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I. Kátai (Budapest) and P. Liardet (Marseille)

1. Introduction

1.1. Let Z[i] be the ring of Gaussian integers, θ ∈ Z[i] such that t :=
|θ|2 ≥ 2, and A = {a0 = 0, a1, . . . , at−1} (⊆ Z[i]) a complete residue system
mod θ. We call A the set of digits. Then, for each α ∈ Z[i], there exists a
unique α1 ∈ Z[i] and a unique b0 ∈ A such that α = b0 + θα1. The function
J : Z[i]→ Z[i] is defined by J(α) = α1.

Iterating J , we define the orbit

(1.1) α (= α0), α1 = J(α0), α2 = J(α1), . . .

Let

L :=
1

|θ| − 1
max
a∈A
|a|.

It is easy to show that

(a) if |α| > L, then |α1| < |α|,
(b) if |α| ≤ L, then |α1| ≤ L.

Hence the orbit (1.1) is ultimately periodic for every α ∈ Z[i]. The proof of
the two easy assertions stated above is given in the lecture notes [3].

An integer π ∈ Z[i] is said to be periodic if there is a positive integer k for
which Jk(π) = π. Let P be the set of periodic points. From the assertions
(a) and (b) we see that if π ∈ P, then |π| ≤ L.

Repeating the expansion defined above, we obtain

(1.2) α = b0 + b1θ + . . .+ bk−1θ
k−1 + θkαk (k = 0, 1, . . .),

where the sequence of the digits b0, . . . , bk−1 is uniquely determined by α
and θ. Let k be the smallest nonnegative integer for which αk ∈ P. Then
(1.2) with this k is called the correct expansion of α. By this convention,
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each α has a unique correct expansion. Let l(α) := k be the length of the
representation. Then l(α) = 0 if and only if α ∈ P.

A system (θ,A) is called a number system (or a numeration system) if
P = {0}. In that case each α ∈ Z[i] has a finite expansion.

In [4] it was proved that A = {0, 1, . . . , t− 1} is an appropriate digit set
for θ to generate a number system if and only if it has the form θ = −A+ i
or θ = −A − i with A ≥ 1. G. Steidl [6] proved that for θ ∈ Z[i] there is a
suitable digit set A such that (θ,A) is a number system if and only if t ≥ 2
and 1− θ is not a unit.

1.2. Assume that θ,A are fixed.

Definition 1. A function f : Z[i] → R is additive (with respect to the
expansion generated by θ and A) if

(a) f(πθk) = 0 for π ∈ P and k = 0, 1, . . . ,
(b) for every α ∈ Z[i],

f(α) = f(b0) + f(b1θ) + . . .+ f(bk−1θ
k−1),

where α = b0 + b1θ + . . .+ bk−1θ
k−1 + θkπ is the correct expansion of α.

Let Eθ be the class of additive functions in the above sense.

Definition 2. A function g : Z[i]→ C is multiplicative (with respect to
the expansion generated by θ and A) if

(a) g(πθk) = 1 for π ∈ P and k = 0, 1, . . . ,
(b) for every α ∈ Z[i],

g(α) =
k−1∏

j=0

g(bjθj).

Let Mθ be the class of multiplicative functions in the above sense. Let
Mθ ⊆ Mθ be the set of those g for which additionally |g(α)| = 1 for all
α ∈ Z[i].

1.3. Since
|α| −K
|θ| ≤ |J(α)| ≤ |α|+K

|θ|
where

(1.3) K = max
a∈A
|a|,

iterating we get the following

Lemma 1. There exist suitable positive constants c1, c2 (depending on θ
and K) such that

(1.4) −c2 < l(α)− log |α|
log |θ| < c1 for every α ∈ Z[i]\{0}.
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2. Formulation of the main results. Our purpose in this paper is to
give necessary and sufficient conditions for the existence of the mean value
of g ∈ Mθ, where the summation is extended to a disc around zero with
growing radius, or to some sectors of it.

