form (3.4).

(ii) When 0 ≤ ν < 3/5, the maximum value of Gε(w) occurs when
logw ∼ logM and is of the form

exp
(
−(1 + o(1))

logx log2 x

logM

)
,

where M is given by (1.10).

Proof. (i) When ν ≥ 3/5, the required result follows from the proof of
Lemma 3.1 since

− logR(w, ε)
log f(w)

= (logw)3/5−ν−ε−δ(w) = o

(
log3 w

log2 w

)

as w →∞; for |δ(w)| < ε/2 for large enough w.
(ii) When 0 ≤ ν < 3/5,

− log f(w)
logR(w, ε)

= o

(
log3 w

log2 w

)
,

so

− logGε(w) =
(

1 + o

(
log3 w

log2 w

))
(logw)3/5−ε − log %(u(x,w)).

We can now apply the method of Lemma 3.1 to this expression with L
replaced by M , taking the dominant interval to be of the form

Mβ0 ≤ w ≤Mα0 where 0 < β0 <
3− 5ε
8− 5ε

< 1 <
(

8
5
− ε
)5/(3−5ε)

< α0.

The result then follows.

We defined L2 in (2.2), (2.3). We now define L1.

Definition. When ν ≥ 3/5, let

(3.13) L1 = Lβ

where β is given by (3.5) and L by (1.9). When 0 ≤ ν < 3/5, define β1 and
L1 by

(3.14) β1 =
3− 5ε
8− 5ε

, L1 = Mβ1

where M is given by (1.10) and we assume 0 < ε < 3/5.

We observe that 0 < β1 < 3/8 and so for 0 < ν < 3/5,

(3.15) L1 < M < L < L2

on using (1.14) and (2.3).
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Our next aim is to show that the dominant range in the sum (3.1) is
L1 < p ≤ L2. Write

Σ(x) =
( ∑

p≤L1

+
∑

L1<p≤L2

+
∑

p>L2

)
Ψ

(
x

pf(p)
, p

)

= Σ1(x) +Σ2(x) +Σ3(x).

Lemma 3.3. (i) When ν ≥ 3/5,

Σ(x)−Σ2(x)� x exp
(
− 3

2 (1 + ν + o(1)) log f(L)
)
.

(ii) When 0 ≤ ν < 3/5,

Σ(x)−Σ2(x)� x exp
(
−(1 + o(1))

logx log2 x

logM

)
.

Proof. With Z = Z(x) defined by (2.1), we find on using Lemma 2.5
that

Σ1(x) =
(∑

p≤Z
+

∑

Z<p≤L1

)
Ψ

(
x

pf(p)
, p

)

� ZΨ(x,Z) + x
∑

Z<p≤L1

1
pf(p)

%(u(x, p))

� xZ%

(
log x

(log2 x)2

)
+ x%(u(x,L1))

∑

Z<p≤L1

1
pf(p)

since u(x, p) decreases and so %(u(x, p)) increases as p increases. The sum
on the right is bounded when ν > 0 and is O(log2 x) when ν = 0. From
Lemma 2.2(i),

%

(
log x

(log2 x)2

)
= exp

(
−(1 + o(1))

log x
log2 x

)
.

When ν ≥ 3/5, %(u(x,L1)) = %(u(x,Lβ)) is given by (3.7) with d = β,
where ν/β = 3

2 (1 + ν) by (3.5). When 0 ≤ ν < 3/5, we find similarly that

%(u(x,L1)) = %(u(x,Mβ1)) = exp
(
−(1 + o(1))

logx log2 x

logM

)
.

It follows that, in either case, Σ1(x) is bounded above by the expression on
the right in the statement of the lemma.

When p > X, [x/(pf(p))] = 0 so Ψ(x/(pf(p)), p) = 0. Hence

Σ3(x) =
∑

p>L2

Ψ

(
x

pf(p)
, p

)
≤

∑

L2<p≤X

x

pf(p)
� 1

f(L2)
x log2 x.
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When ν ≥ 3/5, L2 = Lα where αν = 3
2 (1 + ν) by (2.2); thus by (3.10),

1
f(L2)

= exp(−(αν + o(1)) log f(L)) = exp
(
− 3

2 (1 + ν + o(1)) log f(L)
)
,

giving the required bound for Σ3(x) in this case.
When 3/8 ≤ ν < 3/5,

log f(L2) =
log x log2 x

logM

by (2.3) and so Σ3(x) is bounded above by the expression on the right of (ii).
When 0 ≤ ν < 3/8, L2 = X and so Σ3(x) is empty.

