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1. Introduction

1.1. Let Z[i] be the ring of Gaussian integers, # € Z[i] such that ¢t :=
101> > 2, and A = {ag = 0,a1,...,a;_1} (C Z][i]) a complete residue system
mod #. We call A the set of digits. Then, for each a € Z[i], there exists a
unique o3 € Z[i] and a unique by € A such that o = by + 6. The function
J : Z[i] — Z][i] is defined by J(a) = a;.

Iterating J, we define the orbit

(1.1) a(=ag), a1=J(ag), as=J(a1), ...
Let
— g gl
el -1 aeq 14

It is easy to show that

(a) if |a| > L, then |a1| < |af,

(b) if |a| < L, then |a;| < L.

Hence the orbit (1.1) is ultimately periodic for every a € Z[i]. The proof of
the two easy assertions stated above is given in the lecture notes [3].

An integer m € Z[i] is said to be periodic if there is a positive integer k for
which J*(7) = 7. Let P be the set of periodic points. From the assertions
(a) and (b) we see that if = € P, then |7| < L.

Repeating the expansion defined above, we obtain

(1.2) a=Dby+b10+...+bp 10" +0%, (E=0,1,...),

where the sequence of the digits bg,...,bx_1 is uniquely determined by «
and 6. Let k be the smallest nonnegative integer for which aj € P. Then
(1.2) with this k is called the correct expansion of a. By this convention,
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each a has a unique correct expansion. Let [(«) := k be the length of the
representation. Then [(«) = 0 if and only if a € P.

A system (0, A) is called a number system (or a numeration system) if
P = {0}. In that case each « € Z[i] has a finite expansion.

In [4] it was proved that A = {0,1,...,t— 1} is an appropriate digit set
for 6 to generate a number system if and only if it has the form 8 = —A +
or § = —A — i with A > 1. G. Steidl [6] proved that for § € Z[i] there is a
suitable digit set A such that (6, .4) is a number system if and only if ¢ > 2
and 1 — 6 is not a unit.

1.2. Assume that 6, A are fixed.

DEFINITION 1. A function f : Z[i] — R is additive (with respect to the
expansion generated by 6 and A) if

(a) f(r0*) =0for r € P and k =0,1,...,

(b) for every « € Z[i],

Fl@) = f(bo) + F(020) + ... + f(br—10"""),

where oo = by + b160 + ... + bp_105~1 4+ 6%7 is the correct expansion of a.

Let &y be the class of additive functions in the above sense.

DEFINITION 2. A function g : Z[i] — C is multiplicative (with respect to
the expansion generated by 6 and A) if

(a) g(n0F) =1for r€ Pand k =0,1,...,

(b) for every a € Z[i],

k—1
g(@) = [T 9(0,6").
j=0
Let My be the class of multiplicative functions in the above sense. Let

My C My be the set of those g for which additionally |g(a)| = 1 for all
a € Zli].

1.3. Since o] - K ol + K
o — ol +
< [J(e)] <
4 6]
where
1. K=
(1.3) max |al,

iterating we get the following

LEMMA 1. There exist suitable positive constants ci,co (depending on 0
and K) such that

_ log|a]
log |0

(1.4) —co < l(a) < ¢ for every o € Z[i]\{0}.
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2. Formulation of the main results. Our purpose in this paper is to
give necessary and sufficient conditions for the existence of the mean value
of g € My, where the summation is extended to a disc around zero with
growing radius, or to some sectors of it.

We shall prove that the analogue of Delange’s theorem for ¢-multi-
plicative functions [1] remains valid (see Theorem 1). As an application
we give necessary and sufficient conditions for the existence of the limit dis-
tribution of f € & (see Theorem 2). Finally we prove a theorem for the
local distribution of the sum of digits function (see Theorem 4).

3. Lemmata. For an interval I C [~1/2,1/2) let Ct denote the annulus
{z]12€C,1/]0] < |z| <1, (argz)/(2m) € I}. For g € M let

(3.1) Si(zlg) == Y g(),
acxCy

where x is a positive growing parameter and xC; = {xz | z € C}.
It is well known that S;(z|1) = number of Gaussian integers in zC7 is
m|I|z2(1 — 1/t) + O(x) as & — oo, uniformly in I.