We shall prove that the analogue of Delange’s theorem for q-multi-
plicative functions [1] remains valid (see Theorem 1). As an application
we give necessary and sufficient conditions for the existence of the limit dis-
tribution of f ∈ Eθ (see Theorem 2). Finally we prove a theorem for the
local distribution of the sum of digits function (see Theorem 4).

3. Lemmata. For an interval I ⊆ [−1/2, 1/2) let CI denote the annulus
{z | z ∈ C, 1/|θ| < |z| < 1, (arg z)/(2π) ∈ I}. For g ∈ Mθ let

(3.1) SI(x|g) :=
∑

α∈xCI
g(α),

where x is a positive growing parameter and xCI = {xz | z ∈ CI}.
It is well known that SI(x|1) = number of Gaussian integers in xCI is

π|I|x2(1− 1/t) +O(x) as x→∞, uniformly in I.
Let

Nx :=
log x
log |θ| ,(3.2)

∆j :=
∑

b∈A
g(bθj).(3.3)

Lemma 2. Assume that g(bθj) → 1 as j → ∞, b ∈ A. Then there is a
monotonic sequence RN →∞ of positive integers such that

max
|β|≤|θ|RN

|1− g(βθN )| → 0 (N →∞).

Proof. Clear.

Let Γk be the set of those Gaussian integers which can be written as
b0 + b1θ + . . . + bk−1θ

k−1, where the bν run over the set A. Then Γk is a
complete residue system mod θk. For α ∈ Z[i] let sk(α) (∈ Γk) be defined
by α ≡ sk(α) (mod θk).

Lemma 3. Assume that g(bθj)→ 1 as j →∞, for all b ∈ A. Then there
exists an increasing sequence of integers Mx < Nx such that Nx −Mx →
∞, Mx →∞, for which

g(α) = (1 + ox(1))g(sMx(α)) (x→∞)

uniformly as x/|θ| ≤ |α| ≤ x; furthermore

(3.4) SI(x|g) = (1 + ox(1))|I|
(

1− 1
t

)
πx2

Mx−1∏

j=0

1
t
∆j + o(x2).
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Proof. The first assertion is a direct consequence of Lemma 2. Let α =
sMx(α) + θMxαMx . Then

|αMx | ≤
x

|θ|Mx
+
|sMx(α)|
|θ|Mx

≤ |θ|Nx−Mx+1 +
K

|θ| − 1
< |θ|Nx−Mx+c

with some constant c > 0. By taking Mx = Nx + c − RNx we find that
g(αMxθ

Mx)→ 1 uniformly in the domain, thus the first assertion is proved.
Thus we have

SI(x|g) =
∑

α∈xCI
g(sMx(α)) + o(1)x2|I|.

To evaluate the sum on the right hand side, we write α as α = β+θMxγ,
where β ∈ ΓMx . If γ ∈ Z[i] occurs as a component of some α in xCI , then

x

|θ|Mx+1 −
K

|θ| − 1
≤ |γ| ≤ x

|θ|Mx
+

K

|θ| − 1
,(3.5)

|arg γ −Mx arg θ| < c|θ|Mx

α
< c · |θ|Mx−Nx .(3.6)

For all but O(x/|θ|Mx) of γ satisfying (3.5) and (3.6) all of the integers
β + θMxγ, β ∈ ΓMx , belong to xCI . Since the number of Gaussian integers
in the domain defined by (3.5), (3.6) is

π|I|
(

x

|θ|Mx

)2

+O

(
x

|θ|Mx

)
,

we have

SI(x|g) = π|I|
(

x

|θ|Mx

)2(
1− 1

t

) ∑

β∈Γk
g(β) +O(x|θ|Mx) + o(1)(x2|I|).

