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On power residue characters of units
and the representation of numbers by quadratic forms
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Giorgos Siligardos (Heraklion)

Construction of class fields using radicals involving units is very com-
mon (see for example [4], [1], [2]) and since the splitting character of primes
into class fields is related to the representation of their powers by quadratic
forms, we may obtain representation conditions defined by the power residue
characters of units. In this paper we try to find sufficient or necessary con-
ditions depending upon the Legendre symbols of fundamental units for the
representation of prime powers for two cases of discriminants specified at
the beginning of the introduction.

1. Notation. Throughout the present paper i will be the imaginary
number such that i2 = −1, ζn will stand for e2πi/n, n ∈ N, and ζ3 will
often be denoted as ω. For a real number field Q(

√
m), m ∈ N, εm will

denote its fundamental unit. For a ring R, R× will be the multiplicative
group of its units. For a number field F we shall denote by RF its ring
of integers and NF (·) will denote the absolute norm function. If F ′/F is a
Galois extension of number fields, G(F ′/F ) will be the associated Galois
group and if furthermore F ′/F is abelian and p is a prime ideal of F , we
shall denote by

[F ′|F
p

]
the Artin symbol for p. For a Galois number field

extension F ′/F and a prime p of F , splp(F ′/F ) will be the splitting field
of p in F ′/F . Moreover, we shall denote by fp(F ′/F ) the common inertia
degree of all primes of F ′ over p in F ′/F and for simplicity, when F = Q,
we set fp(F ′) = fpZ(F ′/Q), splp(F

′) = splpZ(F ′/Q). If F is a number field,
p a prime ideal of RF , α ∈ RF and n ∈ N such that p -αn, ζn ∈ F then(
α
p

)
n

will stand for the nth power Legendre symbol. That is,
(
α
p

)
n

is the

unique nth root of unity such that α(NF (p)−1)/n ≡
(
α
p

)
n

(mod p). It is known
(see [3], Exercise 13) that
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(
α

p

)

n

= 1 if and only if α ≡ xn (mod p) is soluble in RF .

For the case n = 2 we shall omit the subscript n.
Let D be a square-free negative integer with D ≡ 0, 1 (mod 4). We write

D = f2D0, where D0 is the fundamental discriminant and f ∈ N. We denote
by H(D) the class group of all primitive positive definite quadratic forms of
discriminant D and by ~(D) (or simply ~) its order. Let k = Q(

√
D0). Then

k(D) will denote the ring class field of k modulo f . By class field theory, the
Artin symbol gives isomorphisms

H(D) '←→ Ik(f)/Pk,Z(f) '←→ G(k(D)/k)

where Ik(f) is the group of all ideals of k which are prime to f and Pk,Z(f)
is its subgroup of principal ideals aRk with a ∈ (Z + fRk), so we may use
the notation

[k(D)|k
C

]
for the image of C ∈ H(D) in G(k(D)/k).

Now, let e be a positive integer. We shall denote by He(D) the prod-
uct of the q-Sylow subgroups of H(D) for all prime divisors q of e and by
~e(D) (or simply ~e) its order. Let H(D) ∼= He(D) × H ′e(D). Then ~′e(D)
(or simply ~′e) will denote the order of H ′e(D) and so (~′e, e) = 1. We set
ke(D) to be the fixed field of H ′e(D) and so ke(D) is an extension of degree
~e over k containing all intermediate fields of k(D)/k whose order over k
divides ~e. It is obvious that He(D), ke(D) etc. depend only on the set of
prime divisors of e and not on their exponents in the rational prime decom-
position of e. If H is a subgroup of He(D), we shall denote by L(e)

H the fixed
field of H in ke(D) and if H = 〈C1, . . . , Cr〉, then we set L(e)

C1,...,Cr
= L

(e)
H .

Finally for an element C of H(D) and an integer m, the notation C → m
will indicate that m is represented by C.

2. Introduction. In this paper we shall study two cases of discrimi-
nants:

Case I: D = −256qr, q, r primes with q ≡ 5 (mod 8), r ≡ 3 (mod 8),
~2(D0) | 4.

Case II: D = −4m, m > 1 square-free integer with m ≡ 1 (mod 12),
~3(D0) | 9.

