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1. Introduction. In this paper we prove the universality theorem for
L-functions associated with ideal class characters of algebraic number fields.
First of all, we explain what is the universality theorem.

Let s = σ + it be a complex number and let ζ(s) be the Riemann zeta-
function. It is known that ζ(s) has several arithmetic and functional prop-
erties such as the functional equation and the Euler product formula. In
addition to these properties, S. M. Voronin [16] found the following remark-
able result called the universality theorem for ζ(s) in 1975.

Voronin’s Theorem. Let 0 < r < 1/4 and f(s) be a continuous func-
tion on the disk |s| ≤ r such that f(s) 6= 0 on |s| ≤ r and f(s) is holomorphic
in |s| < r. Then for every ε > 0, we have

lim inf
T→∞

m({τ ∈ [0, T ] | max|s|≤r |ζ(s+ 3/4 + iτ)− f(s)| < ε})
T

> 0

where m is the Lebesgue measure on R.

Roughly speaking, this theorem asserts that any analytic function which
satisfies the above conditions can be uniformly approximated on the disk
by vertical translations of ζ(s), and the set of real numbers which give such
approximation has a positive lower density.

After Voronin’s work, many mathematicians studied the universality
property of other zeta-functions. In 1979, S. M. Gonek [4] proved the uni-
versality theorem for Hurwitz zeta-functions ζ(s, α) if α is rational or tran-
scendental. In 1980, A. Reich [14] proved it for Dedekind zeta-functions.

These results were proved by the method based on Voronin’s original
proof. But in 1981, B. Bagchi [2] proved the limit theorem for ζ(s) which
is concerned with probability measures and gave an alternative proof of the
universality theorem for ζ(s). In [3], he also proved the joint universality
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theorem for Dirichlet L-functions, which asserts that the universality holds
for several L-functions simultaneously.

Recently the study of the universality theorems and the limit theorems
has been advanced by A. Laurinčikas and K. Matsumoto. They proved in
[8] the universality theorem for zeta-functions attached to cusp forms. In [9]
Matsumoto considered a certain class of L-functions which contains both
Dedekind zeta and cusp form zeta, and Laurinčikas [7] gave sufficient con-
ditions under which the limit theorems and the universality theorems hold
for those L-functions. We note that L-functions treated in this paper are in-
cluded in this class, but do not satisfy the conditions of Laurinčikas’ paper.

To state our result, we recall some notions from algebraic number theory.
Let K be a finite extension of Q, OK the integer ring of K and f an ideal
of OK .

For α ∈ K, we write
α ≡ 1 mod f̃

if α = a/b, a, b ∈ OK , a− b ∈ f, α � 0.
We set

A(f) = {a : ideal of K | (a, f) = 1}
and

(1) B(̃f) = {(α) | α ∈ K, α ≡ 1 mod f̃}.
These are commutative groups under the ideal multiplication. In particular,
it is known that the quotient group

Cl(K, f̃) = A(f)/B(̃f)

is a finite commutative group. We call it an ideal class group modulo f̃.
Let χ be a character of Cl(K, f̃). For <s > 1, the L-function treated in

this paper is defined as

L(s, χ) =
∑

a

χ(a)
N(a)s

where a runs through all ideals of OK except 0 and N(a) denotes the norm
of a.

Our result is as follows.

Theorem. Let K be a finite extension of Q, n = [K : Q] and χ be a
character modulo f̃. Set

σK =
{

1/2 if K = Q,
1− 1/n otherwise.

Let D = Dr(s0) = {s ∈ C | |s − s0| ≤ r} be a disk contained in the strip
σK < <s < 1 and f(s) be a continuous function on D such that f(s) 6= 0
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on D and f(s) is holomorphic in the interior of D. Then for every ε > 0,
we have

lim inf
T→∞

m({τ ∈ [0, T ] | maxs∈D |L(s+ iτ, χ)− f(s)| < ε})
T

> 0.

The organization of this paper is as follows. In Section 2 we state basic
results on L(s, χ). In Section 3 we state sufficient conditions under which the
universality theorem holds (Lemma 1) and show that in order to prove the
theorem it is enough to prove a lemma which is connected with a Hardy space
(Lemma 4). In Section 4 we prove that lemma by using arithmetic properties
of L(s, χ). The key idea is to apply a result of class field theory (Lemma 6).
In Section 5 we consider the case when K is a Galois extension. In this case,
we can prove our theorem by a more elementary method, without using class
field theory.