Let
log x
2 N, = ——
(3.2) log |0
(3.3) Aji= ) g(bt?).
be A

LEMMA 2. Assume that g(b#7) — 1 as j — oo, b € A. Then there is a
monotonic sequence Ry — oo of positive integers such that

max |1 —g(B0N) -0 (N — o00).
|B1<|6]7N

Proof. Clear.
Let I} be the set of those Gaussian integers which can be written as
bo + b0 + ...+ bp_10*"1, where the b, run over the set A. Then I, is a

complete residue system mod #*. For a € Z[i] let si(a) (€ I';) be defined
by a = sp(a) (mod #%).

LEMMA 3. Assume that g(b0?) — 1 as j — oo, for allb € A. Then there
exists an increasing sequence of integers M, < N, such that N, — M, —
o0, M, — oo, for which

g(a) = (L4 0:(1))g(sn, (@) (z— o0)
uniformly as z /10| < |a| < x; furthermore
M,—1

B Sifelg) = (4ol (1= 3 )ma? TT 34,4 0(e)
=0
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Proof. The first assertion is a direct consequence of Lemma 2. Let o =
su, (@) + 0M=ay, . Then

< Ny—M,+c
oa1:1 = g * gt |

— < |0
-1~

with some constant ¢ > 0. By taking M, = N, + ¢ — Ry, we find that
g(anr, 0M+) — 1 uniformly in the domain, thus the first assertion is proved.

Thus we have
Sr(zlg) = Y g(sa, () + o(1)2?|1].
aczxzCr

To evaluate the sum on the right hand side, we write a as o = 3+ 0=,
where § € I'y,. If v € Z[i] occurs as a component of some « in xC7, then

T K T K
3.5 _ < <
(3.5) |0 Ma+1 o]—1— vl < —‘H‘Mz + 7’0’ —7
6| M-
(3.6) |arg7 — M, arg6| < & <ec- |9‘Mw—Nw'

For all but O(z/]0)=) of « satisfying (3.5) and (3.6) all of the integers
B+ 0Mery, 3 € Iy, belong to xC;. Since the number of Gaussian integers
in the domain defined by (3.5), (3.6) is

2
T T
I|| —— O
m ’(wwz) i (|0|M>
we have

Sutale) = 711157 ) (1-3) 32 00+ 0lalo) + o(1) a1

BeTly

Since [0+ < x[@|M==Ne and Y 4. 9(8) = H] A Y(1/t)4;, (3.4) im-
mediately follows.

LEMMA 4. Let g € Mq. Assume that there exists a constant ¢ > 0, an

infinite sequence 0 < Iy < ly < ... of integers and a suitable sequence of
digits by, by, ... € A such that |1 — g(b,0*)| >c (v=0,1,...). Then
Si(zlg)
e -0 (z— o0)

uniformly for every interval I whose length is bounded below by a positive
constant.

Proof. We argue as in the proof of Lemma 3. Let M, be so chosen that
N, — M, — oo slowly. Let us write each a € 2C as 3+ 0M=~. Then

Si(zlg) = g(0™=~
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where X, is the sum of g() over those 3 € I'y, for which 3+ 6M=~ € 2Cy.
Thus

Sielg) < 30124,
v
We have |X,| < tM=_ and
M,—1
== 1] 4
§=0
if 34 6M=ry € xC; for every 3 € I'y,. Hence we obtain

M.
|
|S1(z]9)] < e2® [ ] 21451+ O(x|0M).
7=0

To finish the proof it is enough to observe that (1/t)|4;| < 1—4§(c) with
some positive constant d(c) depending on ¢, if j € {l,}52,. This is a direct
consequence of the following

LEMMA 5. Let wg,...,wi_1 be complex numbers of modulus 1, wy = 1,
and A :=wy+ ... +wi_1. Then

t—1
2o AR>Sl
j=1
Proof. 1t is enough to observe that 2Re(1 — w;) = |1 — w;|?. From the

identity
2~ AP =2t Re(l - w;) - ] 31— w;)

and from the Holder inequality

2

)

t—1

Y- <e-DFn-wP

=1

the assertion immediately follows.