We have

D0 =
{−qr in Case I,
−4m in Case II.

In [5] it is proved that for Case I, k2(D) contains exactly four subfields
of degree 4 over k. In this case H2(D) is of type 〈A,B,C〉 with B2 = C2 = I
and A8 = I or A4 = I, where I is the principal class of H(D). These four
fields are L(2)

A4,B,C , L(2)
A2B,C , L(2)

A2C,B , L(2)
A2B,BC . One of these fields (namely
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L
(2)
A4,B,C) is responsible for the determination of specific prime powers rep-

resented by ambiguous classes in each genus. Here we shall prove that these
fields, composed pairwise, give two fields generated with the aid of the 4th
root of εqr over Q(i,

√
qr) and we shall see how the 4th and the 2nd degree

power residue symbols of εqr are connected with the representation of prime
powers by classes of H2(−256qr) of order dividing 4.

In Case II we shall find sufficient conditions using the 3rd power residue
symbol of ε3q for the representation of some prime powers of exponent ~′e
by a class C of He(D), with Ce = I for e ∈ {3, 6}. This paper is somehow
a continuation of [5] and is influenced by [4].

3. Preliminaries

Proposition 1. Let D be a negative square-free integer with D ≡ 0, 1
(mod 4). Let e ∈ {2, 3, 4, 6}, p an odd prime integer with

(
D
p

)
= 1. If

C ∈ H(D) with Ce = 1 and splp(ke(D)) = L
(e)
C then C → p~

′
e . If e = 4

then moreover the relations splp(k2(D)) = L
(2)
C and C → p~

′
2 are equivalent.

Proof. If p = p0p1 is the prime decomposition of p in k then since
splp(ke(D)) = L

(e)
C we have

〈[
ke(D) | k

p0

]〉
=
〈[

ke(D) | k
C

]〉
.

But (~′e, e) = 1 and so we have
[
ke(D) | k

C

]
=
[
ke(D) | k

p
±~′e
0

]
,

implying [
k(D) | k

C

]
=
[
k(D) | k

p
±~′e
0

]
,

which means that C → p~
′
e . For the assertion about e = 4 the reader is

referred to Lemma 1 of [4].

Comments. The essence of Proposition 1 is Lemma 1 of [4] where the
stronger part concerning e = 4 is proved. Proposition 1 is a partial trivial
extension of Halter-Koch’s result to classes of order not only dividing 4.
The proof of Lemma 1 of [4] is valid only in one direction for e = 3, 6;
the reader may see in [4] that the failure of the equivalence is due the fact
that the only integer n having the property: “∀x, y ∈ Z, if (x+y, n) = 1 then
(x − y, n) = 1” is n = 2. Also, Proposition 1 deals only with e = 2, 3, 4, 6
because these e’s are the only such that e ≥ 2 and

( Z
eZ
)×

has at most two
generators.

By [5] and by our assumptions for Case II we have the following lemma:



70 G. Siligardos

Lemma 1. For s ∈ Z, s ≥ 2, the following hold :

In Case I, H2(−22sqr) = (2s−2+cqr , 2, 2), where H2(−qr) = (2cqr+1).
In Case II, H3(D) ∈ {(3), (3, 3), (32)}.
Lemma 2. In Case I, every cyclic extension L of k of order 4 unramified

outside 2 and dihedral over Q is contained in k2(−256qr).
In Case II, every abelian unramified extension L of k of order 3 (or 2)

is contained in k3(−4m) (or k2(−4m)).

Proof. For Case I see [5]. For Case II we note that L is contained in the
Hilbert class field of k which is k(−4m).

4. Extensions of k generated with the aid of radicals of units

Proposition 2. Let q, r be prime numbers with q ≡ 5 (mod 8), r ≡ 3
(mod 8). Let also w ∈ {1, 2}, and

t =
{

1 if
(
q
r

)
= 1,

2 if
(
q
r

)
= −1.