Remark. We prove the Theorem by the method based on Voronin’s
original proof. However we can also give a proof by a method based on
Bagchi’s alternative proof. In fact the conditions which are necessary to
prove are almost the same.

The author would like to express his sincere gratitude to Professor Kohji
Matsumoto and Professor Yoshio Tanigawa for their advice and encourage-
ment. He would also like to express his sincere thanks to the referee for his
helpful comments.

2. Background on L-functions. In this section, we recall fundamental
properties of L(s, χ). See Mitsui [10] or [11] for details.

The L-function L(s, χ) can be meromorphically continued to the whole
s-plane, and it is analytic except for a possible simple pole at s = 1. In
particular if χ is primitive, the function

ξ(s, χ) = D(f)sΓ (s)r2
r1∏

m=1

Γ

(
s+ am

2

)
L(s, χ)

satisfies the functional equation

ξ(1− s, χ) = ξ(s, χ)

where r1 is the number of real places of K, 2r2 is the number of complex
places of K, the constant D(f) depends only on f and am (1 ≤ m ≤ r1),
depending on χ, takes the value 0 or 1.

Hence by applying Potter’s classical result [13], we have the estimate

(2)
T�

0

|L(σ + it)| dt = O(T )
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for σ > σK . This estimate also holds for non-primitive characters χ. In fact,
if χ1 (mod f̃1) is a primitive character which induces χ, then

L(s, χ) = L(s, χ1)
∏

p|f

(
1− χ1(p)

N(p)s

)
.

The finite product on the right-hand side is bounded, so we have the estimate
(2) for every χ.

The L-function L(s, χ) also satisfies the estimate

(3) L(s, χ)(1− s)E(χ) = O((1 + |t|)n+1) (1/2 < <s < 3/2)

where

E(χ) =
{

1 if χ is the identity,
0 otherwise,

and the O-constant depends only on χ.
For <s > 1, L(s, χ) satisfies the Euler product formula

L(s, χ) =
∏

p

(
1− χ(p)

N(p)s

)−1

where p runs through all prime ideals in K. We denote the decomposition
of a prime number p in K as

p = px1
1 . . . p

xzp
zp , N(pi) = pyi (i = 1, . . . , zp).

By using this expression, we have

L(s, χ) =
∏

p

{ zp∏

i=1

(
1− χ(pi)

pyis

)−1}
,

so we set

L(s, χ) =
∏

p

fp

(
1
ps

)
, fp(z) =

zp∏

i=1

(1− χ(pi)zyi)−1.

The functions fp(z) are clearly rational functions of z and holomorphic in
|z| < 1 since |χ(pi)| = 1. Writing the Taylor expansion of fp(z) as

fp(z) = 1 +
∞∑

m=1

a(m)
p zm,

we have

|a(m)
p | =

∣∣∣
∑

y1j1+...+yzpjzp=m
ji≥0

χji(pi)
∣∣∣ ≤

∑

y1j1+...+yzp jzp=m
ji≥0

1(4)

≤ (m+ 1)n �ε p
mε.
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3. Lemmas. A. A. Karatsuba and S. M. Voronin [6] stated the con-
ditions under which the universality theorems hold for functions given by
infinite products over primes. First, we define some symbols.

Definition 1. (i) We set

Ω =
∏

p

Rp, Rp = R.

That is, Ω is the set of all real sequences indexed by primes.
(ii) Suppose that F (s) is a meromorphic function in the strip σ1 <<s<

σ2. If

F (s) = O(|t|A) (|t| > T0(σ′1, σ
′
2), σ′1 ≤ <s ≤ σ′2)

for any σ′1, σ
′
2 such that σ1 < σ′1 < σ′2 < σ2, with some positive constant A

independent on t, then F (s) is called a function of finite order .
(iii) Suppose that

F (s) =
∏

p

fp

(
1
ps

)

where fp(z) is a rational function of z. For a finite set of primes M and
θ = (θp) ∈ Ω, we define

FM (s, θ) =
∏

p∈M
fp

(
e(−θp)
ps

)

where e(x) = e2πix.