Since |θ|Mx � x|θ|Mx−Nx and
∑
β∈Γk g(β) =

∏Mx−1
j=0 (1/t)∆j , (3.4) im-

mediately follows.

Lemma 4. Let g ∈ Mq. Assume that there exists a constant c > 0, an
infinite sequence 0 ≤ l1 < l2 < . . . of integers and a suitable sequence of
digits b1, b2, . . . ∈ A such that |1− g(bνθbν )| ≥ c (ν = 0, 1, . . .). Then

SI(x|g)
SI(x|1)

→ 0 (x→∞)

uniformly for every interval I whose length is bounded below by a positive
constant.

Proof. We argue as in the proof of Lemma 3. Let Mx be so chosen that
Nx −Mx →∞ slowly. Let us write each α ∈ xCI as β + θMxγ. Then

SI(x|g) =
∑

g(θMxγ)Σγ
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where Σγ is the sum of g(β) over those β ∈ ΓMx for which β+ θMxγ ∈ xCI .
Thus

SI(x|g) ≤
∑

γ

|Σγ |.

We have |Σγ | ≤ tMx , and

Σγ =
Mx−1∏

j=0

∆j

if β + θMxγ ∈ xCI for every β ∈ ΓMx . Hence we obtain

|SI(x|g)| ≤ cx2
Mx∏

j=0

1
t
|∆j |+O(x|θ|Mx).

To finish the proof it is enough to observe that (1/t)|∆j| < 1− δ(c) with
some positive constant δ(c) depending on c, if j ∈ {lν}∞ν=1. This is a direct
consequence of the following

Lemma 5. Let ω0, . . . , ωt−1 be complex numbers of modulus 1, ω0 = 1,
and ∆ := ω0 + . . .+ ωt−1. Then

t2 − |∆|2 ≥
t−1∑

j=1

|1− ωj |2.

Proof. It is enough to observe that 2 Re(1 − ωj) = |1 − ωj |2. From the
identity

t2 − |∆|2 = 2t
∑

Re(1− ωj)−
∣∣∣
∑

(1− ωj)
∣∣∣
2
,

and from the Hölder inequality

∣∣∣
t−1∑

j=1

(1− ωj)
∣∣∣
2
≤ (t− 1)

∑
|1− ωj |2

the assertion immediately follows.

4. Consequences. We are ready to formulate our result.

Theorem 1. Let g ∈ Mθ.

(1) If the series

(4.1)
∞∑

j=0

∑

c∈A
Re(1− g(cθj))

is divergent , then
SI(x|g)
SI(x|1)

→ 0 as x→∞
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uniformly on the intervals I whose length is bounded below by a positive
constant. Consequently ,

(4.2)
1

πx2|I|
∑

|α|≤x
argα∈I(α)

g(α)→ 0.

(2) If (4.1) is convergent , then

lim
x→∞

∣∣∣∣
SI(x|g)
SI(x|1)

∣∣∣∣ =
∞∏

j=0

1
t
|∆j |,

and the right hand side is non-zero if and only if ∆j 6= 0 (j = 0, 1, . . .).
(3) The non-zero limit

lim
x→∞

SI(x|g)
SI(x|1)

(= m)

exists if and only if

(4.3)
∞∑

j=0

∑

c∈A
(1− g(cθj))

is convergent , and ∆j 6= 0 (j = 0, 1, . . .).

Proof. If (4.1) is divergent, then by Lemma 5,
∑

(1 − (1/t)|∆j|) = ∞,
and so

∏Mx

j=0 (1/t)|∆j| → 0; consequently, from Lemmas 3 and 4 we obtain
the first assertion in (1). The fulfilment of (4.2) is obvious, since the left
hand side equals to

SI(x|g) + SI

(
x

|θ|

∣∣∣∣g
)

+ SI

(
x

|θ|2
∣∣∣∣g
)

+ . . .

If (4.1) is convergent, then so is
∏

(1/t)|∆j|, and by (3.4) the second assertion
follows. The proof of the last assertion is similar.