Set k = Q(
√−qr), k0 = Q(

√
qr), K = kk0, α = 4

√
w2εqr, M = K(α). The

following hold : There exists some v ∈ K such that w2εqr = tqv2. Moreover
M/K is a cyclic Kummerian extension of order 4, M/Q is dihedral with
G(M/Q) = 〈σ, τ〉o〈%〉 and σ(

√
qr) =

√
qr, τ(

√
qr) = −√qr, %(

√
qr) =

√
qr,

σ(i) = i, τ(i) = −i, %(i) = −i, σ(α) = iα, τ(α) = w/α, %(α) = α. Also
M/K is unramified outside 2 and the fixed fields of 〈τ〉, 〈στ〉 are cyclic
extensions of k of order 4 unramified outside 2 and dihedral over Q. Finally
K(√εqr) = k(i,

√
tq).

Proof. The equation x2 − qry2 = tq is solvable in rational integers (see
Lemma 2 of [5]), so setting b = x + y

√
qr, b = x − y√qr we have bb = tq.

Since 2, q are ramified in k0 we may write tq = a2, where a is an ideal of k0

and it is easy to see (b has norm tq) that (b) = a and so there is a unit ε of
k0 such that b2 = tqε. If ε = ελqr, then λ is necessarily odd, so setting

v =
w(bε(−λ+1)/2

qr )
tq

we have α4 = w2εqr = tqv2. Let G(K/Q) = 〈τ, %〉 with τ(
√
qr) = −√qr,

%(
√
qr) =

√
qr, τ(i) = −i, %(i) = −i. We see that τ(v) = w2/(tqv), %(v) = v

and τ(α4) =
(

w
α

)4
, %(α4) = α4 and so we may extend τ , % in M so that

τ(α) =
(

w
α

)
, %(α) = α. Setting G(M/K) = 〈σ〉 with σ(α) = iα, the assertion

follows.

Similarly to the above we may prove the following:
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Proposition 3. Let m be a square-free positive integer such that m ≡ 1
(mod 4). Set k = Q(

√−m), k0 = Q(
√

3m), K = kk0 = k(ω), α = 3
√
ε3m,

M = K(α). Then M/K is a Kummerian extension of order 3 and M/Q
is dihedral of order 12. Moreover , G(M/Q) = 〈σ, τ〉o 〈%〉 with σ(

√−m) =√−m, τ(
√−m) =

√−m, %(
√−m) = −√−m, σ(

√
−3) =

√
−3, τ(

√
−3) =

−
√
−3, %(

√
−3) = −

√
−3, σ(α) = ωα, τ(α) = 1/α, %(α) = α. M/k is an

abelian extension of order 6 unramified outside 3 and the fixed field of 〈τ〉 is
an intermediate extension of M/k of order 3 over k and dihedral over Q.

5. Main results

5.1. Case I. Set M = K( 4
√
εqr), M ′ = K( 4

√
4εqr), k0 = Q(

√
qr),

K = kk0. By Proposition 2, M has two subfields L1, L2 which are cyclic
extensions of k of order 4 unramified outside 2. Also, M ′ has two sub-
fields L′1, L′2 which are cyclic extensions of k of order 4 unramified out-
side 2. By Lemma 2, L1, L2, L′1, L′2 are contained in k(−256qr) and so since
H2(−256qr) has exactly four subgroups giving quotient groups cyclic of or-
der 4 (namely L(2)

A4,B,C , L(2)
A2B,C , L(2)

A2C,B, L(2)
A2B,BC) (see [5], Proposition 4):

{L1, L2, L
′
1, L
′
2} = {L(2)

A4,B,C , L
(2)
A2B,C , L

(2)
A2C,B, L

(2)
A2B,BC}

= {k(
√
ωµ) | ω = ±1,±2},

where x, y are arbitrary integral solutions of qx2 − ry2 = t, µ = t− y
√
−tr

and

t =
{

1 if
(
q
r

)
= 1,

2 if
(
q
r

)
= −1.

Now,
√

2 6∈M,M ′ and i ∈M,M ′, giving {k(i,
√
µ), k(i,

√
2µ)} = {M,M ′}.

We will determine whether M = k(i,
√
µ) or M = k(i,

√
2µ). For this, we

need the following lemma:

Lemma 3. If q, r are prime numbers with q ≡ 5 (mod 8), r ≡ 3 (mod 8)
and εqr = u + v

√
qr is the fundamental unit of Q(

√
qr), then u ≡ −1

(mod q).