Lemma 1. Suppose that for <s > 1 the analytic function F (s) can be
represented by the product

F (s) =
∏

p

fp

(
1
ps

)
.

Suppose that F (s) and {fp(z)} satisfy the following conditions.

(i) For every p, the function

fp(z) = 1 +
∞∑

m=1

a(m)
p zm

is a rational function of z which has no poles in |z| < 1 and has the property
that for any ε > 0

|a(m)
p | < c(ε)pmε (m ∈ N)

uniformly in p.
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(ii) F (s) can be analytically continued onto the half-plane <s > 1/2,
with the possible exception of a finite number of poles on the line <s = 1,
has finite order in that half-plane and satisfies the estimate

1
T

T�

−T
|F (α+ it)|2 dt = O(1)

for all α ∈ (σ0, 1), where σ0 ≥ 1/2.
(iii) There exist θ = (θp) ∈ Ω and a sequence M1 ⊂ M2 ⊂ . . . of finite

sets of prime numbers such that

(a)
⋃
Mj contains all prime numbers,

(b) FMj (s, θ)→ f(s) (j →∞) uniformly on D = Dr(s0) contained
in the strip σ0 < <s < 1.

Then for any ε > 0, we have

lim inf
T→∞

m({τ ∈ [0, T ] | maxs∈D |F (s+ iτ)− f(s)| < ε})
T

> 0.

To prove the Theorem, we apply Lemma 1 to L(s, χ) and {fp(z)} defined
in Section 2. The conditions (i) and (ii) are clearly satisfied from (2)–(4) and
the definition of fp(z). Hence it is enough to show that the condition (iii)
also holds.

Since f(s) is continuous on D, there exists γ > 1 such that the disk
Drγ(s0) is contained in the strip σK < <s < 1 and an inequality

max
s∈D

∣∣∣∣f(s)− f
(
s

γ

)∣∣∣∣ < ε

holds. Let g(s) be an analytic function on D such that

f

(
s

γ

)
= eg(s) (s ∈ D).

Now we suppose that there exist a finite set M of primes and θ ∈ Ω such
that

max
s∈D

∣∣∣∣g(s)−
∑

p∈M
log fp

(
e(−θp)
ps

)∣∣∣∣ < ε.

We note that, putting

LM (s, χ, θ) =
∏

p∈M
fp

(
e(−θp)
ps

)
,

we have
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max
s∈D
|f(s)− LM (s, χ, θ)|

≤ max
s∈D

∣∣∣∣f(s)− f
(
s

γ

)∣∣∣∣+ max
s∈D

∣∣∣∣eg(s) − exp
{ ∑

p∈M
log fp

(
e(−θp)
ps

)}∣∣∣∣

� ε+ max
s∈D
|eg(s)|ε� ε.

Therefore the third condition in Lemma 1 follows from the following result.

Lemma 2. Let g(s) be a continuous function on D which is analytic in
the interior of D. Then for every ε > 0 and y > 0, there exists a finite set
M of primes which satisfies the following conditions:

(i) M contains all primes less than y,
(ii) we have

max
s∈D

∣∣∣∣g(s)−
∑

p∈M
log fp

(
e(−θp)
ps

)∣∣∣∣ < ε

where θ = (θp) ∈ Ω, depending on f and D, is defined below.

To prove Lemma 2, we introduce the notion of the Hardy space. First,
we choose γ > 1 such that the disk Drγ(s0) is contained in the strip σK <
<s < 1 and an inequality

(5) max
s∈D

∣∣∣∣g(s)− g
(
s

γ

)∣∣∣∣ < ε

holds. Let R = rγ. The Hardy space on DR(s0) is the set of all functions
f(s) which are analytic in the interior of DR(s0) and

‖f‖R =
( � �

DR(s0)

|f(s)|2 dσ dt
)1/2

<∞.

We denote it by H2(DR(s0)). We define the inner product in H2(DR(s0))
by the formula

(f, g) = <
( � �

DR(s0)

f(s)g(s)dσ dt
)

(f, g ∈ H2(DR(s0))).