When ν > 0, let

Σ′2(x) =
∑

Lβ<p≤Lα
Ψ

(
x

pf(p)
, p

)

so Σ′2(x) = Σ2(x) for ν ≥ 3/5.

Corollary. When ν > 0,

Σ(x)−Σ′2(x)� x exp
(
− 3

2 (1 + ν + o(1)) log f(L)
)
.

This follows from the argument giving Lemma 3.3(i), which is valid for
any ν > 0. We note that when 0 < ν < 3/5, the error term in Lemma 3.3(ii)
is stronger than that in the Corollary.

Lemma 3.4. Let ν > 0. Then

Σ(x) = x exp(−(1 + ν + o(κ3)) log f(L)).

Proof. We show that the right side is a lower bound for Σ(x) and an
upper bound for Σ′2(x), and the result then follows from the Corollary to
Lemma 3.3.

Since f(p) is increasing,

Σ(x) =
∑

nf(P (n))≤x
n>1

1 ≥
∑

nf(P (n))≤x
1<P (n)≤L

1 ≥
∑

n≤x/f(L)
P (n)≤L

1 = Ψ

(
x

f(L)
, L

)

=
x

f(L)
%(u(x,L) + 1)

(
1 +O

(
log2 x

logL

))

= x exp(−(1 + ν +O(κ3)) log f(L))

on using Lemma 2.5, (3.7) with d = 1 and (3.3).
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By Lemma 2.5 again,

Σ′2(x) =
∑

Lβ<p≤Lα
Ψ

(
x

pf(p)
, p

)

= x

(
1 +O

(
log2 x

logL

)) ∑

Lβ<p≤Lα

1
pf(p)

%(u(x, p))

≤ x(1 + o(1))( max
Lβ<p≤Lα

F (p))
∑

Lβ<p≤Lα

1
p

≤ x exp(−(1 + ν +O(κ3)) log f(L))

by Lemma 3.1 and since the sum over p is bounded.

Lemma 3.5. When ν > 0,

Σ(x) = x

(
1 +O

(
log2 x

logL

)) Lα�

Lβ

1
wf(w) logw

%(u(x,w)) dw.

Proof. By Lemmas 2.5 and 2.9,

Σ′2(x) = x

(
1 +O

(
log2 x

logL

)) ∑

Lβ<p≤Lα

1
pf(p)

%(u(x, p))

= x

(
1 +O

(
log2 x

logL

)){Lα�

Lβ

1
wf(w) logw

%(u(x,w)) dw

+O

(
%(u(x,Lβ)) +

1
f(Lα)

)}
.

The result now follows from Lemma 3.4, the Corollary to Lemma 3.3, and
(3.9), (3.10) together with the definitions (3.5), (2.2) of β, α, respectively.

Our aim in the next section is to improve Lemma 3.5 by using Lemma 2.7
instead of Lemma 2.5 and we shall see that the error term in Lemma 3.5 is
best possible. We shall need the next result which follows from the last two
lemmas.

Lemma 3.6. When ν ≥ 3/5,

Lα�

Lβ

1
w logw

Gε(w) dw � R(L1−κ, ε)
Lα�

Lβ

1
w logw

F (w) dw.

Proof. By Lemmas 3.4 and 3.5,

(3.16)
Lα�

Lβ

1
w logw

F (w) dw = exp(−(1 + ν +O(κ3)) log f(L)).
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For ν ≥ 3/5, β ≤ d ≤ α
− logR(Ld, ε) = (d logL)3/5−ε = O((logL)−ε/2 log f(L)).

Thus, since κ3 � (logL)−ε/2, (3.16) holds with F replaced by Gε on the left.
Moreover Gε(L1±κ) is equal to the right side of (3.11), and Gε(w) increases
on [Lβ, L1−κ] and decreases on [L1+κ, Lα]. Hence

Lα�

Lβ

1
w logw

Gε(w) dw =
L1+κ�

L1−κ

1
w logw

Gε(w) dw +O(Gε(L1±κ))

≤ R(L1−κ, ε)
L1+κ�

L1−κ

1
w logw

F (w) dw +O(Gε(L1±κ))

= R(L1−κ, ε)
Lα�

Lβ

1
w logw

F (w) dw +O(Gε(L1±κ)).

