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Integers not of the form c(2a + 2b) + pα

by

Zhi-Wei Sun (Nanjing) and Mao-Hua Le (Zhanjiang)

1. Introduction. LetN = {0, 1, 2, . . .} and P denote the set of (positive)
primes. In 1950 van der Corput [Co] showed that those positive odd integers
not representable in the form 2a + p (where a ∈ N and p ∈ P) form a subset
of Z+ = {1, 2, . . .} with positive lower asymptotic density. By means of
cover of the ring Z of integers, P. Erdős [E] constructed a residue class
of odd numbers which contains no integers of the form 2a + p. (See also
W. Sierpiński [Si].) On the basis of the work of F. Cohen and J. L. Selfridge
[CS], in 2000 Zhi-Wei Sun [Su] showed that any integer in the residue class

47867742232066880047611079 (mod 66483034025018711639862527490)

is not of the form ±2a ± pα where a, α ∈ N, p ∈ P and any choice of signs
can be made.

Lemma I of R. Crocker [Cr2] asserts that for each n = 3, 4, . . . the number
22n−1 cannot be expressed as the sum of a prime and of two distinct positive
powers of 2; this was first observed by A. Schinzel after his reading the earlier
paper [Cr1]. (See p. 447 of [Si], and footnote 1 of [Cr2], where R. Crocker
wrote that he had obtained the result independently.) Through computer
search the referee notes that the above 22n−1 cannot be replaced by 22n +1
or 22n − 3. It seems that 22n − 1 = 2a + p has infinitely many solutions
including

(n, a, p) = (2, 3, 7), (3, 6, 191), (4, 11, 63487), (5, 31, 2147483647).

In view of the above, it is natural to ask the following

Question 1. Are there infinitely many positive odd integers which can-
not be written as the sum of a prime power and of two distinct powers of 2?
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In this paper we answer the question affirmatively by strengthening
Schinzel’s result.

In 1971 Crocker [Cr2] successfully combined the observation of Schinzel
with the idea of Erdős [E] on integers not of the form 2a+p and showed that
there are infinitely many positive odd numbers which cannot be the sum of a
prime and of two positive powers of 2, though the least such number greater
than 8 is extremely large and one can hardly write it out explicitly.

Crocker’s work in [Cr2] suggests the following

Question 2. Let c be a positive integer. Are there infinitely many pos-
itive odd integers not of the form c(2a + 2b) + pα where a, b, α ∈ N and
p ∈ P?

Though we are not able to answer this question for c = 1, we can give a
positive answer for any Fermat number c.

Now we state our main results.

Theorem 1. The only solutions of the diophantine equation

(1.1) 22n − 1 = 2a + 2b + pα

with

(1.2) n, a, b, α ∈ N, a > b and p ∈ P
are as follows:

222 − 1 = 22 + 2 + 32 = 23 + 22 + 3 = 23 + 2 + 5,(1.3)

223 − 1 = 23 + 22 + 35 = 27 + 2 + 53.(1.4)

Remark 1. The referee finds that the diophantine equation

22n − 1 + 2a + 2b = p with n, a, b ∈ N, a > b and p ∈ P
has a lot of solutions including

(n, a, b) = (3, 9, 1), (3, 28, 20), (4, 22, 6), (5, 45, 13), (6, 76, 12), (7, 137, 9).

He also notices that 223 − 1 can be written as the sum of a prime and of
three powers of 2 in many ways, e.g. 28 − 1 = 25 + 26 + 27 + 31.

Theorem 1 has the following consequence.

Corollary 1. For each n = 3, 4, 5, . . . the number 22n−5 cannot be the
sum of two prime powers except that 223 − 5 = 23 + 35.

Our second theorem is the following

Theorem 2. There are infinitely many positive odd integers not repre-
sentable by c(2a+2b)+pα where a, b, α ∈ N, p ∈ P and c is a Fermat number.
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In fact , the only solutions of the diophantine equation

(1.5) 22n − 1 = c(2a + 2b) + pα

with n ∈ N and a, b, c, p, α as above, are as follows:

222 − 1 = 3(20 + 20) + 32 = 5(20 + 20) + 5,(1.6)

222 − 1 = 3(2 + 2) + 3, 223 − 1 = 3(2 + 2) + 35.(1.7)

By using congruences modulo Fermat numbers and powers of two, we
reduce the proofs of Theorems 1 and 2, in Section 2, to solving some expo-
nential diophantine equations in Section 3.

2. Two auxiliary propositions. Let Fr denote the Fermat number
22r + 1 for r = 0, 1, 2, . . . Then

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537

are all primes, but F5 = 641 · 6700417 as discovered by Euler. It is well
known that

(2.1)
n−1∏

r=0

Fr = Fn − 2 = 22n − 1 for n = 1, 2, . . .

(This fact can be easily proved by induction.) Thus the Fermat numbers
F0, F1, F2, . . . are pairwise coprime.