4. Consequences. We are ready to formulate our result.

THEOREM 1. Let g € M.
(1) If the series

(4.1) > ) Re(1 - g(et))
j=0ccA
1s divergent, then
Si(zlg)
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uniformly on the intervals I whose length is bounded below by a positive
constant. Consequently,
1
4.2 —_— 0.
(42) X gl
lo]<a
argacl(a)

(2) If (4.1) is convergent, then

Si(zlg) -
= H¥|AJ"7
J

1m
s ‘ S|~ 1l

and the right hand side is non-zero if and only if A; #0 (7 =0,1,...).
(3) The non-zero limit

. Si(zlg)
lim
z—oo Sr(z|1)

exists if and only if

(4.3) o> (1= glet?)

j=0ceA
is convergent, and A; #0 (j =0,1,...).
Proof. If (4.1) is divergent, then by Lemma 5, > (1 — (1/t)|4,]|) = oo,
and so Hjj\/i“’o (1/t)|A;| — 0; consequently, from Lemmas 3 and 4 we obtain

the first assertion in (1). The fulfilment of (4.2) is obvious, since the left
hand side equals to
7)o

T X
Si(elg) +Sf<\ﬂg> +S’(W

If (4.1) is convergent, then sois [[(1/t)|4;|, and by (3.4) the second assertion
follows. The proof of the last assertion is similar.

As a consequence we have

THEOREM 2. Let f € Ay, and assume that it has a limit distribution,
i.e.

1
Illn;oﬁ#{a\ la| <z, f(a) <y}=F(y)

exists, where F' is a distribution function. Then both of the series

(4.4) SO Fet),

j=0cecA

(4.5) SO (et

j=0ceA
are convergent.



Additive functions 179

If (4.4), (4.5) are convergent, then for each interval I C [—1/2,1/2),

lim Z,H#{auaw f(a) <y, arga € I} = F(y).

The characteristic function of F can be given by
o - i f(c67)
o) = 1 {7 X e}
3=0 ce A
Another corollary of Theorem 1 is

THEOREM 3. Let f € Ag, f(ct?) =0O(1) as j — oo, c € A,
1 4 1 .
m; = - D f(et?),  of = - D (f(et?) = my)?,

ce A ceA
o) N
2 § 2 — E )
TN . — Uj’ EN — mJ.
j=0 7=0

Assume that Ty — oo. Let I C [—1/2,1/2) be an interval. Then

1 —F
m#{a a;gﬂ_a € I, f(a)T‘sz < y} = (1 + Om(1>)@(y),

where @ is the Gaussian law.

la] <,

x

Theorems 2 and 3 can be derived from Theorem 1 by making use of the
method of characteristic functions in probability theory.

5. The local distribution of the sum of digits and similar ad-
ditive functions. Assume that f € &, the values of f(c6’) (c € A) are
rational integers, and that f(cf’) = f(c) for every j > 0, ¢ € A. Assume
furthermore that the greatest common divisor of the values {f(c) | ¢ € A}
is 1.

Let & (j =0,1,...) be identically distributed independent random vari-
ables with distribution

P& =fle)) =1/t (ceA).
Let ny =&+ ...+ &n_1 and

1 1 1 y?
— 1 XS0 =i L@ -mP, o) = e ()
bich tich 2 2
According to Theorem 6 (Chapter VII) in the book of V. V. Petrov [5],

(5.1) Pl =) - o Em0 ) -

as N — oo, uniformly in k.
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Since p(wz) —p(w1) = ¢’ (§)(we —w1) with some £ € [w1,ws], and ¢’(§) =
—£p(€), from (5.1) we easily obtain
ko — k
(5.2)  |P(nn = k1) — P(ny = k2)| < LN%(Q + 0(%),

where ¢ is located in the interval with endpoints (k; —mN)/(cvV/N) (i=1,2).
We would like to count

(5.3) Ry = #{a|a € xCy, f(a)=Fk}.

Acting as in the proof of Lemmas 3 and 4, we write each a as § +
OMary B € Iy, Let a € 207, o = B+ 0Mey, f(a) = k. Let us drop «
if there is some (3’ € 'y, for which 3’ + M+~ ¢ xCr. The cardinality of
these integers is at most O(x|0|M+). Fixing a remaining v, we count those
B € 'y, for which f(3+ 0M=vy) = k.

