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I. Introduction. Let Xk denote the set
{
{x1, . . . , xk} :

k∑

j=1

1
xj

= 1, 0 < x1 < . . . < xk

}
.

Erdős and Graham (see [3] and [4]) asked the following questions:

1. Is it true that

max{x1 : {x1, . . . , xk} ∈ Xk} ∼
k

e− 1
?

Trivially, it is less than or equal to (1 + o(1))k/(e− 1), so all one needs to
show is a lower bound of size (1 + o(1))k/(e− 1).

2. Is it true that

min{xk − x1 : {x1, . . . , xk} ∈ Xk} ∼ k?

(Note: These two questions were misstated in [3].)

In [6] Greg Martin proves that there exist ∼ (e − 1)x/e integers ≤ x
whose sum of reciprocals equals 1 (actually he proves a more general result,
which applies to expansions of positive rationals).

This result implies that

min{xk : {x1, . . . , xk} ∈ Xk} ∼
ek

e− 1
,

which improves upon his earlier work in [5]. This result would also follow
from the affirmative answer to questions 1 and 2 above; however, Martin’s
result cannot be applied to solve these questions, since his result gives no
information about x1 (the smallest denominator in such representation).
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100 E. S. Croot III

In this paper we will prove the following theorem, which solves these
questions of Erdős and Graham for infinitely many k.

Main Theorem. Suppose that r > 0 is any given rational number.
Then, for all N > 1, there exist integers x1, . . . , xk, with

N < x1 < . . . < xk ≤
(
er +Or

(
log logN

logN

))
N

such that

r =
1
x1

+ . . .+
1
xk
.

Moreover , the error term Or(log logN/logN) is best possible.

We will now discuss the idea of the proof of the Main Theorem. Let c > 1
be the smallest real number such that

r ≤
∑

N<n<cN

1
n
≤ r +

1
cN

.

Using the fact that
∑

1≤n≤t 1/n = log t + γ + O(1/t) one can show that
c = er +Or(1/N). Now suppose

(1.1)
u

v
=

∑

N<n<cN

1
n
, where gcd(u, v) = 1.

If we had u/v = r, then we would have proved our theorem for this in-
stance of r and N , because c = er + Or(1/N) is well within the error of
Or(log logN/logN) claimed by our theorem. Unfortunately, for large N it
will not be the case that u/v = r.

To prove the theorem, we first will use a proposition which says that we
can remove terms from the sum in (1.1), call them 1/d1, . . . , 1/dl, so that if

u′

v′
=
u

v
−
{

1
d1

+ . . .+
1
dl

}
=

∑

N<n<cN
n6=d1,...,dl

1
n
, where gcd(u′, v′) = 1,

then all the prime power factors of v′ are ≤ N1/5; moreover, we will have

log logN
logN

�r
1
d1

+ . . .+
1
dl
�r

log logN
logN

.

We will then couple this with another proposition which says that if s is
some rational number whose denominator has all its prime power factors
≤ M1/4−ε where 0 < ε < 1/8, and if s � log log logM/logM , then there
are integers M < n1 < . . . < nk < e(v(ε)+o(1))sM , where v(ε) is some
constant depending on ε, such that

s =
1
n1

+ . . .+
1
nk
.
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The way we use this second proposition is by letting M = cN and setting
s = r − u′/v′, so that

log logM
logM

�r s�r
log logM

logM
.

Now, all the prime power factors of the denominator of s will be ≤ N 1/5

(when N is sufficiently large). Thus, the hypotheses of this second proposi-
tion are met with ε = 1/20, and so there exist n1, . . . , nk such that

r = s+
u′

v′
=

∑

N<n<cN
n6=d1,...,dl

1
n

+
k∑

i=1

1
ni
.

All the denominators of these unit fractions will be no larger than

e(v(20)+o(1))sM = e(v(20)+o(1))s+rN =
(
er +Or

(
log logN

logN

))
N,

and will all be greater than N .
The way we will prove that the error term Or(log logN/logN) is best

possible is by showing that if

r =
1
x1

+ . . .+
1
xk
, 2 ≤ x1 < . . . < xk are integers,

then none of the xi’s can be divisible by a prime p > xk/log xk (this idea
appears in [2], [3], and [6]). It will turn out that this forces

xk
x1

> er
(

1 +
(r + o(1)) log log xk

log xk

)
,

thus finishing the proof of the Main Theorem.