This makes H2(DR(s0)) into a real Hilbert space.
Now we define θ ∈ Ω as follows. Let L/K be the class field on the

ideal class group Cl(K, f̃), and PL be the set of all rational primes which
split completely in L. We will later show that PL has infinite elements (see
Lemma 7). We number primes in PL in increasing order. If a prime p appears
as the kth member of PL in that order, then we define lp = k.

We set

θ(0)
p =

{
lp/4 if p ∈ PL,
0 otherwise,
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and

(6) θp = θ(0)
p − t0

log p
2π

where t0 is the imaginary part of s0 = σ0 + it0.
We note that H2(DR(s0))-norm convergence induces uniform conver-

gence on compact subsets of DR(s0). Namely, for f(s) ∈ H2(DR(s0)) we
have

max
|s−s0|≤r′

|f(s)| ≤ 1
(R− r′)√π ‖f‖

1/2
R (0 < r′ < R)

(see [6]). Using (5) and the fact that g(s/γ) belongs to H2(DR(s0)), we can
trivially deduce Lemma 2 from the following lemma.

Lemma 3. The set of all rearrangements of terms of the series
∑

p

log fp

(
e(−θp)
ps

)

which converge in H2(DR(s0)) coincides with H2(DR(s0)) itself.

We prove Lemma 3 in the next section.

4. The proof of Lemma 3. The functions fp(z) themselves are not
easy to deal with, hence we introduce functions which are easier. We set

αp =
zp∑

i=0
yi=1

χ(pi), hp(s) =
αpe(−θp)

ps
.

Then
∑

p

∥∥∥∥hp(s)− log fp

(
e(−θp)
ps

)∥∥∥∥
R

=
∑

p

( � �

DR(s0)

∣∣∣∣
zp∑

i=1

∞∑

k=1

χk(pi)e(−kyiθp)
kpkyis

−
zp∑

i=1
yi=1

χ(pi)e(−θp)
ps

∣∣∣∣
2

dσ dt

)1/2

�
∑

p

∞∑

k=2

1
kpk(σ0−R)

+
∑

p

∞∑

k=1

1
kp2k(σ0−R)

<∞

since σ0 − R > 1/2. Hence it is enough to prove Lemma 3 for the series∑
p hp(s) instead of the series

∑
p log fp(e(−θp)/ps).

Now recall a result of Pecherskĭı.

Lemma 4 (Pecherskĭı [12]). Let H be a real Hilbert space. Suppose that
{un} ⊂ H satisfies the following conditions.

(i)
∑∞
n=1 ‖un‖2 <∞.
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(ii) For any e ∈ H with ‖e‖ = 1, the series
∑∞
n=1(un, e) is not absolutely

convergent but conditionally convergent for some arrangement of the terms.

Then the set of all rearrangements of terms of the series
∑∞
n=1 un which

converge in H coincides with H itself.

We note that H2(DR(s0)) is a real Hilbert space and hp(s)∈H2(DR(s0)).
Hence it is sufficient to show that {hp(s)} satisfies two conditions in Lemma 4.

We have
∑

p

‖hp(s)‖2R =
∑

p

� �

DR(s0)

∣∣∣∣
αpe(−θp)

ps

∣∣∣∣
2

dσ dt�
∑

p

1
p2(σ0−R)

<∞

since σ0 −R > 1/2. Hence hp(s) satisfies the first condition.
Next we show that, for any φ(s) ∈ H2(DR(s0)) with ‖φ‖ = 1, the series

∑

p

(hp, φ)

is not absolutely convergent but conditionally convergent for some arrange-
ment of terms. To do this, it is enough to show that

• (hp, φ)→ 0 (p→∞).
• There exist two subseries of

∑
p(hp, φ), one diverging to +∞ and the

other to −∞.

The first condition holds since

|(hp, φ)| ≤ ‖hp‖ · ‖φ‖ =
� �

DR(s0)

|αp|2
p2σ dσ dt� 1

p2(σ0−R)
→ 0 (p→∞).

Next, we set

φ(s) =
∞∑

m=0

am(s− s0)m.

We express (hp, φ) in terms of am:

(hp, φ) = <
( � �

DR(s0)

αpe(−θp)
ps

φ(s) dσ dt
)

= <
(
αpe(−θp)

ps0

� �

DR(s0)

e−(s−s0) log p
( ∞∑

m=0

am(s− s0)m
)
dσ dt

)

= <
(
αpe(−θp)

ps0

� �

|s|≤R

( ∞∑

k=0

(−s log p)k

k!