The result now follows since for ν ≥ 3/5,

exp
(
−
(

1
2 (ν(ν + 1)κ2 +O(κ3)) log f(L)

))

= o(R(L1−κ)) = o(exp(−((1− κ) logL)3/5−ε)).

Finally in this section, we discuss the order of magnitude of Σ(x)
when ν = 0, and in particular show that the expression on the right of
Lemma 3.3(ii) is smaller than Σ2(x). When ν > 0, the main contribution to
Σ(x) comes from the primes near L. However when ν = 0, the larger primes
contribute significantly to Σ(x). When ν = 0 but (log f(w))(log2 w)−2 →∞
as w →∞, we can find a dominant range of primes excluding X and argue
in an analogous way to that used when 0 < ν < 3/8. This approach breaks
down for smaller functions f , for then the range W < p ≤ X cannot be ex-
cluded. We restrict ourselves to establishing bounds for Σ(x) valid whenever
ν = 0.

Define V = V (x) by

(3.17) log V =
log x

max(log2 x, log f(X))
.

Lemma 3.7. When ν = 0,

(i)
x

f(X)
� Σ(x)� x

f(V )
,

(ii) Σ(x) = x

X�

V

1
wf(w) logw

%(u(x,w))
(

1 +O

(
log+ u(x,w)

logw

))
dw

where log+ u = max(1, logu).
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Proof. We consider first the range V < p ≤ X. By Lemmas 2.5 and 2.9,

(3.18)
∑

V <p≤W
Ψ

(
x

pf(p)
, p

)

= x
∑

V <p≤W

1
pf(p)

%(u(x, p))
(

1 +O

(
log u(x, p)

log p

))

= x

W�

V

1
wf(w) logw

%(u(x,w))
(

1 +O

(
log u(x,w)

logw

))
dw

since the error terms involving R(w, 3ε/4) are negligible. By Lemma 2.10
and since

X�

W

1
logw

dw � X

logX
� x

f(X) log x
,

we have

(3.19)
∑

W<p≤X
Ψ

(
x

pf(p)
, p

)

=
∑

W<p≤X

[
x

pf(p)

]

= x

X�

W

1
wf(w) logw

dw+O
(

x

f(W )
R(W, 3ε/4)

)
+O

(
x

f(X) logx

)
.

Note that %(u(x,w)) = 1 for W ≤ w ≤ X. On substituting t = u(x,w) + 1,
we see that

(3.20)
X�

V

1
w logw

%(u(x,w)) dw ∼
∞�

1

1
t
%(t− 1) dt = C,

say, as x→∞, where C > 0. Hence by (3.18) and (3.19),

(3.21)
x

f(X)
�

∑

V <p≤X
Ψ

(
x

pf(p)
, p

)
� x

f(V )
.

To complete the proof of (i), we need to look at the corresponding sum
over primes p ≤ V . The error term in Lemma 3.3(ii) estimates the sum over
p ≤ L1 to be

(3.22) � x exp(−(log x)1/4) = o

(
x

f(X) logx

)
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on using (1.13). By Lemma 2.2(i),

− log %(u(x, V )) = (1 + o(1))
log x
logV

log
log x
log V

= (1 + o(1)) max(log2 x, log f(X)) max(log3 x, log2 f(X))

= ∆(x),

say. Hence
∑

L1<p≤V
Ψ

(
x

pf(p)
, p

)
� x

∑

L1<p≤V

1
pf(p)

%(u(x, p))(3.23)

� x%(u(x, V )) log2 x

� x exp(−(1 + o(1))∆(x))

= o

(
x

f(X) logx

)
.

We obtain (i) from (3.21)–(3.23).
Using the substitution in (3.20),

X�

V

1
wf(w) logw

%(u(x,w))
log+ u(x,w)

logw
dw

� 1
f(X)

∞�

1

1
log x

%(t− 1) dt� 1
f(X) log x

since the integral converges. Hence the error term in (ii) exceeds the error
terms in (3.19), (3.22), (3.23), and so (ii) follows from (3.18) and (3.19).