As a consequence we have

Theorem 2. Let f ∈ Aθ, and assume that it has a limit distribution,
i.e.

lim
x→∞

1
πx2 #{α | |α| ≤ x, f(α) < y} = F (y)

exists, where F is a distribution function. Then both of the series
∞∑

j=0

∑

c∈A
f(cθj),(4.4)

∞∑

j=0

∑

c∈A
f2(cθj)(4.5)

are convergent.
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If (4.4), (4.5) are convergent , then for each interval I ⊆ [−1/2, 1/2),

lim
x→∞

1
πx2|I|#{α | |α| ≤ x, f(α) < y, argα ∈ I} = F (y).

The characteristic function of F can be given by

ϕ(τ) =
∞∏

j=0

{
1
t

∑

c∈A
eiτf(cθj)

}
.

Another corollary of Theorem 1 is

Theorem 3. Let f ∈ Aθ, f(cθj) = O(1) as j →∞, c ∈ A,

mj =
1
t

∑

c∈A
f(cθj), σ2

j =
1
t

∑

c∈A
(f(cθj)−mj)2,

T 2
N :=

∞∑

j=0

σ2
j , EN =

N∑

j=0

mj .

Assume that TN →∞. Let I ⊆ [−1/2, 1/2) be an interval. Then

1
πx2|I|#

{
α

∣∣∣∣ |α| < x,
argα
2π

∈ I, f(α)−ENx
TNx

< y

}
= (1 + ox(1))Φ(y),

where Φ is the Gaussian law.

Theorems 2 and 3 can be derived from Theorem 1 by making use of the
method of characteristic functions in probability theory.

5. The local distribution of the sum of digits and similar ad-
ditive functions. Assume that f ∈ Eθ, the values of f(cθj) (c ∈ A) are
rational integers, and that f(cθj) = f(c) for every j ≥ 0, c ∈ A. Assume
furthermore that the greatest common divisor of the values {f(c) | c ∈ A}
is 1.

Let ξj (j = 0, 1, . . .) be identically distributed independent random vari-
ables with distribution

P (ξj = f(c)) = 1/t (c ∈ A).

Let ηN = ξ0 + . . .+ ξN−1 and

m =
1
t

∑

c∈A
f(c), σ2 =

1
t

∑

c∈A
(f(c)−m)2, ϕ(y) =

1√
2π

exp
(
−y

2

2

)
.

According to Theorem 6 (Chapter VII) in the book of V. V. Petrov [5],

(5.1)
∣∣∣∣P (ηN = k)− 1√

N
ϕ

(
k −mN
σ
√
N

)∣∣∣∣ = O

(
1
N

)

as N →∞, uniformly in k.
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Since ϕ(ω2)−ϕ(ω1) = ϕ′(ξ)(ω2−ω1) with some ξ ∈ [ω1, ω2], and ϕ′(ξ) =
−ξϕ(ξ), from (5.1) we easily obtain

(5.2) |P (ηN = k1)− P (ηN = k2)| � |k2 − k1|
N

ϕ(ξ) +O

(
1
N

)
,

where ξ is located in the interval with endpoints (ki−mN)/(σ
√
N) (i=1, 2).

We would like to count

(5.3) Rk := #{α | α ∈ xCI , f(α) = k}.
Acting as in the proof of Lemmas 3 and 4, we write each α as β +

θMxγ, β ∈ ΓMx . Let α ∈ xCI , α = β + θMxγ, f(α) = k. Let us drop α
if there is some β′ ∈ ΓMx for which β′ + θMxγ 6∈ xCI . The cardinality of
these integers is at most O(x|θ|Mx). Fixing a remaining γ, we count those
β ∈ ΓMx for which f(β + θMxγ) = k.

The size of these numbers is

(5.4) tMxP (ηMx = k − f(θMxγ)).