II. Smooth numbers. In order to even state, let alone prove, the
propositions and lemmas needed to prove the Main Theorem, we will need
to introduce some notation and definitions concerning smooth numbers. We
say that a number n is y-smooth if all of its prime factors are less than or
equal to y, and we define the usual smooth number counting function as
follows:

ψ(N, y) := #{n ≤ N : n is y-smooth}
= #{n ≤ N : p |n, p prime⇒ p ≤ y}.

Define
S(N, y) := {n ≤ N : pa |n, p prime⇒ pa ≤ y},

and let
ψ′(N, y) = |S(N, y)|,

the number of elements in S(N, y).
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In later sections we will need various estimates concerning the ψ′(N, y)
and ψ(N, y) functions, and we will use the following lemma to obtain them.

Lemma 1 (N. G. de Bruijn). For any fixed ε < 3/5, uniformly in the
range

y ≥ 2, 1 ≤ u ≤ exp{(log y)3/5−ε},
we have

ψ(N, y) = N%(u)
{

1 +O

(
log(u+ 1)

log y

)}
,

where u = logN/log y and %(u) is the unique continuous solution to the
differential-difference equation

{
%(u) = 1 if 0 ≤ u ≤ 1,
u%′(u) = −%(u− 1) if u > 1.

For a proof of this lemma, see [1]. We can deduce the same estimate for
the function ψ′(N, y) by using the following lemma.

Lemma 2.
∑

mpa≤L
pa≥y, a≥2
p prime

1
mpa

= O

(
logL√
y

)
.

Proof.
∑

mpa≤L
pa≥y, a≥2
p prime

1
mpa

<
∑

n≥√y

∞∑

j=2

∑

m≤L

1
njm

� logL
∑

n≥√y

1
n2 �

logL√
y
.

From these last two lemmas we deduce that

ψ′(N, y) = ψ(N, y)−O
(
N

∑

mpa≤N
pa≥y, a≥2
p prime

1
mpa

)
(2.1)

= ψ(N, y)−O
(
N logN√

y

)
.

Combining this with the previous two lemmas, we have the following
final result of this section.

Lemma 3. If c, u� 1 and N �c,u 1, then
∑

N<n<cN
n∈S(N,N1/u)

1
n

= %(u) log c+Ou

(
1

logN

)
.
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Proof. From Lemma 1, Lemma 2, and (2.1) we have the following chain
of equalities:

∑

N<n<cN
n∈S(N,N1/u)

1
n

=
{ ∑

N<n<cN
n isN1/u-smooth

1
n

}
−O

(
ψ(N,N1/u)− ψ′(N,N1/u)

N

)

=
∑

N<n<cN
n isn1/u-smooth

1
n
−O

( ∑

N1/u<p<(cN)1/u

p prime

∑

N/p<m<cN/p

1
mp

)

−O
(

log(cN)
N1/(2u)

)

= %(u) log c+O

(
1

logN
+
π((cN)1/u)

N1/u
+

log(cN)
N1/(2u)

)

= %(u) log c+Ou

(
1

logN

)
.

III. Proof of the Main Theorem. To prove the Main Theorem we
will require the following two propositions, which are the same as those
mentioned in the introduction.

Proposition 1. Let c > 1. Then, for all N sufficiently large, there exist
integers d1, . . . , dl with N < d1 < . . . < dl < cN such that if

(3.1)
f

g
=

∑

N<n<cN
n6=d1,...,dl

1
n
,

then all the prime power factors of g are ≤ N 1/5, and

(3.2)
log logN

logN
�c

1
d1

+ . . .+
1
dl
�c

log logN
logN

.

Proposition 2. Suppose 0 < ε < 1/8 and A and B are positive inte-
gers, where gcd(A,B) = 1, all the prime power divisors of B are ≤M 1/4−ε,
and log log logM/logM � A/B ≤ 1. Select c(M) > 0 so that

2
A

B
≤

∑

M≤n≤c(M)M
n∈S(c(M)M,M1/4−ε)

1
n
< 2

A

B
+

1
c(M)M

.