Proof. By u2 − qrv2 = 1 we have u ≡ ±1 (mod q). If u = 1 + κq for a
κ ∈ Z, then squaring we get κ(qκ + 2) = rv2. Suppose first that κ is odd.
Then (κ, qκ+ 2) = 1. The case r |κ gives qrv2

1 + 2 = v2
2 where v = v1v2 and

leads to a contradiction since
(

2
q

)
= −1. The case r -κ implies v2

1q+ 2 = rv2
2

with v = v1v2, which also leads to a contradiction upon taking Legendre
quadratic symbols modulo q and modulo r. Now, let κ be even. Write κ = 2κ′

and so κ′(qκ′ + 1) = rv′2 where v = 2v′. The case r |κ′ gives v2
1 − qrv2

2 = 1
where v = 2v1v2 and u + 1 = 2v2

1 . So v1 < u and v2 < v, which is a
contradiction since u + v

√
qr is the fundamental unit. The case r -κ′ gives

v2
1q + 1 = rv2

2 with v = v1v2 and thus taking quadratic Legendre symbols
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modulo q and modulo r we have
(
q
r

)
= 1, and

(
q
r

)
= −1, which also leads

to a contradiction.

A consequence of the above lemma is that εqr ≡ −1 (mod q) and thus
fq(M) = 2 and fq(M ′) = 1. We may check easily (see [5], Proposition 4)
that

fq(k(
√
µ, i)) =

{
1 if

(
q
r

)
= −1

2 if
(
q
r

)
= 1

}
=

2
t

and thus

(M,M ′) =

{
(k(i,

√
µ), k(i,

√
2µ)) if

(
q
r

)
= 1,

(k(i,
√

2µ), k(i,
√
µ)) if

(
q
r

)
= −1,

= (k(i,
√
tµ), k(i,

√
2tµ)).

Now, it is straightforward to see that, by Proposition 6 of [5], M ′ =
L

(2)
A4,B,C(i). Moreover, the symbol up defined in Theorem 1 of [5] for primes

p with
(−256qr

p

)
=
(
tq
p

)
= 1 as

up =





(−1)(p−1)/2 if p |x,(−µ
p

)
if p -x and

(
q
r

)
= −1,

(−2µ
p

)
if p -x and

(
q
r

)
= 1,

has the property:

up = 1 if and only if fp(L
(2)
A4,B,C) = 1.

We may now prove the following lemma:

Lemma 4. Let p be an odd prime with
(
D
p

)
= 1 and let p be a prime of

k0 over p.

1. If p ≡ 1 (mod 4) then
(
tq

p

)
=
(
εqr
p

)
, and if

(
εqr
p

)
= 1 then up =

(
εqr
p

)

4

(
2
p

)
.

2. If p ≡ 3 (mod 4) then
(
tq

p

)
=
(
εqr
p

)

4
.

Proof (see Figure 0 below). First of all we note that fp(k) = 1. Now,
when p ≡ 1 (mod 4) we have fp(K) = 1, giving

fp(K(
√
εqr)) = 2 ⇔ fp(k(

√
tq)) = 2, so

(
tq

p

)
=
(
εqr
p

)
.

Moreover, when
( εqr

p

)
= 1 we have

( 4εqr
p

)
4 = ±1 and
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(
4εqr
p

)

4
= 1 ⇔ fp(M ′) = 1 ⇔ fp(L

(2)
A4,B,C) = 1 ⇔ up = 1.

If p ≡ 3 (mod 4) then fp(K) = 2 and since K(√εqr)/K is of type (2, 2) we

have fp(K(√εqr)) = 1. So, if fp(k(
√
tq)) = 2 then fp(L

(2)
A4,B,C) = 4, giving

fp(M ′) = 4, which means
( 4εqr

p

)
4 = −1, and if fp(k(

√
tq)) = 1 we have

fp(M ′) = 2, giving
( 4εqr

p

)
4 = 1. The desired relations are an immediate

consequence of the relation
(

4
p

)

4
=
(

2
p

)
=
{( 2

p

)
if p ≡ 1 (mod 4),

1 if p ≡ 3 (mod 4).

