Hausdorff dimensions in Engel expansions

by

YAN-YAN LIU and JUN WU (Wuhan)

1. Introduction. Given x in (0, 1], let $x = [d_1(x), d_2(x), \ldots]$ denote the *Engel expansion* of x, that is,

(1)
$$x = \frac{1}{d_1(x)} + \frac{1}{d_1(x)d_2(x)} + \ldots + \frac{1}{d_1(x)d_2(x)\ldots d_n(x)} + \ldots,$$

where $\{d_j(x), j \ge 1\}$ is a sequence of positive integers satisfying $d_1(x) \ge 2$ and $d_{j+1}(x) \ge d_j(x)$ for $j \ge 1$ (see [3]). In [3], János Galambos proved that for almost all $x \in (0, 1]$,

(2)
$$\lim_{n \to \infty} d_n^{1/n}(x) = e_n$$

Also he posed the following questions (see [3], P132):

(i) Find the Hausdorff dimension of the set where (2) fails.

(ii) For any $k \ge 1$, let

 $A_k = \{ x \in (0, 1] : \log d_n(x) \ge kn \text{ for any } n \ge 1 \}.$

Find the Hausdorff dimension of the set A_k .

For (i), the second author [4] has proved that the Hausdorff dimension of the set where (2) fails is 1.

In this paper, we get a stronger result than those in (i) and (ii). We show

THEOREM. For any $\alpha \geq 1$, let

$$A(\alpha) = \{ x \in (0,1] : \lim_{n \to \infty} d_n^{1/n}(x) = \alpha \}.$$

Then

$$\dim_{\mathrm{H}} A(\alpha) = 1.$$

As corollaries of the Theorem, both the Hausdorff dimensions in (i) and (ii) are 1.

2000 Mathematics Subject Classification: Primary 11K55; Secondary 28A80. Project supported by the Special Funds for Major State Basic Research Projects. We use $|\cdot|$ to denote the diameter of a subset of (0, 1], dim_H to denote the Hausdorff dimension, [] the integer part of a real number and cl the closure of a subset of (0, 1] respectively.

2. Proof of the Theorem. The aim of this section is to prove the main result of this paper.

In what follows we often make use of the code space. Let $\{M_n, n \ge 1\}$ be a sequence of positive numbers such that $M_1 > 1$, $M_k < M_{k+1}$ for any $k \ge 1$. For any $n \ge 1$, let

$$D_n = \{ (\sigma_1, \dots, \sigma_n) \in \mathbb{N}^n : kM_k < \sigma_k \le (k+1)M_k \text{ for all } 1 \le k \le n \}.$$

Define

$$D = \bigcup_{n=0}^{\infty} D_n \quad (D_0 = \emptyset).$$

For any $\sigma = (\sigma_1, \ldots, \sigma_n) \in D_n$, we use J_{σ} to denote the following closed subinterval of (0, 1]:

$$J_{\sigma} = \bigcup_{k=[(n+1)M_{n+1}]+1}^{[(n+2)M_{n+1}]} \operatorname{cl}\{x \in (0,1] : d_1(x) = \sigma_1, \dots, d_n(x) = \sigma_n, d_{n+1}(x) = k\},\$$

and call it an *n*-order interval.

Define

(3)
$$E = \bigcap_{n=0}^{\infty} \bigcup_{\sigma \in D_n} J_{\sigma}.$$

It is obvious that

(4)
$$E = \{x \in (0,1] : nM_n < d_n(x) \le (n+1)M_n \text{ for all } n \ge 1\}.$$

Proof of the Theorem. We divide the proof into two parts:

PART I: $\alpha > 1$. For any $n \ge 1$, let $M_n = \alpha^n$. Now we estimate the length of J_{σ} for any $\sigma \in D_n$. Since for any $(n+1)\alpha^{n+1} < k \le (n+2)\alpha^{n+1}$,

$$|\{x \in (0,1] : d_1(x) = \sigma_1, \dots, d_n(x) = \sigma_n, \ d_{n+1}(x) = k\}|$$
$$= \frac{1}{\sigma_1 \dots \sigma_n} \left(\frac{1}{k-1} - \frac{1}{k}\right),$$

we have

$$|J_{\sigma}| = \sum_{k=[(n+1)M_{n+1}]+1}^{[(n+2)M_{n+1}]} \frac{1}{\sigma_1 \dots \sigma_n} \left(\frac{1}{k-1} - \frac{1}{k}\right).$$

Therefore

(5)
$$(n+2)^{-(n+2)}\alpha^{-(n+1)(n+2)/2}\alpha^{-(n+1)} \le |J_{\sigma}| \le \alpha^{-(n+1)(n+2)/2}.$$

Let μ be a mass distribution supported on E such that for any $n \ge 0$ and $\sigma \in D_n$,

(6)
$$\mu(J_{\sigma}) = \frac{1}{\sharp D_n} \quad (\sharp D_0 = 1).$$

By the definition of D_n , it is easy to check that

(7)
$$c^{-n}\alpha^{n(n+1)/2} \le \sharp D_n \le c^n \alpha^{n(n+1)/2},$$

where c is a positive constant which does not depend on n.

For any $x \in E$, we prove that

(8)
$$\liminf_{r \to 0} \frac{\log \mu(B(x,r))}{\log r} \ge 1,$$

where B(x, r) denotes the open ball with center at x and radius r.