Then, for all M sufficiently large, there exist integers n1, . . . , nk with M ≤
n1 < . . . < nk ≤ c(M)M , each ni ∈ S(c(M)M,M1/4−ε), and

A

B
=

1
n1

+ . . .+
1
nk
.
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Remark. From Lemma 3 we deduce that c(M) < ev(ε)A/B, where v(ε)
is some function depending only on ε. By using a “short interval” version
of Lemma 1, one can prove a stronger version of Lemma 2, and possibly
a stronger version of Proposition 2, which would work for all A/B with
1/log1+εN � A/B < 1, for any ε > 0.

Using these propositions we will now prove the Main Theorem. Let M
be the least integer where

(3.3) r ≤
∑

N<n<M

1
n
≤ r +

1
M
.

Using the fact that
∑

1≤n≤x 1/n = log x+ γ +O(1/x), it is easy to see that
M/N = er+O(1/N).

Now, from Proposition 1, we see that for N sufficiently large, there exist
integers d1, . . . , dl with N < d1 < . . . < dl < M = er+O(1/N)N , such that if

u

v
=

∑

N<n<M
n6=d1,...,dl

1
n
, gcd(u, v) = 1,

then all the prime power factors of v are ≤ N 1/5. Also, from (3.2) and (3.3)
we find that if we let A/B = r − u/v, where gcd(A,B) = 1, then

log logN
logN

� A

B
� log logN

logN
.

We observe that once N is large enough, all the prime power factors of B
will be ≤ N1/5. We conclude from Proposition 2 with ε = 1/20 that there
exist integers n1, . . . , nk with

M ≤ n1 < . . . < nk < ev(1/20)A/BM,

where v(1/20) is some constant, and such that

A

B
=

1
n1

+ . . .+
1
nk
.

Thus, we have the following representation for r:

r =
u

v
+
A

B
=
( ∑

N<n<M
n6=d1,...,dl

1
n

)
+

1
n1

+ . . .+
1
nk
,

where

nk < ev(1/20)A/BM

=
{

1 +O

(
log logM

logM

)}
M =

{
er +Or

(
log logN

logN

)}
N.

This proves the first part of the Main Theorem.
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To see that the Or(log logN/logN) error term is best possible, suppose
that

r =
U

V
=

1
x1

+ . . .+
1
xk
, where gcd(U, V ) = 1.

Let Z = max{xi : i = 1, . . . , k}. We claim that the largest prime p dividing
the xi’s satisfies p < Z(1 + or(1))/logZ. To see this, fix a prime p and
suppose

x1 = pm1 < x2 = pm2 < . . . < xl = pml

are all the xi’s divisible by p. We have two cases to consider: case 1 is if
p |V , and case 2 is when p -V .

If we are in case 1, where p |V , then certainly p ≤ V , and so p <
Z(1 + o(1))/logZ, for k sufficiently large (or N sufficiently large). If we are
in case 2, where p -V , then p -Y either, where Y is given by

W

Y
=

1
x1

+ . . .+
1
xl

=
1
p

(
1
m1

+ . . .+
1
ml

)
, gcd(W,Y ) = 1.

Thus, p divides

lcm{m1, . . . ,ml}
{

1
m1

+ . . .+
1
ml

}

≤ lcm{2, 3, . . . ,ml}
{

1 +
1
2

+
1
3

+ . . .+
1
ml

}
= eml(1+o(1)),

and so p < eml(1+o(1)). From this we deduce that

Z ≥ pml > p log p(1 + o(1));

or in other words,

p <
Z

logZ
(1 + o(1)).

Making use of this bound on p we have

r =
k∑

j=1

1
xj
≤

∑

N<n<cN
p|n⇒p<cN(1+o(1))/log(cN)

1
n

(3.4)

=
( ∑

N<n<cN

1
n

)
−
( ∑

N<mp<cN
p>cN(1+o(1))/log(cN)

1
mp

)
.

The first of this last pair of sums can be estimated using the well known
estimate

∑
x≤n≤y 1/n = (log x)/y +O(1/x), which gives

(3.5)
∑

N<n<cN

1
n

= log c+O

(
1
N

)
.
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To estimate the second of the last pair of sums in (3.4), we will need the
following lemma, which is proved at the end of this section.

Lemma 4. For c > 1 and α > 0 we have

∑

N<mpa<cN
pa>N/logαN, p prime

1
mpa

=
∑

N<mp<cN
p>N/logαN, p prime

1
mp

+ Oc

(
1

logN

)

=
α(log c)(log logN)

logN
+Oc

(
1

logN

)
.