4. Proof of Theorem 1. In Lemma 3.5, we used Lemma 2.5 to express
Σ(x) in terms of an integral, but our error term was weak. We aim now to
obtain a much better error term by using Lemma 2.7 instead. Lemma 3.3
suggests that we start by considering Σ2(x).

First we need some definitions. Recall that L1 is given by (3.13), (3.14)
and L2 by (2.2), (2.3). Write

(4.1) L3 = min(L2,W ) =
{
L2 if ν ≥ 3/8,
W if 0 ≤ ν < 3/8,

and let

(4.2) H1(x) =
L3�

L1

1
wf(w) logw

(%(u(x,w)) + I(w)) dw

where I(w) is defined by (2.5). When 0 ≤ ν < 3/8, so L2 = X and L3 = W ,
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let

(4.3) H2(x) =
X�

W

[
x

wf(w)

]
1

logw
dw.

Lemma 4.1. Let ε > 0 be sufficiently small but fixed.

(i) When ν ≥ 3/5,

Σ2(x) = x(1 +O(R(L1−κ, 3ε/4)))H1(x).

(ii) When 3/8 ≤ ν < 3/5,

Σ2(x) = xH1(x) +O

(
x exp

(
−(1 + o(1))

logx log2 x

logM

))
.

(iii) When 0 ≤ ν < 3/8,

Σ2(x) = xH1(x) +H2(x) +O

(
x exp

(
−(1 + o(1))

log x log2 x

logM

))
.

Proof. Without loss of generality, we can assume that x/(pf(p)) 6∈ N
for all primes p. By Lemmas 2.6, 2.7, with I(p) defined by (2.5),

(4.4)
∑

L1<p≤L3

Ψ

(
x

pf(p)
, p

)

=
∑

L1<p≤L3

Λ

(
x

pf(p)
, p

)
(1 +O(R(p, ε/2)))

= x
∑

L1<p≤L3

1
pf(p)

(%(u(x, p)) + I(p))(1 +O(R(p, ε/2))) + E1

where, with Y defined by (2.2) or (2.3),

|E1| = x(1 + o(1))
∑

L1<p≤L3
p2f(p)≤x/Y

1
pf(p)

x/(p2f(p))�

Y

t−[t]
t2 log p

|%′(u(x/t, p))| dt(4.5)

� x
∑

L1<p≤L3
p2f(p)≤x/Y

1
pf(p) log p

∞�

Y

dt

t2
� x

Y

since
∑
p 1/(p log p) converges; we recall that %′(u(x/t, p)) = 0 when

t > x/(p2f(p)).
Our next step is to apply Lemma 2.9 to the sum on the right of (4.4).

As p increases, u(x, p) decreases and therefore %(u(x, p)) increases. From the
remark after Lemma 2.4, I(p) increases on [Z,L4] where, for some fixed γ
with 0 < γ ≤ 1/5,
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(4.6) L4 =
{
L2 = L3 if ν ≥ 3/8,
xγ if 0 ≤ ν < 3/8.

When 0 ≤ ν < 3/8, we note that L4 = xγ < W = L3 < X = L2 by (1.8),
(2.3), (4.1); adapting the proof of Lemma 2.9 we find that

∑

L4<p≤L3

1
pf(p)

I(p) =
L3�

L4

1
wf(w) logw

I(w)(1 +O(R(w, 3ε/4))) dw(4.7)

+O

(
max

L4≤w≤L3

(
I(w)
f(w)

R(w, ε/2)
))

.

For xγ ≤ w ≤ W , I(w) � 1/logw and %(u(x,w)) � 1; hence the last error
term in (4.7) is

(4.8) � max
xγ≤w≤W

(
%(u(x,w))
f(w) logw

R(w, ε/2)
)
� max

xγ≤w≤W
Gε/2(w)

by (3.12).
Applying Lemma 2.9 three times we have

(4.9)
∑

L1<p≤L3

1
pf(p)

%(u(x, p))(1 +O(R(p, ε/2)))

=
L3�

L1

1
wf(w) logw

%(u(x,w))(1 +O(R(w, 3ε/4))) dw

+O

(
max

w=L1,L3

(
%(u(x,w))
f(w)

R(w, ε/2)
))

and

∑

L1<p≤L4

1
pf(p)

I(p) =
L4�

L1

1
wf(w) logw

I(w)(1 +O(R(w, 3ε/4))) dw(4.10)

+O

(
max

w=L1,L4

(
I(w)
f(w)

R(w, ε/2)
))

.