)( ∞∑

m=0

ams
m
)
dσ dt

)

= <
(
αpe(−θp)

ps0

∞∑

k=0

∞∑

m=0

(− log p)kam
k!

� �

|s|≤R
sksm dσ dt

)
.
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Passing to polar coordinates, we have

� �

|s|≤R
sksm dσ dt =

R�

0

2π�

0

rk+m+1ei(k−m)θ dr dθ =




πR2m+2

m+ 1
(m = k),

0 (m 6= k).

Hence

(hp, φ) = <
(
αpe(−θp)

ps0
G(R log p)

)

where

(7) bm =
(−1)mπamRm+2

m+ 1
, G(x) =

∞∑

m=0

bm
m!
zm.

Now we consider G(x). Since ‖φ‖ = 1, we have

1 = ‖φ‖2 =
� �

DR(s0)

∣∣∣
∞∑

m=0

am(s− s0)m
∣∣∣
2
dσ dt =

∞∑

m=0

πR2m+2

m+ 1
|am|2.

Hence 0 <
∑∞
m=0 |bm|2 ≤ 1. In particular |bm| ≤ 1 for all m ≤ 0. Hence

G(x) is an entire function which is not 0 identically. In particular, we have
the following lemma.

Lemma 5. Let

F (x) =
∞∑

m=0

bm
m!
xm

with |bm| ≤ 1 for all m ≥ 0. Then there exist a real sequence {Rm} which
tends to +∞ and positive constants c1, c2 such that if we set lm=c1/(Rm+2)
and Im = [Rm, Rm + lm] then

|<G(x)| > c2/e
x for any x ∈ Im.

If the character sums

αp =
zp∑

i=1
yi=1

χ(pi)

were 0 for almost all p, then we could not prove the existence of desired
subseries. However, such a situation never happens. We can show that as
follows.

Recall that L/K is the class field on the ideal class group Cl(K, f̃). Then
from Takagi [15] or Hasse [5], we have

Lemma 6. Let p be a prime ideal in K. The following two conditions
are equivalent :

(i) p completely splits in L,
(ii) p ∈ B(̃f) where B(̃f) is the ideal group defined by (1).
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Let p ∈ PL. Then p completely splits in K as p = p1 . . . pn and each pi
completely splits in L. Hence by Lemma 6, we have

χ(pi) = 1 (i = 0, . . . , n).

Hence for any p ∈ PL we have αp = n.

By applying the above results, we now prove existence of a subseries
diverging to +∞. We apply Lemma 5 to G(x) defined by (7). We define
finite sets Km (m ∈ N) of primes as follows.

• If <(G(x)) > c2/e
x (x ∈ Im), then

Km = {p | p ∈ PL, R log p ∈ Im, lp ≡ 0 (mod 4)}.
• If <(G(x)) < −c2/ex (x ∈ Im), then

Km = {p | p ∈ PL, R log p ∈ Im, lp ≡ 2 (mod 4)},
where lp is defined in Section 3.

For every p ∈ Km, by the definition (6) of θp, Lemma 5 and the fact that
αp = n for any p ∈ PL, we have

(hp, φ) = <
(
αpe(−θp)

ps0
G(R log p)

)
=

n

pσ0
|<(G(R log p))|(8)

� exp
(
−
(
σ0

R
+ 1
)

(Rm + lm)
)
.

On the other hand, the number of elements of Km is

]Km = 1
4{π(e(Rm+lm)/R, L)− π(eRm/R, L)}+ o(1)

by the definition of Km, where we define

π(x,L) =
∑

p≤x
p∈PL

1.

Let L be the Galois closure of L. We can show by algebraic methods
that, for p unramified in L, p splits completely in L if and only if p splits
completely in L. Also we note that there exist only finitely many primes
which ramify in L. Hence

π(x,L) = π(x,L) +O(1).

We apply the following result.

Lemma 7 (Artin [1]). Let F/k be a Galois extension, G = Gal(F/k),
and A be a conjugacy class of G. Set

π(x,A) = ]{p : prime ideal in k | N(p) ≤ x, Frobenius class of p is A}.
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Then

π(x,A) =
]A

]G

x�

2

dt

log t
+O(xe−c

√
log x).