Combining this lemma with (3.4) and (3.5), we have

r ≤ log c− (log c+ o(1))
log logN

logN
.

Solving for c we find that

c ≥ er
(

1 +
(r + o(1)) log logN

logN

)
.

Proof of Lemma 4. Using the fact that
∑

1≤j≤n 1/j = logn+γ+O(1/n),
together with the estimate

∑

p≤n
p prime

1
p

= log logn+ κ+ o(1/logn),

where κ is some constant, we have the following chain of inequalities:

∑

N<mp≤cN
p>N/logαN, p prime

1
mp

=
∑

N/logαN<p≤cN

1
p

∑

N/p<m≤cN/p

1
m

=
∑

N/logαN<p≤cN

1
p

{
log
(
cN

p

)
− log

(
N

p

)
+O

(
p

N

)}

=
∑

N/logαN<p≤cN

1
p

{
log c+O

(
p

N

)}

= log c
∑

N/logαN<p≤cN

1
p

+O

(
π(cN)
N

)
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= log c
{

log log cN − log log
(

N

logαN

)
+ o

(
1

logN

)}
+Oc

(
1

logN

)

=
α(log c)(log logN)

logN
+Oc

(
1

logN

)
,

as claimed. The error incurred by replacing the sum over primes to a sum
over prime powers will be Oc(1/logN).

IV. Proof of Proposition 1. Let p1 < . . . < ph be all the primes in
[N1/5, N/log10 N). Define

S := (N, cN) ∩ Z, Sh+1 := S \ ({mp : p prime, p > N/log10 N}
∪ {mpa : p prime, a ≥ 2, pa ≥ N1/5}),

and let
uh+1

vh+1
=

∑

n∈Sh+1

1
n
, where gcd(uh+1, vh+1) = 1.

Notice that vh+1 has no prime divisor ≥ N/log10 N ; moreover, vh+1 has no
prime power factors ≥ N/log10 N , for N sufficiently large, since the only
prime power divisors of elements of S that are ≥ N 1/5 are primes. We also
have

(4.1)
∑

n∈S\Sh+1

1
n

=
∑

N≤mp≤cN
p≥N/log10N

1
mp

+O

( ∑

mp≤cN
p≥N1/5, a≥2

p prime

1
mpa

)
.

The first of these last two sums can be estimated using Lemma 4, which
gives

∑

N≤mp≤cN
p≥N/log10 N

1
mpa

=
(10 log c+ o(1)) log logN

logN
,

and the second can be estimated using Lemma 2, which gives
∑

mpa≤cN
p≥N1/5, a≥2

p prime

1
mpa

= O

(
log(cN)
N1/10

)
.

Combining the last two displayed equations with (4.1), we deduce that
∑

n∈S\Sh+1

1
n

=
(10 log c+ o(1)) log logN

logN
.

Starting with the prime ph we will successively construct subsets of Sh+1,

Sh ⊇ Sh−1 ⊇ Sh−2 ⊇ . . . ⊇ S1,
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where if
ui
vi

=
∑

n∈Si

1
n
, gcd(ui, vi) = 1,

then all the prime factors of vi are smaller than pi for all i = 1, . . . , h;
moreover, we will construct these sets in such a way that

∑

n∈Si+1\Si

1
n
� 1

pi logN
for i = 1, . . . , h.

If we can accomplish this, then if we let {d1, . . . , dl} = S \ S1, we will have

1
d1

+ . . .+
1
dl

=
∑

n∈S\Sh+1

1
n

+
h+1∑

j=2

∑

n∈Sj\Sj−1

1
n

=
∑

n∈S\Sh+1

1
n

+O

( h∑

j=1

1
pj logN

)
� log logN

logN
,

and
1
d1

+ . . .+
1
dl
≥

∑

n∈S\Sh+1

1
n

=
(10 log c+ o(1)) log logN

logN
.

Thus, (3.2) will be satisfied. We will also have
∑

n∈S
n6=d1,...,dl

1
n

=
u1

v1
,

where all of the prime factors of v1 are smaller than N1/5; moreover, all the
prime power factors of v1 will be smaller than N1/5, since the only prime
powers ≥ N1/5 that can divide elements of S are primes. Thus, (3.1) will
be satisfied, and so if we can construct these sets Si, Proposition 1 will be
proved.

