Corrections to "Irreducibility of the iterates of a quadratic polynomial over a field"

(Acta Arith. 93 (2000), 87-97)
by
Mohamed Ayad (Calais) and Donald L. McQuillan (Dublin)

We use the notations and terminology of Sections 1, 2 and 3 of the paper.
The converse part of Theorem 6 is already false when $A=\mathbb{Z}$ while the other half of the theorem is true in a more general setting.

Example. Let $f(x)=x^{2}+2 x-2$ in $\mathbb{Z}[x]$. Then $d=12$ and hence $f(x)$ is stable over \mathbb{Q} by Theorem 3. However, $f(-d / 4)=1$, a square.

We prove
Theorem A. Let K be a field whose characteristic is different from 2. Let $f(x)=x^{2}-l x+m$ be irreducible in $K[x]$. Then $f(x)$ is stable over K if $f_{n}(-d / 4)$ is not a square in K for every $n \geq 1$.

Proof. It is easy to see by induction on n that $f_{n}(x)=g_{n-1}\left(x-l_{0}\right)^{2}-d_{0}$. Indeed, the case $n=1$ is trivial and assuming the equality holds for n, we conclude that

$$
\begin{aligned}
f_{n+1}(x) & =f_{n}(f(x))=g_{n-1}\left(f(x)-l_{0}\right)^{2}-d_{0} \\
& =g_{n-1}\left(g\left(x-l_{0}\right)\right)^{2}-d_{0} \\
& =g_{n}\left(x-l_{0}\right)^{2}-d_{0}
\end{aligned}
$$

Hence, $f_{n}(-d / 4)=g_{n-1}\left(\delta_{0}\right)^{2}-l_{0}=g_{n-1}^{2}-d_{0}$ and the result follows from Theorem 1.

Université du Littoral - Côte d'Opale Department of Mathematics

50, rue F. Buisson, BP 699
62228 Calais, France
E-mail: ayad@lma.univ-littoral.fr