By Lemma 2.4,

I(w) = o(%(u(x,w))) for L1 < w ≤ L3.

From (4.7)–(4.10) we see that the sum on the right of (4.4) equals

x

L3�

L1

1
wf(w) logw

(%(u(x,w)) + I(w))(1 +O(R(w, 3ε/4))) dw

+O

(
x max
w=L1,L3

(
%(u(x,w))
f(w)

R(w, ε/2)
))

+O(x max
L4≤w≤L3

Gε/2(w))
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where the last error term appears only when L4 < L3 (see (4.6)). It then
follows from (4.4) and (4.5) that

(4.11)
∑

L1<p≤L3

Ψ

(
x

pf(p)
, p

)

= xH1(x) +O

(
x

L3�

L1

1
w logw

G3ε/4(w) dw
)

+O(x( max
w=L1,L3

Gε/2(w) + max
L4≤w≤L3

Gε/2(w))) +O(x/Y ).

In order to estimate these error terms, we consider separately the three
ranges for ν specified in the lemma and also consider the range L3 = W <
p ≤ X in case (iii).

(i) Let ν ≥ 3/5. Then L1 = Lβ , L3 = L2 = Lα. By Lemma 3.6,

Lα�

Lβ

1
w logw

G3ε/4(w) dw � R(L1−κ, 3ε/4)
Lα�

Lβ

1
w logw

F (w) dw

� R(L1−κ, 3ε/4)H1(x)

since I(w) = o(%(u(x,w))). From the definitions (2.2), (3.5) of α, β, Y and
(3.9), (3.10),

(4.12) max
w=Lβ ,Lα

Gε/2(w)� exp
(
− 3

2 (1 + ν + o(1)) log f(L)
)

and Y −1 is bounded above by the right side of (4.12). Moreover by Lem-
mas 3.1 and 3.3(i) and the definition (2.7) of R(L1−κ, 3ε/4), the right
side of (4.12) is of a smaller order of magnitude than R(L1−κ, 3ε/4)H1(x).
Lemma 4.1(i) now follows.

(ii) Let 3/8 ≤ ν < 3/5. By (3.14) and (2.3), L1 = Mβ1 and log f(L2)
= (log x log2 x)/logM = log Y , so L2 = o(W ) and moreover L1 < M
< L < L2 = L3 by (3.15). By Lemma 3.2(ii), all error terms in (4.11)
are

� x log2 x max
L1≤w≤L2

G3ε/4(w)� x exp
(
−(1 + o(1))

logx log2 x

logM

)
.

This establishes (ii) of the lemma.

(iii) Let 0 ≤ ν < 3/8. In this case L1 = Mβ1 but L2 = X, so L3 = W , and
log Y = (log x log2 x)/logM > log f(X). The error terms in (4.11) satisfy
the bounds of (ii). It remains to look at the sum
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∑

W<p≤X
Ψ

(
x

pf(p)
, p

)
=

∑

W<p≤X

[
x

pf(p)

]

=
X�

W

1
logw

[
x

wf(w)

]
dw +O

(
x
R(W, 3ε/4)
f(W )

)

= H2(x) +O(x exp(−(logW )3/5−3ε/4))

by Lemma 2.10. Since logW ∼ 1
2 log x when ν < 1, the last error term is

smaller than

x exp
(
− log x log2 x

logM

)
.

This completes the proof of the lemma.

Proof of Theorem 1. First we observe that the sum Σ(x) also satisfies
the result of Lemma 4.1, for the error terms in Lemma 3.3 are bounded by
the error terms in (4.11). We also note that in case (i), when ν ≥ 3/5 and x
is sufficiently large,

R(L1−κ, 3ε/4) = exp(−((1− κ) logL)3/5−3ε/4)� R(L, ε).