Suppose, for proof by induction, we have constructed the sets Sj where
2 ≤ i ≤ j ≤ h+1. Then all the prime factors of vi are ≤ pi−1. If pi−1 - vi, we
just let Si−1 := Si, and then all the prime factors of vi−1 are smaller than
pi−1.

If pi−1 | vi, then pi−1 ‖ vi, since the only prime power factors of elements
of S that are ≥ N1/5 are primes. We will use Proposition 2 to construct
Si−1 as follows: Using Bertrand’s Postulate, let q be the smallest prime in
[logN, 2 logN ], and set M = N/(qpi−1) > (log9 N)/2. Let

B = lcm{n ≤M1/5} > lcm{n ≤ (logN)9/5/21/5} > 2cpi−1M

(which will be true for M sufficiently large), and let A be the largest integer
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≤ c′B/2 where

c′ =
∑

M<n<cM
n∈S(cM,M1/5)

1
n

= %(5) log c+O

(
1

logM

)

(which follows from Lemma 3) and

A ≡ qBui(vi/pi−1)−1 (mod pi−1)

(note: pi−1 ‖ vi). Since B > 2cpi−1M , and since A ∈ [c′B/2 − pi−1, c
′B/2],

we have

2
A

B
≤ c′ < 2

A

B
+

2pi−1

B
< 2

A

B
+

1
cM

,

for N is sufficiently large. From Proposition 2, there exist n1, . . . , nk with
M < n1 < . . . < nk < cM where each ni ∈ S(cM,M1/5) and

1
n1

+ . . .+
1
nk

=
A

B
.

Now, we claim that we can let

Si−1 = Si \ Ti,
where

Ti = {qpi−1nj : 1 ≤ j ≤ k}.
Notice that the elements of Ti all lie in [N, cN ], and have largest prime
divisor equal to pi−1, which is their only prime power divisor ≥ N 1/5. Thus,
Ti ⊂ Sh+1. Also, Ti ∩ Tj = ∅ if i 6= j, since the largest prime divisors of
elements of Ti and Tj are pi−1 and pj−1, respectively. Thus,

Ti ∩ Si = Ti ∩ (Sh+1 \ (Th+1 ∪ . . . ∪ Ti+1)) = Ti ∩ Sh+1 = Ti,

which implies Ti ⊆ Si (in fact, Ti ⊂ Si).
If we let Si−1 be defined in this way, then, since pi−1 | vi, we have

ui−1

vi−1
=
ui
vi
− A

qpi−1B
=
qBui −Avi/pi−1

viqB
.

Thus,
viqBui−1 = vi−1(qBui − Avi/pi−1).

Since qBui − Avi/pi−1 ≡ 0 ≡ vi (mod pi−1), and since gcd(ui−1, vi−1) = 1,
we must have vi−1 | viqB/pi−1. Now vi/pi−1 is not divisible by pi−1, since, as
we mentioned earlier, pi−1 ‖ vi, and so vi/pi−1 has all its prime power divisors
< pi−1; also, qB is not divisible by pi−1, since B = lcm{2, 3, . . . ,M1/5}, and
M1/5 is less than N1/5 < pi−1, and since q < M . So, all the prime divisors
of vi−1 are < pi−1. We also have

∑

n∈Si\Si−1

1
n
<

∑

M<n<cM

1
qpi−1n

� log c
pi−1q

� 1
pi−1 logN

,
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and so Si−1 satisfies all the requisite properties. We conclude that all the
sets Sj , j = 1, . . . , h+ 1, can be constructed, and so Proposition 1 follows.

V. Proof of Proposition 2. Let

P := lcm(1, 2, . . . , [M1/4−ε]) = eM
1/4−ε(1+o(1)),

where this last equality follows from the Prime Number Theorem. Let
M ≤ y1 < . . . < yt ≤ c(M)M be all the divisors of P lying in [M, c(M)M ];
that is, all the integers in S(c(M)M,M 1/4−ε) in the interval [M, c(M)M ].
If Y |P , we have the following identity:

1
P

P/2−1∑

h=−P/2
e

(
Xh

Y

)
=
{

1 if Y |X,
0 if Y -X,

where e(u) = e2πiu. Thus, if B |P , one can deduce that

#{{n1, . . . , nk} ⊆ {y1, . . . , yt}, k variable : 1/n1 + . . .+ 1/nk = A/B}

≥ 1
P

P/2−1∑

h=−P/2
e

(−Ah
B

) t∏

j=1

{
1 + e

(
h

yj

)}
− 2.