M ′

L
(2)
A4,B,C

K(√εqr)

k(
√
tq) K = k(i)

k Q(i) k0

Q
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Fig. 0

In what follows we restrict our attention to the case
(
q
r

)
= −1 where

we may get the following theorem connecting quadratic and quartic power
residue symbols of εqr and representation of prime powers by classes of
H(−256qr) of order dividing 4.

Theorem 1. In Case I, let
(
q
r

)
= −1. Let also p be an odd prime with(−256qr

p

)
= 1 and p a prime of Rk0 over p. The following assertions hold :

(1) p~
′
2 is always represented by a class C of H(−256qr) with C4 = I.

(2) p~
′
2 is represented by an ambiguous class of H(−256qr) if and only

if
(
tq
p

)
= 1.

(3) If p ≡ 1 (mod 4), then p~
′
2 is represented by an ambiguous class of

H(−256qr) if and only if
( εqr

p

)
= 1 and moreover , p~

′
2 is represented by

one of I, C if and only if
( εqr

p

)
4 =

(
2
p

)
.
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(4) If p ≡ 3 (mod 4), then p~
′
2 is represented by an ambiguous class of

H(−256qr) if and only if
( εqr

p

)
4 = 1.

Proof. Since
(
q
r

)
= −1 we have H2(−256qr) = 〈A,B,C〉 with A4 =

B2 = C2 = 1. Now H2(Ds)/H2(D)2 has elements {I,A2}, {B,A2B},
{C,A2C}, {BC,A2BC}, {A,A3}, {AB,A3B}, {AC,A3C}, {ABC,A3BC}.
Since the genus field modulo D is k(

√
q, ζ8), the Artin map induces the

following isomorphism (see [5], Proposition 1):

H2(D)/H2(D)2 '−→ (Z/8Z)× × {±1}
with

C mod (H2(Ds)2)→
([
Q(ζ8) | Q

m

]
,

[
Q(
√
q) | Q
m

])
for C → m.

By Proposition 3 of [5], for an odd prime p with
(−256qr

p

)
= 1 we obtain the

following criteria:

(A) If p~
′
2 is represented by an ambiguous class then

(
q

p

)
=
{

1 if p ≡ 1, 7 (mod 8),
−1 if p ≡ 3, 5 (mod 8).

The other cases of
(
q
p

)
must be distributed in the other genera of

H2(−256qr) and so we have the following result (see also Proposition 1):

(B) If X → p~
′
2 with X ∈ {A,AB,AC,ABC} then
(
q

p

)
=
{
−1 if p ≡ 1, 7 (mod 8),
1 if p ≡ 3, 5 (mod 8).

LI = k2(D)

LA2B LB LBC LA2 LA2BC LA2C LC

LA2,B LAB LABC LA LA2,BC LAC LA2,C
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Fig. 1. Field tower for the Case I with ( qr ) = −1
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L0 was defined as k(
√
tq) in [5] giving L0 = k(

√
2q) for

(
q
r

)
= −1 and so

by Figure 1 of [5] the inverse of (A) holds. By Figure 1 of the present paper
and simple decomposition arguments, the inverse of (B) also holds and so
we have proved (1). (We note that for every X ∈ {A,AB,AC,ABC} we
have LX = LA2X , which means: X → p~

′
2 if and only if A2X → p~

′
2 .) Now,

fp(L0) = 1 if and only if
(
tq
p

)
= 1 if and only if p~

′
2 is represented by an

ambiguous class (see Figure 1 of [5]) and thus (2) comes immediately. Also,
(2) and Lemma 4 give the first assertion of (3). Finally, by Theorem 1 of [5]
and Lemma 4 we have (4) and the second assertion of (3).

Although things for
(
q
r

)
= 1 are not so nice as in the case

(
q
r

)
= −1 we

may still get the following theorem whose proof is similar to the above and
uses the results of Theorem 1 of [5], Figure 3 of [5] and Lemma 4:

Theorem 2. In Case I, let
(
q
r

)
= 1. Let also p be an odd prime with(

D
p

)
= 1 and p a prime of Rk0 over p. The following assertions hold :

(1) p~
′
2 is represented by a class C of H(−256qr) with C4 = I if and

only if
(
tq
p

)
= 1.

(2) If p ≡ 1 (mod 4), then p~
′
2 is represented by a class C of H(−256qr)

with C4 = I if and only if
( εqr

p

)
= 1, and moreover , p~

′
2 is represented by

an ambiguous class of H(D) if and only if
( εqr

p

)
4 =

(
2
p

)
.

