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1. Introduction. Given x in (0, 1], let x = [d1(x), d2(x), . . .] denote the
Engel expansion of x, that is,

(1) x =
1

d1(x)
+

1
d1(x)d2(x)

+ . . .+
1

d1(x)d2(x) . . . dn(x)
+ . . . ,

where {dj(x), j ≥ 1} is a sequence of positive integers satisfying d1(x) ≥ 2
and dj+1(x) ≥ dj(x) for j ≥ 1 (see [3]). In [3], János Galambos proved that
for almost all x ∈ (0, 1],

(2) lim
n→∞

d1/n
n (x) = e.

Also he posed the following questions (see [3], P132):

(i) Find the Hausdorff dimension of the set where (2) fails.
(ii) For any k ≥ 1, let

Ak = {x ∈ (0, 1] : log dn(x) ≥ kn for any n ≥ 1}.
Find the Hausdorff dimension of the set Ak.

For (i), the second author [4] has proved that the Hausdorff dimension
of the set where (2) fails is 1.

In this paper, we get a stronger result than those in (i) and (ii). We show

Theorem. For any α ≥ 1, let

A(α) = {x ∈ (0, 1] : lim
n→∞

d1/n
n (x) = α}.

Then
dimHA(α) = 1.

As corollaries of the Theorem, both the Hausdorff dimensions in (i) and
(ii) are 1.
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We use | · | to denote the diameter of a subset of (0, 1], dimH to denote
the Hausdorff dimension, [ ] the integer part of a real number and cl the
closure of a subset of (0, 1] respectively.

2. Proof of the Theorem. The aim of this section is to prove the main
result of this paper.

In what follows we often make use of the code space. Let {Mn, n ≥ 1}
be a sequence of positive numbers such that M1 > 1, Mk < Mk+1 for any
k ≥ 1. For any n ≥ 1, let

Dn = {(σ1, . . . , σn) ∈ Nn : kMk < σk ≤ (k + 1)Mk for all 1 ≤ k ≤ n}.
Define

D =
∞⋃

n=0

Dn (D0 = ∅).

For any σ = (σ1, . . . , σn) ∈ Dn, we use Jσ to denote the following closed
subinterval of (0, 1]:

Jσ =
[(n+2)Mn+1]⋃

k=[(n+1)Mn+1]+1

cl{x∈(0, 1] : d1(x) = σ1, . . . , dn(x) = σn, dn+1(x) = k},

and call it an n-order interval .
Define

(3) E =
∞⋂

n=0

⋃

σ∈Dn
Jσ.

It is obvious that

(4) E = {x ∈ (0, 1] : nMn < dn(x) ≤ (n+ 1)Mn for all n ≥ 1}.
Proof of the Theorem. We divide the proof into two parts:

Part I: α > 1. For any n ≥ 1, let Mn = αn. Now we estimate the length
of Jσ for any σ ∈ Dn. Since for any (n+ 1)αn+1 < k ≤ (n+ 2)αn+1,

|{x ∈ (0, 1] : d1(x) = σ1, . . . , dn(x) = σn, dn+1(x) = k}|

=
1

σ1 . . . σn

(
1

k − 1
− 1
k

)
,

we have

|Jσ| =
[(n+2)Mn+1]∑

k=[(n+1)Mn+1]+1

1
σ1 . . . σn

(
1

k − 1
− 1
k

)
.

Therefore

(5) (n+ 2)−(n+2)α−(n+1)(n+2)/2α−(n+1) ≤ |Jσ| ≤ α−(n+1)(n+2)/2.
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Let µ be a mass distribution supported on E such that for any n ≥ 0
and σ ∈ Dn,

(6) µ(Jσ) =
1
]Dn

(]D0 = 1).

By the definition of Dn, it is easy to check that

(7) c−nαn(n+1)/2 ≤ ]Dn ≤ cnαn(n+1)/2,

where c is a positive constant which does not depend on n.
For any x ∈ E, we prove that

(8) lim inf
r→0

logµ(B(x, r))
log r

≥ 1,

where B(x, r) denotes the open ball with center at x and radius r.
For r < α−3, choose n ≥ 3 such that

(9) α−n(n+1)/2 < r ≤ α−(n−1)n/2.

By (5), B(x, r) can intersect at most 4nnαn−1 (n− 2)-order intervals, thus
by (6) and (7),

lim inf
r→0

logµ(B(x, r))
log r

≥ lim inf
n→∞

log(cn−2α−(n−2)(n−1)/24nnαn−1)
logα−n(n+1)/2

= 1.

By [2], Proposition 2.3, (see also [1], Proposition 4.9) we have dimH E = 1.
Since E ⊂ A(α), we have dimHA(α) = 1.

Part II: α = 1. The proof of this part is very similar to Part I; we just
give an outline.

For any n ≥ 1, let

Mn =
(

1 +
1√
n

)n
.

Then as in Part I, we have

(10) (n+ 2)−(n+2)
( n+1∏

k=1

(
1 +

1√
k

)k)−1(
1 +

1√
n+ 1

)−(n+1)

≤ |Jσ| ≤
( n+1∏

k=1

(
1 +

1√
k

)k)−1

,

(11) c−n
n∏

k=1

(
1 +

1√
k

)k
≤ ]Dn ≤ cn

n∏

k=1

(
1 +

1√
k

)k
.

For any x ∈ E, r < (
∏3
k=1(1 + 1/

√
k)k)−1, choose n ≥ 3 such that

(12)
( n∏

k=1

(
1 +

1√
k

)k)−1

< r ≤
( n−1∏

k=1

(
1 +

1√
k

)k)−1

.
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By (10), B(x, r) can intersect at most 4nn(1+1/
√
n− 1)n−1 (n−2)-order

intervals, thus by (6) and (11), we have

(13) lim inf
r→0

logµ(B(x, r))
log r

≥ lim inf
n→∞

log
(
cn−2

(n−2∏

k=1

(
1 +

1√
k

)k)−1

4nn
(

1 +
1√
n− 1

)n−1)

log
( n∏

k=1

(
1 +

1√
k

)k)−1 .

Since {(1+1/
√
n)
√
n, n ≥ 1} is an increasing sequence such that for any

n ≥ 1,

(14) 2 ≤
(

1 +
1√
n

)√n
≤ e,

and

(15) 1 +
1√
2

+
1√
3

+ . . .+
1√
n
≥
n�

1

x−1/2 dx = 2n1/2 − 2,

we have

lim inf
r→0

logµ(B(x, r))
log r

≥ 1,

completing the proof of the Theorem.

Corollary 1. For any k ≥ 1, dimH Ak = 1.

Proof. For any k ≥ 1, choose M > ek. Let Mn = Mn for any n ≥ 1.
Then E ⊂ Ak. By the proof of the Theorem, we have dimHE = 1, thus
dimH Ak = 1.

From the proof of the Theorem, we can also get the following corollaries
immediately.

Corollary 2. For any n ≥ 2 and α ≥ 1, let

B(α) =
{
x ∈ (0, 1] : lim

n→∞
dn+1(x)
dn(x)− 1

= α

}
.

Then
dimH B(α) = 1.

Corollary 3. The Hausdorff dimension of the set where (2) fails is 1.
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