(The reason for subtracting 2 in the above equation is that when A/B = 1,
the exponential sum also counts the extraneous representations 1/n1 + . . .+
1/nk = 0 and 2.)

Let

F (h) :=
t∏

j=1

{
1 + e

(
h

yj

)}
(5.1)

= e

(
h

2

{
1
y1

+ . . .+
1
yt

})(
2t

t∏

j=1

cos(πh/yj)
)
.

Upon substituting this into our equation above this gives

(5.2) #{{n1, . . . , nk}⊆ {y1, . . . , yt}, k variable : 1/n1+. . .+1/nk =A/B}

≥ 1
P

( P/2−1∑

h=−P/2
e(−Ah/B)F (h)

)
− 2.

We will now try to find a lower bound for (5.2). To do this we will show

(5.3) |F (h)| < 2t

2P
for M/2 < |h| ≤ P/2,

and

(5.4)
∑

1≤h≤M/2

e(−Ah/B)F (h) + e(Ah/B)F (−h) > 0,
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from which we deduce ∑

0≤|h|≤M/2

e(−Ah/B)F (h) > 2t.

From this, (5.2), and (5.3), it then follows that

#{{n1, . . . , nk} ⊆ {y1, . . . , yt}, k variable : 1/n1 + . . .+ 1/nk = A/B}

>
2t−1

P
− 2 = 2t−O(M1/4−ε),

which is exponential in t since

t�ε M
A

B
� M log log logM

logM
.

To establish (5.4), we first observe from (5.1) that

(5.5) Arg{e(−Ah/B)F (h)}

=
−2πAh
B

+ πh

{
1
y1

+ . . .+
1
yt

}
+ Arg

{ t∏

j=1

cos(πh/yj)
}
.

Using the fact that
1
y1

+ . . .+
1
yt

= 2
A

B
+ δ,

where
0 ≤ δ ≤ 1

c(M)M
,

together with the fact that each yj is ≥M , we have

(5.6)
∣∣∣∣
−2πAh
B

+ πh

{
1
y1

+ . . .+
1
yt

}∣∣∣∣ = πδ|h| < π|h|
M
≤ π

2
,

whenever
|h| ≤M/2.

Also for such h, we observe that

cos(πh/yj) ≥ cos(π/2) = 0 for j = 1, . . . , t,

since yj ≥M for all j. Hence,

Arg
{ t∏

j=1

cos(πh/yj)
}

= 0.

Using this, together with (5.5) and (5.6), we find that

|Arg{e(−Ah/B)F (h)}| < π/2, whenever |h| < M/2.

Thus, for such h we have

e(−Ah/B)F (h) + e(Ah/B)F (−h) > 0,

and so (5.4) follows.



112 E. S. Croot III

In order to establish (5.3), we will need the following lemma, which will
be proved in the next section of the paper:

Lemma 5. Suppose 0 < ε < 1/8. Let y1 < . . . < yt be all the integers
in [M, (1 + 1/logM)M ] where each yi ∈ S((1 + 1/logM)M,M1/4−ε). Then
for M sufficiently large and h real , either :

1. There are � M3/4 yi’s which do not divide any integer in I :=
(h−M3/4, h+M3/4), or

2. There is an integer in this interval which is divisible by P := lcm{pa ≤
M1/4−ε : p prime}.

From this lemma, it follows that if

M/2 ≤ |h| ≤ P/2,
and if

Z(c1) = #{yj , j = 1, . . . , t : ‖h/yj‖ > c1/M
1/4},

where ‖u‖ denotes the distance to the nearest integer from u, then for some
constants c1, c2 > 0 we will have for all M sufficiently large,

Z(c1) > c2M
3/4.

For these integers yj counted by Z(c1), we will have

|cos(πh/yj)| = |cos(‖πh/yj‖)| < |cos(πc1/M1/4)|

= 1− 1
2
· π

2c21
M1/2

+O

(
1
M

)
.

From this and (5.1) it follows that for such h,

|F (h)| < 2t
(

1− 1
2
· π

2c21
M1/2

+O

(
1
M

))Z(c1)

� 2te−π
2c2c

2
1M

1/4/2 = o

(
2t

P

)
.