Since |γ|≤|θ|Nx−Mx+1, the value f(θMxγ)=f(γ) is bounded by Nx−Mx+1.
From (5.2) we see that (5.4) equals

(5.5) tMxP (ηMx = k) +O(tMx/2) +O(tMx/2(Nx −Mx + 1)ϕ(ξγ))

where ξγ is located in the interval with endpoints

k −mMx

σ
√
Mx

,
k − f(γ)−mMx

σ
√
Mx

.

Let us sum over the appropriate values of γ, i.e. over those for which
β + θMxγ ∈ xCI for every β ∈ ΓMx . The number of appropriate Gaussian
integers γ approximately equals the number of Gaussian integers in the an-
nulus xθ−MxCI with error bounded by the boundary, which is O(x · |θ|−Mx),
thus it is (

1− 1
t2

)
π|I| x

2

tMx
+O

(
x

|θ|Mx

)
.

Since ϕ is a bounded function, from (5.5) we deduce that

Rk =
(

1− 1
t2

)
π|I|x2P (ηMx = k) +O

(
x2

tMx/2

)
(5.6)

+O((Nx −Mx + 1)x2t−Mx/2) +O(x).

Let us choose now Mx = Nx−[c logNx], with a positive constant c. Then
the error terms on the right hand side of (5.6) are bounded by O(x2(1−δ))
with some constant δ > 0.
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From (5.1) we easily get

(5.7) P (ηNx = k) = P (ηMx = k) +O

(
(logNx)3/2

Nx

)

uniformly in k.
Let

ξ1 =
k −mNx
σ
√
Nx

, ξ2 =
k −mMx

σ
√
Mx

.

If |ξ1| ≥
√

logNx, then from (5.1) both of P (ηNx = k), P (ηMx = k) are less
than O(1/Nx). If |ξ1| ≤

√
logNx, then

ξ2 = ξ1 +O

(
logNx√
Nx

)
, and so ξ2

2 = ξ2
1 +O

(
(logNx)3/2
√
Nx

)
,

whence

|e−ξ2
2/2 − e−ξ2

1/2| � (logNx)3/2
√
Nx

e−ξ
2
1/2,

and by (5.1),

|P (ξNx = k)− P (ξMx = k)|

�
∣∣∣∣

1√
Nx
− 1√

Mx

∣∣∣∣+
(logNx)3/2

Nx
� (logNx)3/2

Nx
.

Thus

(5.8) Rk =
(

1− 1
t2

)
π|I|x2

{
1√
Nx

ϕ

(
k −mNx
σ
√
Nx

)
+O

(
(logNx)3/2

Nx

)}
.

We formulate our result in the following

Theorem 4. Let f ∈ Eθ, f(cθj) = f(c) = rational integer for c ∈ A,
and assume that the greatest common divisor of f(c) (c ∈ A) is 1. Let

m =
1
t

∑
f(c), σ2 =

1
t

∑
(f(c)−m)2.

Then (5.8) holds for Rk defined in (5.3).
Let NI(x|k) be the number of Gaussian integers α satisfying f(α) = k

in the sector |α| ≤ x, (argα)/(2π) ∈ I. Then

(5.9) NI(x|k) = π|I|x2
{

1√
Nx

ϕ

(
k −mNx
σ
√
Nx

)
+O

(
(logNx)3/2

Nx

)}
.

Proof. It remains to prove (5.9). This follows immediately if we use (5.8)
by choosing x, x/t, x/t2 and observing that Nx, Nx/t, . . . are close to Nx.

Remark. The sum of digits function with respect to number systems
over Z[i] has been investigated earlier by Grabner and Liardet [2].
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Université de Provence, CMI
Château Gombert

39, Rue Joliot-Curie
13453 Marseille, Cedex 13, France
E-mail: liardet@gyptis.univ.-mrs.fr

Received on 10.7.2000 (3851)