Since L/Q is a Galois extension, and a prime p completely splits in L if
and only if the Frobenius class of p is {1}, by Lemma 7 we have

π(x,L) =
1
NL

x�

2

dt

log x
+O(xe−c

√
log x)

where NL = [L : Q]. By using this formula, we obtain

]Km =
1

4NL

{ e(Rm+lm)/R�

eRm/R

dt

log t
+O(e(Rm+lm)/Re−c

√
(Rm+lm)/R)

}

=
1

4NL
eRm/R

{
Rm(elm/R − 1)− lm

Rm(Rm + lm)
+O

(
elm/R − 1

R2
m

)

+O(eRm/Re−c
√

(Rm+lm)/R)
}
.

Since lm = c1/(Rm + 2), we have

(9) ]Km � eRm/R/R3
m.

Then (8) and (9) imply
∑

p∈Km
(hp, φ)� 1

R3
m

exp
((

1− σ0

R
− 1
)
Rm

)
exp

(
−
(
σ0

R
+ 1
)
lm

)
.

Since σ0 + R < 1, we have (1− σ0)/R − 1 > 0. Hence the second factor on
the right-hand side diverges to +∞ exponentially as m→∞. And the third
factor converges to 1 since lm converges to 0 as m→∞. Hence we conclude
that there exists a subseries diverging to +∞.

To prove that there exist subseries diverging to −∞, we define Km as
follows.

• If <(G(x)) > c2/e
x (x ∈ Im), then

Km = {p | p ∈ PL, R log p ∈ Im, lp ≡ 2 (mod 4)}.
• If <(G(x)) < −c2/ex (x ∈ Im), then

Km = {p | p ∈ PL, R log p ∈ Im, lp ≡ 0 (mod 4)}.
Then
∑

p∈Km
(hp, φ)� − 1

R3
m

exp
((

1− σ0

R
− 1
)
Rm

)
exp

(
−
(
σ0

R
+ 1
)
lm

)
.

From this estimate, we infer that there exists a subseries diverging to −∞.
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5. The case when K/Q is Galois. The key to our proof of the uni-
versality theorem is the consideration of the character sums

αp =
zp∑

i=1
yi=1

χ(pi).

To show that there exist many primes such that αp 6= 0, we apply class
field theory. However if K/Q is Galois, we can prove our theorem by a more
elementary method. We use the same symbols as in the previous section
unless otherwise indicated.

Let K/Q be a Galois extension of degree n. The decomposition of a
prime number p in K is

p = (p1 . . . pzp)xp , N(pi) = pyp (i = 1, . . . , zp), xpypzp = n, xp, yp, zp ∈ N
where we note that all pi are conjugate to each other.

Now we define f = N(f) and an ideal class group

B((f̃)) = {(α) | α ∈ K, α ≡ 1 (mod (f̃))}.
Let a = (α) ∈ B((f̃)). We recall that α ≡ 1 (mod (f̃)) if and only if

α = b/a, a, b ∈ OK , a− b ∈ (f), α � 0.

Let σ ∈ G = Gal(K/Q). Then aσ = (ασ). Since f ∈ N, we have

ασ = aσ/bσ, aσ − bσ ∈ (f),

and ασ is clearly totally positive. Hence if a ∈ B((f̃)) then for any σ ∈ G,

aσ ∈ B((f̃)).

Therefore for p = (p1 . . . pzp)xp , if p1 ∈ B((f̃)) then all pi (i = 1, . . . , zp)
are included in B((f̃)). Since f | (f), B((f̃)) is a subgroup of B(̃f). Hence
letting P(f) be the set of primes p which split completely in K such that
p1 ∈ B((f̃)), for any p ∈ P(f) we have

αp = n.

Next we define θ ∈ Ω as follows. We will later show that P(f) has in-
finitely many elements (see Lemma 8). We number the primes in P(f) in
increasing order. If a prime p appears as the kth member of P(f) in that
order, we define lp = k. We set

θ(0)
p =

{
lp/4 if p ∈ P(f),
0 otherwise,

and

(10) θp = θ(0)
p − t0

log p
2π

.
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Now, for a prime p which splits completely in K, we set

hp(s) =
αpe(−θp)

ps
.