Let F ∗r > 1 be a divisor of Fr for every r = 0, 1, 2, . . . Lemma II of Crocker
[Cr2] states that for n ≥ 3 and w ≡ 1 (mod 16) if W = w

∏n−1
r=0 F

∗
r ≤ 22n−1

then W cannot be expressed in the form 2a + 2b + p with a, b ∈ Z+, a 6= b
and p ∈ P. Crocker obtained this by finding a proper divisor of W −2a−2b.

In this section we aim to generalize Crocker’s Lemma II via congruences.

Proposition 1. Let n,w,w′ be positive integers with

(2.2) w ≡ 1 (mod 16), w′ ≡ 1,±3 (mod 8), W = w

n−1∏

r=0

F ∗r ≤ 22n − 1.

Suppose that

(2.3) W = w′(2a + 2b) + pα where a, b, α ∈ N, a > b and p ∈ P.
Then α > 0, and one of the following (i) and (ii) holds.

(i) a 6≡ b (mod 2), b ∈ {1, 2} and p = 3.
(ii) a ≡ 3 (mod 4), b = 1 and p = 5.

Proof. Write a − b = 2kq where k ∈ N, q ∈ Z+ and 2 - q. Obviously
2k ≤ a − b ≤ a < 2n and hence k < n. As q is odd, Fk = 22k + 1 divides
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22kq + 1 = 2a−b + 1. So

pα = W − w′2b(2a−b + 1) ≡ 0 (modF ∗k ).

Therefore α > 0, p |F ∗k and b 6= 0.
It is known that for each r = 2, 3, . . . any prime divisor of Fr has the

form 2r+2m+ 1 with m ∈ Z+. (See Theorem 5.5.1 of [A].) Thus F ∗5 , F
∗
6 , . . .

are all congruent to 1 modulo 25+2, and so are the primes F ∗3 = F3 and
F ∗4 = F4. Observe that F ∗0 F

∗
1 F
∗
2 = F0F1F2 = 28 − 1. So

∏n−1
r=0 F

∗
r ≡

−1 (mod 27) if n > 2.
Assume k ≥ 2. Then p ≡ 1 (mod 2k+2) since p |Fk. Note that n > k ≥ 2

and a ≥ 2k ≥ k + 2. Therefore

w′2b = W − w′2a − pα ≡ −1− 0− 1 = −2 (mod 24),

hence b = 1 and w′ ≡ −1 (mod 8), which contradicts (2.2).
By the above k ∈ {0, 1}. If b ≥ 3, then 2n > a ≥ 4 and hence n > 2,

therefore
pα = W − w′(2a + 2b) ≡ −1 (mod 8),

which is impossible since p ∈ {F0, F1} = {3, 5}. So b must be 1 or 2. In the
case k = 1, we have p = 5 and

w′2b = W − w′2a − 5α ≡ 3− 0− 1 = 2 (mod 4),

so b = 1 and a ≡ b+ 2 ≡ 3 (mod 4).

Remark 2. In the proof of Proposition 1, we first use congruences mod-
ulo Fermat numbers, then use congruences modulo powers of 2. This strategy
enables us to bound p and b in (2.3).

Now we go further to determine possible values of a in the case w′ ∈
{1, F0, F1, F2, . . .}.

Proposition 2. Let α ∈ N and c ∈ {1, F0, F1, F2, . . .}. Let n,w be pos-
itive integers with

(2.4) W = w
n−1∏

r=0

F ∗r ≤ 22n − 1.

(i) If a, b ∈ N, a > b, a 6≡ b (mod 2), b ∈ {1, 2},
(2.5) w ≡ 1 (mod 16) and W = c(2a + 2b) + 3α,

then a = b+ 1 and c = 1.
(ii) If a ∈ N, a ≡ 3 (mod 4),

(2.6) w ≡ 1 (mod 27) and W = c(2a + 2) + 5α,

then a ∈ {3, 7} and c ∈ {1, 5}.
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Proof. If c = Fm ≤W , then m < n since W < Fn, thus F ∗m divides both
c and W .

(i) By (2.5) and the above, if c > 1 then 3 | c and hence c = F0 = 3.
Suppose that a ≥ 4. Then n > 2 and

2bc+ 3α = W − 2ac ≡ −1− 0 = −1 (mod 24).

Clearly powers of 3 can only be congruent to 1, 3,−7,−5 modulo 16. If c = 1,
then we must have b = 2 and 3α ≡ −5 ≡ 33 (mod 16), hence α ≡ 3 (mod 4)
and

2a = W − 3α − 22 ≡ 0− 33 − 4 ≡ −1 (mod 5),

which contradicts a 6≡ b (mod 2). If c = 3, then 3 · 2b + 3α ≡ −1 ≡ 15
(mod 16) and hence 3α−1 ≡ 5 − 2b (mod 16); it follows that α ≡ 3b − 1
(mod 4), thus 3(2a + 2b) = W − 3α ≡ 0− 33b−1 (mod 5), which is impossible
since b ∈ {1, 2}.

In view of the above, a ≤ 3 and thus a−b = 1. Observe that 3(2a+2b) =
9 · 2b = 2b+3 + 2b. So c 6= 3 and hence c = 1.

