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1. Introduction. In [4] and [5] I proved some results and promised to
prove some results on the summation of series involving Hn = 1+ 1

2 +. . .+ 1
n .

Some samples from [4] and [5] are
∞∑

n=1

2−nH3
n = ζ(3) +

1
3

[π2 log 2 + (log 2)3],

∞∑

n=1

(−1)nn−1H3
n =

9
8
ζ(3) log 2 +

1
4

(log 2)4 − 1
8

(π log 2)2 − π4

144
,

∞∑

n=1

(−1)n(3n+ 1)2−nH3
n = (log 3− log 2)2,

∞∑

n=1

n−1(n+ 1)−1H3
n =

π4

9
,

∞∑

n=1

n2−n−1H4
n =

15
4
ζ(3) +

13
6
π2 log 2 +

7
3

(log 2)3.

These with some additions were proved by myself and R. Sitaramachan-
drarao in [6]. However summations involving higher powers of Hn promised
in [4] and [5] have not been published so far. It is the object of this note to
prove these results. More generally we start with any sequence {bn} (n =
0, 1, 2, . . .) of complex numbers and obtain in Section 2, a general method
of attacking summations of series involving

(1) Gn = b0 + b1 + . . .+ bn.

We reduce the summation of series like

(2)
∞∑

n=1

f(n)Gkn
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where k ≥ 1 and f(n) (n = 1, 2, . . .) is any sequence of complex numbers
(subject to the convergence of (2)) to the summation of series like

(3)
∞∑

n=1

Rn

where Rn = Rn(k) is a nice function. In particular it will turn out that Rn is
a rational function of n in the special case b0 = 0, b1 = 1, b2 = 1/2, . . . , bn =
1/n (i.e. Gn = Hn), provided f(n) is a suitable rational function of n.
Moreover it will turn out that

∞∑

n=1

f(n)Hk
n (k ≥ 1 is any integer)

is a rational number for plenty of non-trivial choices of the sequence {f(n)}.
In Section 3 we deal with some illustrative special cases and state Theorems
2 and 3. In Section 4 we give the evaluation of a series involving Euler’s
constant γ (Theorem 4). In Section 5 we deduce from Theorem 1 a general
result of some interest (Theorem 5). The referee has kindly pointed out
that Theorem 3 can also be proved by using an important result [1] on
Hadamard’s product (a result which will be stated in a precise form in
Section 6).

2. A key identity. A fundamental identity needed for our purposes is
given by the following theorem.

Theorem 1. Let k ≥ 1 be any integer and x, x1, . . . , xk be any k + 1
non-zero complex numbers such that xi 6= xj whenever i 6= j. Then

(4) xk +
{ k∑

l=1

(x+ xl)k(−1)lx−1
l

×
( ∏

l>j≥1

(xl − xj)−1
)( ∏

k≥i>l
(xi − xl)−1

)}
x1 . . . xk

= (−1)k x1 . . . xk.

Remark 1. In an earlier draft of this paper Theorem 1 was proved by a
somewhat complicated method. It consisted in determining A1, . . . , Ak and
Dk (all of which are independent of x) such that

xk + A1(x+ x1)k + . . .+ Ak(x+ xk)k = Dk.

Thanks are due to my friend C. R. Praneshachar, who later gave a very
simple proof of Theorem 1. I will reproduce his proof after Remark 2. Both
of us jointly will publish further proliferations of his idea in a forthcoming
paper [3].
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Remark 2. The referee has pointed out an illuminating lemma which
we state here. Let X,X1, . . . ,Xk+1 be indeterminates and P (X) =∏

1≤j≤k+1(X −Xj). Then
∑

1≤j≤k+1

(P ′(Xj))−1(X −Xj)k = (−1)k.

This with Xj = −xj (1 ≤ j ≤ k), Xk+1 = 0 and X = x gives Theorem 1
since P ′(Xk+1) = x1 . . . xk.

Proof of Theorem 1. Let y be a complex variable. We decompose

yk

(y − x1) . . . (y − xk)

into partial fractions to obtain

yk

(y − x1) . . . (y − xk)
= 1 +

k∑

j=1

1
y − xj

·
xkj∏

i6=j(xj − xi)
.

Here we put y = 1 and replace xj by xjx−1 + 1. We obtain

1
∏k
j=1(1− (xjx−1 + 1))

= 1+
k∑

j=1

1
(1− (xjx−1 + 1))

· (xjx−1 + 1)k∏
i6=j(xjx

−1 − xix−1)
,

i.e.
(−x)k

x1 . . . xk
= 1−

k∑

j=1

x

xj
· (x+ xj)kx−k

x−k+1

∏

i6=j
(xj − xi)−1,

i.e.

(−1)kxk +
k∑

l=1

x1 . . . xk
xl

(−1)k−l
(x+ xl)k∏

j<l(xl − xj)
∏
j>l(xj − xl)

= x1 . . . xk.

Multiplying throughout by (−1)k we get Theorem 1.

3. Some applications of Theorem 1. We first illustrate our method
of applying Theorem 1 by considering some special cases and finally we are
led to Theorem 4 which will be stated at the end of this section.