As in Section 4, we see that it is enough to prove that, for any φ∈H2(DR(s0))
with ‖φ‖R = 1, there exist two subseries of the series

∑
p(hp, φ), one diverg-

ing to +∞ and the other to −∞.
We construct a subseries diverging to +∞ as follows. We take intervals

Im (m ∈ N) as in Lemma 5, and define finite sets Km (m ∈ N) of primes as
follows.

• If <(G(x)) > c2/e
x (x ∈ Im), then

Km = {p | p ∈ P(f), R log p ∈ Im, lp ≡ 2 (mod 4)}.
• If <(G(x)) < −c2/ex (x ∈ Im), then

Km = {p | p ∈ P(f), R log p ∈ Im, lp ≡ 0 (mod 4)}.
For p ∈ Km, by the definition (10) of θp, Lemma 5 and the fact that

αp = n for any p ∈ P(f), we have

(hp, φ) = <
(
αpe(−θp)

ps0
G(R log p)

)
=

n

pσ0
|<(G(R log p))|(11)

� exp
(
−
(
σ0

R
+ 1
)

(Rm + lm)
)
.

On the other hand, the cardinality of Km is

]Km = 1
4{π(e(Rm+lm)/R,P(f))− π(eRm/R,P(f))}+O(1)

by the definition of Km, where we set

π(x,P(f)) =
∑

p≤x
p∈P(f)

1.

We apply the following result of Mitsui [11].

Lemma 8. Let k/Q be a Galois extension, Cl(k, ã) the ideal group of k
modulo ã and C an ideal class in Cl(k, ã). Set

π(x,C) = ]{p: prime ideal in k | N(p) ≤ x, p ∈ C}.
Then

π(x,C) =
1

h(ã)

x�

2

dt

log t
+O(xe−c

√
log x)

where h(ã) is the order of Cl(k, ã).



Universality theorem for L-functions 409

We note that B((f̃)) is a principal class in Cl(k, ã). Hence by Lemma 8
we have

∑

Np≤x
p∈B((f̃))

1 =
1

h((f̃))

x�

2

dt

log t
+O(xe−c

√
log x).

The left-hand side is∑

Np≤x
p∈B((f̃))

1 =
∑

Np≤x
p∈B((f̃)), Np=p

1 +
∑

Np≤x
p∈B((f̃)), Np=py (y>1)

1.

The second term on the right is

�
∑

p2≤x
1 +

∑

p3≤x
1 + . . .+

∑

pn≤x
1 = O(x1/2) = O(xe−c

√
log x).

And a prime number p splitting completely in K corresponds to n prime
ideals which are conjugate to each other. Hence

π(x,P(f)) =
1

nh((f̃))

x�

2

dt

log t
+O(xe−c

√
log x).

By using this formula, we calculate ]Km just as for (9), to obtain

(12) ]Km � eRm/R/R3
m.

By (11) and (12), we have
∑

p∈Km
(hp, φ)� 1

R3
m

exp
((

1− σ0

R
− 1
)
Rm

)
exp

(
−
(
σ0

R
+ 1
)
lm

)
.

As in the previous section, we can prove that there exists a subseries diverg-
ing to +∞.
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[12] D. V. Pecherskĭı, On rearrangements of terms in functional series, Soviet Math.

Dokl. 14 (1973), 633–636.
[13] H. S. A. Potter, The mean values of certain Dirichlet series 1 , Proc. London Math.

Soc. 46 (1940), 467–478.
[14] A. Reich, Werteverteilung von Zetafunktionen, Arch. Math. (Basel) 34 (1980), 440–

451.
[15] T. Takagi, Daisuutekiseisuuron, Iwanami, 1970 (in Japanese).
[16] S. M. Voronin, A theorem on the “universality” of the Riemann zeta-function, Izv.

Akad. Nauk SSSR Ser. Mat. 39 (1975), 475–486 (in Russian); English transl.: Math.
USSR-Izv. 9 (1975), 443–453.

Graduate School of Mathematics
Nagoya University
Ghikusa-ku, Nagoya 464-8602, Japan
E-mail: m98018a@math.nagoya-u.ac.jp

Received on 16.5.2000
and in revised form on 3.8.2000 (3822)