This establishes (5.3) and thus proves the proposition.

VI. Proof of Lemma 5. For each integer n satisfying

(6.1) M3/4 log3 M <n< 2M3/4 log3M, n∈S(2M3/4 log3M,M1/4−ε),

define
M(n) := {yj : yj = nq, where ω(q) ≤ 3}.

We claim that lcmM(n) = P for all such n. We will show below that the
truth of this claim implies that either:

A. There is an n satisfying (6.1) such that every integer of M(n) divides
a single integer in I, which together with the assumption lcmM(n) = P
gives us case 2 in the claim of our lemma, or

B. For each n satisfying (6.1), there is an integer yα(n) ∈ M(n) which
does not divide any integer in (h−M 3/4, h+M3/4).
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We will assume that case B is true and show that it implies case 1 in the
claim of our lemma (and thus if we can show that lcmM(n) = P and that
either A or B is true, we may conclude that either case 1 or case 2 in our
lemma is true):

The first thing to notice is that from (2.1) we know that there are at least
cεM

3/4 log3 M integers n satisfying (6.1). If all of the yα(n)’s as indicated in
case B were distinct, then there would be at least cεM3/4 log3M yj ’s not
dividing any integer in (h −M 3/4, h + M3/4), which is the first possibility
claimed by our lemma; however, it is not necessarily the case that the yα(n)’s
are distinct. To overcome this difficulty, we will now show that no yi can lie
in too many of the sets M(n): Let

D(M) := max
yi

#{n : n satisfies (6.1) and yi ∈M(n)}

≤ max
yi

#{q : q | yi, ω(q) ≤ 3} = o(log3 M).

From this we have

#{yα(n) : n satisfies (6.1)}

≥ ψ(2M3/4 log3 M,M1/4−ε)− ψ(M3/4 log3 M,M1/4−ε)
D(M)

�M3/4.

Thus, there are �M3/4 yj ’s which do not divide any integer in (h−M 3/4,
h+M3/4), which covers case 1 claimed by our lemma.

We will now show that if lcmM(n) = P for all n satisfying (6.1),
then either case A or case B above must be true. So, let us assume that
lcmM(n) = P for all n satisfying (6.1). If case B is true, then we are done.
So, let us assume that case B is false. Then there is an n satisfying (6.1)
such that each member of M(n) divides an integer in I. Since each such
member is divisible by n ≥ M3/4 log3 M , which is greater than the length
of I, all such members must divide the same integer in I. Thus, case A is
true.

To finish the proof of our lemma, we now show that lcmM(n) = P for
all n satisfying (6.1). Fix an n satisfying (6.1) and let pa ≤ M1/4−ε be the
largest power of the prime p that is ≤M 1/4−ε. Let pe be the exact power of
p which divides n. Thus, e ≤ a. We will show there exists a yj ∈M(n) with

yj = npa−el1l2, where l1 and l2 are primes with gcd(l1l2, n) = 1,

which will imply that yj is divisible by pa, and thus pa | lcmM(n). Such a
yj exists if we can just find primes l1, l2 ≤M1/4−ε which satisfy

(6.2)

√
M

npa−e
≤ l1 < l2 ≤

√(
1 +

1
logM

)
M

npa−e
, gcd(l1l2, n) = 1.
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To see that it is possible to find l1 and l2 we first observe that the lower
limit of the interval in (6.2) is

√
M

npa−e
�
√

M

(M3/4 log3 M)M1/4−ε =
Mε/2

log3/2 M
,

and the length of the interval is the multiple
√

1 + 1/logM − 1 �
1/logM of this lower limit. From the Prime Number Theorem, there are
�Mε/2/(ε log7/2 M) primes in this interval, and so for M sufficiently large
there must be two of them l1 < l2 which do not divide n < 2M 3/4 log3 M .
These two primes therefore satisfy (6.2). To see that l1, l2 < M1/4−ε, we
observe that the upper limit of the interval in (6.2) satisfies
√(

1 +
1

logM

)
M

npa−e
<

√
2M
n
≤
√

2M

M3/4 log3 M
=

√
2M1/8

log3/2 M
< M1/4−ε,

for M sufficiently large and 0 < ε < 1/8. Thus, we can find l1 and l2 as
claimed, and so our lemma is proved.
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