For $r < \alpha^{-3}$, choose $n \ge 3$ such that

(9)
$$\alpha^{-n(n+1)/2} < r \le \alpha^{-(n-1)n/2}$$

By (5), B(x,r) can intersect at most $4n^n \alpha^{n-1}$ (n-2)-order intervals, thus by (6) and (7),

$$\liminf_{r \to 0} \frac{\log \mu(B(x,r))}{\log r} \ge \liminf_{n \to \infty} \frac{\log (c^{n-2} \alpha^{-(n-2)(n-1)/2} 4n^n \alpha^{n-1})}{\log \alpha^{-n(n+1)/2}} = 1.$$

By [2], Proposition 2.3, (see also [1], Proposition 4.9) we have $\dim_{\mathrm{H}} E = 1$. Since $E \subset A(\alpha)$, we have $\dim_{\mathrm{H}} A(\alpha) = 1$.

PART II: $\alpha = 1$. The proof of this part is very similar to Part I; we just give an outline.

For any $n \ge 1$, let

$$M_n = \left(1 + \frac{1}{\sqrt{n}}\right)^n.$$

Then as in Part I, we have

(10)
$$(n+2)^{-(n+2)} \left(\prod_{k=1}^{n+1} \left(1 + \frac{1}{\sqrt{k}}\right)^k\right)^{-1} \left(1 + \frac{1}{\sqrt{n+1}}\right)^{-(n+1)}$$

 $\leq |J_{\sigma}| \leq \left(\prod_{k=1}^{n+1} \left(1 + \frac{1}{\sqrt{k}}\right)^k\right)^{-1}$
(11) $c^{-n} \prod_{k=1}^n \left(1 + \frac{1}{\sqrt{k}}\right)^k \leq \sharp D_n \leq c^n \prod_{k=1}^n \left(1 + \frac{1}{\sqrt{k}}\right)^k$.

For any $x \in E$, $r < (\prod_{k=1}^{3} (1 + 1/\sqrt{k})^k)^{-1}$, choose $n \ge 3$ such that

(12)
$$\left(\prod_{k=1}^{n} \left(1 + \frac{1}{\sqrt{k}}\right)^{k}\right)^{-1} < r \le \left(\prod_{k=1}^{n-1} \left(1 + \frac{1}{\sqrt{k}}\right)^{k}\right)^{-1}.$$

By (10), B(x, r) can intersect at most $4n^n(1+1/\sqrt{n-1})^{n-1}$ (n-2)-order intervals, thus by (6) and (11), we have

(13)
$$\liminf_{r \to 0} \frac{\log \mu(B(x, r))}{\log r} \\ \ge \liminf_{n \to \infty} \frac{\log \left(c^{n-2} \left(\prod_{k=1}^{n-2} \left(1 + \frac{1}{\sqrt{k}} \right)^k \right)^{-1} 4n^n \left(1 + \frac{1}{\sqrt{n-1}} \right)^{n-1} \right)}{\log \left(\prod_{k=1}^n \left(1 + \frac{1}{\sqrt{k}} \right)^k \right)^{-1}}.$$

Since $\{(1+1/\sqrt{n})^{\sqrt{n}}, n \ge 1\}$ is an increasing sequence such that for any $n \ge 1$,

(14)
$$2 \le \left(1 + \frac{1}{\sqrt{n}}\right)^{\sqrt{n}} \le e,$$

and

(15)
$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{n}} \ge \int_{1}^{n} x^{-1/2} dx = 2n^{1/2} - 2,$$

we have

$$\liminf_{r \to 0} \frac{\log \mu(B(x, r))}{\log r} \ge 1,$$

completing the proof of the Theorem.

COROLLARY 1. For any $k \ge 1$, dim_H $A_k = 1$.

Proof. For any $k \ge 1$, choose $M > e^k$. Let $M_n = M^n$ for any $n \ge 1$. Then $E \subset A_k$. By the proof of the Theorem, we have $\dim_{\mathrm{H}} E = 1$, thus $\dim_{\mathrm{H}} A_k = 1$.

From the proof of the Theorem, we can also get the following corollaries immediately.

COROLLARY 2. For any $n \ge 2$ and $\alpha \ge 1$, let

$$B(\alpha) = \left\{ x \in (0,1] : \lim_{n \to \infty} \frac{d_{n+1}(x)}{d_n(x) - 1} = \alpha \right\}.$$

Then

$$\dim_{\mathrm{H}} B(\alpha) = 1.$$

COROLLARY 3. The Hausdorff dimension of the set where (2) fails is 1.

Acknowledgments. The authors thank the referee for his (her) valuable comments and Dr. De-jun Feng for his helpful suggestions.

References

- K. J. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Wiley, 1990.
- [2] —, Techniques in Fractal Geometry, Wiley, 1997.
- [3] J. Galambos, Reprentations of Real Numbers by Infinite Series, Lecture Notes in Math. 502, Springer, 1976.
- [4] J. Wu, A problem of Galambos on Engel expansions, Acta Arith. 92 (2000), 383–386.

Department of Mathematics and Center of Non-linear Science Wuhan University 430072, Wuhan People's Republic of China E-mail: yyliu@nlsc.whu.edu.cn wujunyu@public.wh.hb.cn

> Received on 26.6.2000 and in revised form on 21.11.2000 (3

(3842)