(ii) If c > 1, then 5 | c and hence c = 5 = F1.
Assume that a 6= 3, 7. Then 2n > a ≥ 8 and so n > 3. Observe that

5α = W − c(2a + 2) ≡ −1− 2c (mod 27)

and 5 has order 25 modulo 27. It is easy to verify that

53 ≡ −3 (mod 27) and 521 ≡ −11 (mod 27).

So α = 32β + c′ for some β ∈ N where c′ = 3, 21 according as c = 1, 5. Note
that 257 = F3 = F ∗3 divides W and 532 ≡ −4 (mod 257). So we have

16(a+1)/4 + 4 = 2(2a + 2) =
2
c

(W − 5α) ≡ −2
c
· 5c′(−4)β (mod 257),

where − 2
c5c
′ ≡ 7,−92 (mod 257) according as c = 1, 5. This is actually im-

possible since powers of 16 can only be congruent to ±1,±16 modulo 257.

Remark 3. In the proof of Proposition 2, we first use congruences mod-
ulo powers of 2, then use congruences modulo Fermat numbers. This varia-
tion allows us to bound a successfully.

3. Some exponential diophantine equations. For a,m ∈ N clearly
Fm(2a+2a) = 2ā+2b̄ where ā = 2m+a+1 > b̄ = a+1. Thus, with the help
of Propositions 1 and 2, we have reduced Theorems 1 and 2 to the following

Proposition 3. For the exponential diophantine equations

22n − 1 = 22 + 2 + 3α with n, α ∈ Z+;(3.1)

22n − 1 = 23 + 22 + 3α with n, α ∈ Z+;(3.2)
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22n − 1 = c(23 + 2) + 5α with n, α ∈ Z+ and c ∈ {1, 5};(3.3)

22n − 1 = c(27 + 2) + 5α with n, α ∈ Z+ and c ∈ {1, 5},(3.4)

the only solutions are

(n, α) = (2, 2); (2, 1), (3, 5); (2, 1); (3, 3)

respectively.

Proof. (3.1) modulo 8 yields 2 |α. It is known (see, e.g., [J]) that the
Ramanujan–Nagell equation

(3.5) x2 + 7 = 2y with x, y ∈ Z+

only has solutions

(x, y) = (1, 3), (3, 4), (5, 5), (11, 7), (181, 15).

Thus the only solution of (3.1) is n = α = 2.
By S. Uchiyama [U] the equation

(3.6) 3x + 13y = 2z with x, y, z ∈ Z+

only has solutions (x, y, z) = (1, 1, 4), (5, 1, 8). So the only solutions of (3.2)
are (n, α) = (2, 1), (3, 5).

By Theorem 6 of R. Scott [Sc], if k, l are integers with 1 < k < l,
gcd(k, l) = 1 and (k, l) 6= (3, 5), (3, 13) then the diophantine equation

kx + ly = 2z with x, y, z ∈ Z+

has at most one solution. We will use this fact below.
In the light of Scott’s result, the equation

(3.7) 5x + 11y = 2z with x, y, z ∈ Z+

only has the solution (x, y, z) = (1, 1, 4). So the only solution of (3.3) with
c = 1 is (n, α) = (2, 1). If c = 5 and (3.3) holds, then

(3.8) 5α + 51 = 2z where z = 2n,

hence 5α+20 ≡ 2z (mod 31), which is impossible since 53 ≡ 25 ≡ 1 (mod 31).
By Scott’s result the equation

(3.9) 5x + 131y = 2z with x, y, z ∈ Z+

only has the solution (x, y, z) = (3, 1, 8). Thus the only solution of (3.4) with
c = 1 is n = α = 3. If c = 5 and (3.4) holds, then

(3.10) 5α + 651 = 2z where z = 2n,

thus 5α + 3 ≡ 0 (mod 8) and hence 2 -α, as 7 | 651 we have 2z ≡ 5α ≡
(−2)α = −2α (mod 7), which is absurd.
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Proof of Corollary 1. Let n ≥ 3 be an integer. Since 22n − 5 is odd,
it cannot be written as the sum of two odd prime powers. Suppose that
22n − 5 = 2a + pα for some a, α ∈ N and p ∈ P with (n, a, p, α) 6= (3, 3, 3, 5).
Then

22n − 1 = 2a + 22 + pα,

and hence a = 2 by Theorem 1. So

pα = 22n − 1− 2 · 22 = (22n + 3)(22n − 3).

Thus α 6= 0, 2 - p, and p divides 22n + 3 − (22n − 3) = 6. Therefore p = 3,
which contradicts 22n 6≡ 0 (mod 3).

4. Several open problems. Does the set of positive odd integers not
of the form 2a + 2b + pα (where a, b, α ∈ N, a 6= b and p ∈ P) have a positive
lower asymptotic density? This question is open and seems hard.

We close the paper with two conjectures posed by the first author.

Conjecture 1. There are infinitely many odd integers not of the form
±2a± 2b± pα where a, b, α ∈ N, p ∈ P and any choice of signs can be made.

Conjecture 2. Question 2 in Section 1 always has an affirmative an-
swer.
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