Next we extend the ranges of integration in the definition (4.2) of H1(x).
Arguing in a similar way to the proof of Lemma 3.3, we see that when
ν ≥ 3/8

(4.13)
x�

2

1
wf(w) logw

(%(u(x,w)) + I(w)) dw −H1(x)

is bounded by the error term of that lemma. When 0 ≤ ν < 3/8, so L3 = W ,
we note that

(4.14)
x�

W

1
wf(w) logw

(%(u(x,w)) + I(w)) dw =
X�

W

1
wf(w) logw

dw

since %(u(x,w)) = 1 for W ≤ w ≤ X, %(u(x,w)) = 0 for w > X, and
%′(u(x/t, w)) = 0, so I(w) = 0, for w > W . Moreover the difference between
(4.13) and (4.14) is bounded by the error term in Lemma 3.3(ii).

Finally we replace I(w) by the corresponding integral over the range
1 ≤ t ≤ x. This is permissible since

∣∣∣∣
x�

Y

t− [t]
t2

%′(u(x/t, w)) dt
∣∣∣∣�

1
Y

and
x�

2

1
wf(w)(logw)2 dw � 1

and so we incur the error term O(x/Y ) of (4.5) again.
It now follows from (1.17), (1.18) and Lemma 3.3 that in the statement

of Lemma 4.1 we can replace Σ2(x) by Σ(x), H1(x) by H(x) and, when
0 ≤ ν < 3/8, H2(x) by −H0(x), which gives Theorem 1.
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We can deduce using the method above that the error term in Lemma 3.5
when ν > 0 is best possible. Applying Lemma 2.7 instead of Lemma 2.5 in
the argument of Lemma 3.5, we see that

Σ(x) = x(1 +O(R(Lβ, ε)))
Lα�

Lβ

1
wf(w) logw

(%(u(x,w)) + I(w)) dw

+O
(
x exp

(
− 3

2 (1 + ν + o(1)) log f(L)
))
.

By Lemma 2.4, when Lβ ≤ w ≤ Lα, we have

I(w) � log2 x

logL
%(u(x,w)).

Hence we deduce

Corollary 1. When ν > 0,

Σ(x)− x
Lα�

Lβ

1
wf(w) logw

%(u(x,w)) dw

� x log2 x

logL

Lα�

Lβ

1
wf(w) logw

%(u(x,w)) dw.

Hence the error term in Lemma 3.5 is best possible.

We proceed in a similar way in the case ν = 0. When u(x/t, w) is un-
bounded,

−%′(u(x/t, w)) ∼ log(u(x/t, w))%(u(x/t, w))

by Lemma 2.2(iii)(a), and otherwise both sides are � 1. Moreover, for
1 ≤ t ≤ Y , V ≤ w ≤W , we have

log(u(x/t, w)) ∼ log2 x− log2 w,
log t
logw

log u(x,w) = o(1)

where V is given by (3.17). Hence by Lemma 2.2(iii)(b),

%(u(x/t, w)) = %

(
u(x,w)− log t

logw

)
∼ %(u(x,w))

for u(x,w) unbounded, and so

I(w) ∼ %(u(x,w))
logu(x,w)

logw

Y�

1

t− [t]
t2

dt.

Since I(w) � 1/logw when u(x,w) is bounded, we obtain, on applying
Lemma 2.7 to the left side of (3.18),

Corollary 2. When ν = 0, the error term in Lemma 3.7(ii) is best
possible.
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To establish Theorem 3 (without assuming the Riemann Hypothesis),
we treat the sum

(4.15) Σ′(x) = Σ′f (x) =
∑

1<n≤x

1
f(P (n))

=
∑

p≤x

1
f(p)

Ψ

(
x

p
, p

)

in an analogous way to the method applied to Σ(x). The main changes are
as follows: throughout we replace

%(u(x,w)) = %

(
log x− log f(w)

logw
− 1
)

by %

(
log x
logw

− 1
)
,

W by
√
x, X by x,

and when 0 ≤ ν < 3/8,

H2(x) (given by (4.3)) by
x�
√
x

[
x

w

]
1

f(w) logw
dw.

After making the consequential modifications in the argument above, we
establish this part of Theorem 3.