(3) If p ≡ 3 (mod 4), then p~
′
2 is represented by a class C of H(−256qr)

with C4 = I if and only if
( εqr

p

)
4 = 1.

5.2. Case II. For Case II, we set k = Q(
√−m), k0 = Q(

√
3m), K =

kk0, M = K( 3
√
ε3m) and we apply Proposition 3. Let L be the fixed field

of 〈τ〉. Since 3 decomposes as 3 = (1 − ω)2 in Q(
√
−3) and (1 − ω) is a

prime of Q(
√
−3) which is inert in K, it follows that (3) = (1 − ω)2 is the

prime decomposition of 3 in K. By the decomposition law in Kummerian
extensions, 3 is ramified in M if and only if

ε3m ≡ x3 (mod (1− ω)3)

is soluble in K. Thus we get the following theorem:

Theorem 3. In Case II, if ε3m ≡ x3 (mod (1 − ω)3) is not soluble in
K and p is an odd prime such that

(
D
p

)
= 1 then:

(1) If H3(D) is of type (3) or (3, 3) then there is some C ∈ H(D) such
that C3 = 1 with C → p~

′
3 .

(2) If H3(D) is of type (32) then if “p ≡ 2 (mod 3)” or “p ≡ 1 (mod 3),(
ε3m
p

)
3 = 1” then there is some C ∈ H(D) such that C3 = 1 with C → p~

′
3 .

(3) If the assumptions of (1) or (2) hold , and there is some C ∈ H(D)
such that C2 = 1 with C → p~

′
2 , then there is E ∈ H(D) such that E6 = 1

with E → p~
′
6 .
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Proof. (1) is obvious by the assumptions about class structure, decom-
position laws and Proposition 1. For (2), if p ≡ 2 (mod 3) or p ≡ 1 (mod 3),(
ε3m

p

)
3 = 1 then by the decomposition laws in the cyclic extension M/k we

get fp(L/k) = 1 and so there is some C1 ∈ H(D) with C3
1 = 1 such that

L
(3)
C1

= splp(k3(D)). If moreover there exists some C2 ∈ H(D) such that

C2
2 = 1 with L

(2)
C2

= splp(k2(D)) then we may set E = C1C2, giving E6 = 1
and

L
(6)
E = L

(3)
C1
L

(2)
C2

= splp(k2(D))splp(k3(D)) = splp(k6(D)),

which (by Proposition 1) gives E → p~
′
6 .

6. Calculation of power residue symbols. In this section we give
an elegant way of computing the power Legendre symbols appearing in this
paper in terms of a recurrent sequence. The idea is taken from [4] to which
the reader is referred for similar calculations.

Proposition 4. Let m ∈ N, m ≡ 3 (mod 4), be square-free and n ∈ N.
Let also p be an odd prime with p -n. Set F = Q(

√
m, ζn) and let p be

a prime ideal of F over p. If ε = u + v
√
m is a unit of Q(

√
m) then

u2 −mv2 = 1. Define the sequence (Aj)j∈N as: A0 = 2, A1 = 2u, Aj+2 =
2uAj+1 − Aj . Then Aj = εj + ε−j for all j ∈ N and

(
ε

p

)

n

= 1 if and only if A(NF (p)−1)/n ≡ 2 (mod p).

Proof. Since m ≡ 3 (mod 4), the equation x2−my2 = −1 has no integral
solutions, so u2 − mv2 = 1. Also, since p -n, we have NF (p) ≡ 1 (modn)
(see [3], Exercise 5.13). The relation Aj = εj + ε−j may easily be proved
using induction, and since

Aj ≡ 2 (mod p) ⇔ εj + ε−j − 2 ≡ 0 (mod p)

⇔ (εj − 1)2 ≡ 0 (mod p) ⇔ εj ≡ 1 (mod p),

we have
(
ε

p

)

n

= 1 ⇔ ε(NF (p)−1)/n ≡ 1 (mod p) ⇔ A(NF (p)−1)/n ≡ 2 (mod p)

⇔ A(NF (p)−1)/n ≡ 2 (mod p).
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