The size of these numbers is

(5.4) tMe P(nar, =k — f(6™+)).

Since || <|0|Ne=Ma+1 the value f(6M=~)= f(v) is bounded by N, — M, +1.
From (5.2) we see that (5.4) equals

(5:5) M P, = k) + O@/2) + O™ (Ny — My + 1)(&5))
where &, is located in the interval with endpoints
k—mM, k- f(v)—
oM, ’ oM,
Let us sum over the appropriate values of -, i.e. over those for which
B+ Mz~ € 2Ct for every 3 € I'yy,. The number of appropriate Gaussian

integers v approximately equals the number of Gaussian integers in the an-
nulus 26 ~= C; with error bounded by the boundary, which is O(z - |0] =),

thus it is
1 x?
1-—= I O
(1= )it + 0 ()

Since ¢ is a bounded function, from (5.5) we deduce that

(5.6) Ry, = (1 - t%)ﬂ!IIxQP(n k) + 0<t52/2>

+ O((Ny — My + 1)zt M=/2) £ O(x).

Let us choose now M, = N, —[clog N,|, with a positive constant ¢. Then
the error terms on the right hand side of (5.6) are bounded by O(x2(1~9))
with some constant ¢ > 0.
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From (5.1) we easily get

log N,.)3/2
(5.7 Play, = 1) = Pl =)+ 0 LERE)
uniformly in k.
Let
5_k—mNgc 5_k:—mMgc
e ov/N, ' 2 oM,

If |&1] > V/log N, then from (5.1) both of P(nn, = k), P(na, = k) are less
than O(1/N,). If |&] < log Ny, then

log N, (log N, )*/?
§2=§1+O< oo >, and so & :§%+O<W ;
whence
3/2
Gt o 8N ey
and by (5.1),

|P(&n, = k) — P(En, = F)
1

1 (log N> (log N;)*/?
< = + < .
VN, VL,

N, N,

Thus

(5.8) Ry = (1 - t%)ﬂfyaﬂ{ \/}Tmcpc;/”;_]:m) +O<%) }

We formulate our result in the following

THEOREM 4. Let f € &, f(c0?) = f(c) = rational integer for c € A,
and assume that the greatest common divisor of f(c) (c € A) is 1. Let

m=23f0), o? =13 (f(e) ~m)

Then (5.8) holds for Ry defined in (5.3).
Let Ni(x|k) be the number of Gaussian integers « satisfying f(a) = k
in the sector |a| < x, (arga)/(2w) € I. Then

(5.9) Nl(x|k):7ru|x2{\/}v_$¢<k;\/”]’ir_]jz)+0(%>}.

Proof. It remains to prove (5.9). This follows immediately if we use (5.8)
by choosing x, z/t, z/t?> and observing that N, Ny, ... are close to N,.

REMARK. The sum of digits function with respect to number systems
over Z[i] has been investigated earlier by Grabner and Liardet [2].



182 I. Katai and P. Liardet

References

[1] H. Delange, Sur les fonctions q-additives ou gq-multiplicatives, Acta Arith. 21
(1972), 285—298.

[2] P.J. Grabner and P. Liardet, Harmonic properties of the sum-of-digits function for
complez bases, ibid. 91 (1999), 329-349.

[3] I Katai, Generalized number systems and fractal geometry, Pécs, Hungary, 1995
(manuscript).

[4] 1. Kétai and J. Szabd, Canonical number systems for complex integers, Acta Sci.
Math. (Szeged) 37 (1975), 225-260.

[6] V. V. Petrov, Sums of Independent Random Variables, Springer, Berlin, 1975.

[6] G. Steidl, On symmetric representation of Gaussian integers, BIT 29 (1989), 563—

571.
Computer Algebra Department Université de Provence, CMI
E6tvos Lordnd University Chéateau Gombert
Pédzmény Péter sétany 1/D 39, Rue Joliot-Curie
H-1117 Budapest, Hungary 13453 Marseille, Cedex 13, France
E-mail: katai@compalg.inf.elte.hu E-mail: liardet@gyptis.univ.-mrs.fr

Received on 10.7.2000 (3851)