5. Proof of Theorem 2. Throughout this section we assume that the
Riemann Hypothesis holds. Several of the lemmas above depend directly or
indirectly on the prime number theorem which, under the Riemann Hypoth-
esis, can be stated in the form

θ(x) = x(1 +O(x−1/2(log x)2))

(which replaces (2.8)). For convenience of exposition, we work with an error
term of the shape O(x−1/2+ε) with ε > 0.

Saias remarked ([8], p. 81) that, under the Riemann Hypothesis, the
result of Lemma 2.7 becomes:

Lemma 2.7 (RH). Let ε > 0. Uniformly for x ≥ x0(ε) and (log x)2+ε ≤
y ≤ x,

Ψ(x, y) = Λ(x, y)(1 +Oε(y−1/2+ε log x)).

Let

(5.1) R(x, ε) = x−1/2+ε;

we use this definition ofR(x, ε) throughout this section, instead of (2.7). This
affects Lemmas 2.8–2.10 in Section 2, and the definition (3.12) of Gε(w) as
well as subsequent lemmas depending on the definition of R(x, ε).

In order that the improved error terms are reflected in the final result, we
replace the parameter M by N defined in (1.19), and increase the bound-
ary values of ν that separate the three cases considered (see below). For
convenience, we assume that, when ν = 1/2, η(w)/

√
log2 w is monotonic.
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Definitions. (i) When log f(w)/logw →∞ as w →∞, define

L1 = Lβ , L2 = Lα, Y = f(L2)

with L, β, α defined by (1.9), (3.5), (2.2), respectively.
(ii) When limw→∞ log f(w)/logw = k (0 ≤ k < ∞), define N = N(x)

by (1.19) and

L1 = N1/2, log Y =
log x log2 x

logN
, f(L2) = min(Y, f(X))

where X is given by (1.8).

We observe that case (i) of this definition applies when ν > 1 or ν = 1
and η(w) → ∞ as w → ∞; case (ii) applies otherwise, and in particular
whenever ν < 1 (so k = 0). Also in case (ii),

f(L2) = Y if and only if ν > 1
2 or ν = 1

2 and lim
w→∞

η(w)√
log2 w

≥
√

1− 2ε,

f(W )≥Y if and only if ν > 1
2 or ν= 1

2 and lim
w→∞

η(w)√
log2 w

≥
√

2(1−2ε),

and when ν = 1/2,

W ≤ L2 ≤ X if and only if
√

1− 2ε ≤ lim
w→∞

η(w)√
log2 w

≤
√

2(1− 2ε),

on using the monotonicity of η(w)/
√

log2 w when ν = 1/2.
In the proof, we do not need to make special provision for this latter sit-

uation; the corresponding inequality did not arise in the proof of Theorem 1,
for either L2 < W or L2 = X held.

In case (i) when ν = 1, so η(w)→∞ as w →∞, we modify the definition
of κ given in (3.3) to

κ3 =
log3 x

log2 x
+ |ξ(L)|+ |δ(L)|+ 1

η(L)
,

which is required in proving the analogue of Lemmas 3.2(i) and 3.6; in all
other cases, κ is defined by (3.3) as before.

To establish Theorem 2, we modify the proofs in Sections 3 and 4 by
replacing:

(a) M by N , then defining L1, L2, Y as above;
(b) the condition ν ≥ 3/5 by log f(w)/logw →∞ as w →∞,

and 0 ≤ ν < 3/5 by limw→∞ log f(w)/logw <∞;
(c) the condition 3/8 ≤ ν < 3/5 by limw→∞ log f(w)/logw < ∞ and

Y ≤ f(W );
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(d) the condition 0 ≤ ν < 3/8 by limw→∞ log f(w)/logw = 0 and
Y > f(W );

(e) Lemma 2.7 by Lemma 2.7 (RH) (absorbing the factor log x into the
relevant error terms);

(f) (2.7) by (5.1) (the new definition of R(x, ε)).

We observe that, since 0 < κ = o(1),

R(L1−κ, 3ε/4) = (L1−κ)−1/2+3ε/4 ≤ L−1/2+ε = R(L, ε)

for sufficiently large x. On implementing the modifications outlined above
and making the minor consequential changes, we deduce Theorem 2.

Theorem 3 under the assumption of the Riemann Hypothesis is derived
in a similar way.
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