(a) We put k = 1 in Theorem 1. We get

(5) x− (x+ x1) = −x1.

In (1) we consider the case b0 = 0, bn = 1/n (n = 1, 2, . . .). Obviously
Gn = Hn. We have (from (5) with x = Hn and so with x1 = 1/(n+ 1))

(6) F (n)(Hn+1 −Hn) =
F (n)
n+ 1
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for any sequence F (n) (n = 1, 2, . . .). Summing up from n = 1 to∞ we have
(subject to convergence of the series involved)

(7)
∞∑

n=1

F (n)Hn+1 −
∞∑

n=1

F (n)Hn =
∞∑

n=1

F (n)(n+ 1)−1.

Here the left hand side is nothing but
∞∑

n=1

F (n)Hn+1 − F (1)H1 −
∞∑

n=1

F (n+ 1)Hn+1.

This with (7) gives

(8)
∞∑

n=1

Hn+1(F (n)− F (n+ 1))− F (1)H1 =
∞∑

n=1

F (n)(n+ 1)−1 .

Transposing we obtain

(9)
∞∑

n=1

Hn+1(F (n)− F (n+ 1)) = F (1)H1 +
∞∑

n=1

F (n)(n+ 1)−1.

Equation (9) converts the problem of summing up

(10)
∞∑

n=1

Hn+1(F (n)− F (n+ 1))

to one of
∑∞
n=1 F (n)(n+1)−1 (which is usually much simpler). For example

when F (n) = (n+ 1)2−n it follows that (10) is a rational number. Certainly
we can take F (n) to be (n+ 1)2−nφ(n) where φ(n) is any polynomial in n
with integer coefficients.

(b) We put k = 2 in Theorem 1. We get

x2 − (x+ x1)2x−1
1 (x2 − x1)−1x1x2 + (x+ x2)2x−1

2 (x2 − x1)−1x1x2 = x1x2,

i.e.

(11) x2(x2 − x1)− (x+ x1)2x2 + (x+ x2)2x1 = x1x2(x2 − x1).

Putting x1 = a, x2 = a + b (where a and b are any two complex numbers)
we have

(12) bx2 − (a+ b)(x+ a)2 + a(x+ a+ b)2 = ab(a+ b).

This gives (with x = Hn, a = 1/(n+ 1) and b = 1/(n+ 2)),

H2
n

n+ 2
−
(

1
n+ 1

+
1

n+ 2

)
H2
n+1 +

1
n+ 1

H2
n+2 =

2n+ 3
(n+ 1)2(n+ 2)2 .

Multiplying throughout by 2−n(n+ 1)2(n+ 2)2 (we can multiply this by a
further function φ(n) which is any polynomial in n with integer coefficients),
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we obtain

H2
n(n+ 1)2(n+ 2)2−n −H2

n+1(2n+ 3)(n+ 1)(n+ 2)2−n

+H2
n+2(n+ 1)(n+ 2)22−n = (2n+ 3)2−n.

We sum up from n = 1 to ∞ and obtain
∞∑

n=1

H2
n(n+ 1)2(n+ 2)2−n −

∞∑

n=1

H2
n(2n+ 1)(n)(n+ 1)2−n+1 + 6

+
∞∑

n=1

H2
n(n− 1)n22−n+2 − 9 =

∞∑

n=1

(2n+ 3)2−n.

This gives

Theorem 2. We have

(13)
∞∑

n=1

φ2(n)H2
n2−n =

∞∑

n=0

(2n+ 3)2−n

(with φ2(n) = (n−1)(n2−5n−2)), which can be easily seen to be a rational
number.

Remark. We have plenty of choices (in place of φ2(n)) where φ2(n) can
be easily replaced by many non-trivial polynomials in n (by choosing φ(n)
occurring after (12) suitably.)

(c) Many generalizations are clear. We can certainly take k to be any
positive integer. For example taking k = 3 in Theorem 1, we get

x3 + { − (x+ x1)3x−1
1 (x3 − x1)−1(x2 − x1)−1

+ (x+ x2)3x−1
2 (x2 − x1)−1(x3 − x2)−1

− (x+ x3)3x−1
3 (x3 − x1)−1(x3 − x2)−1}x1x2x3 = −x1x2x3,

i.e.

x3(x3 − x1)(x3 − x2)(x2 − x1)− (x+ x1)3x2x3(x3 − x2)

+ (x+ x2)3x1x3(x3 − x1)− (x+ x3)3x1x2(x2 − x1)

= − x1x2x3(x3 − x1)(x3 − x2)(x2 − x1).

We put x1 = a, x2 = a + b, x3 = a + b + c, where a, b, c are any complex
numbers. We obtain

(14) x3(b+ c)(c)(b)− (x+ a)3(a+ b)(a+ b+ c)(c)

+ (x+ a+ b)3(a)(a+ b+ c)(b+ c)

− (x+ a+ b+ c)3(a)(a+ b)(b)

= − abc(a+ b)(b+ c)(a+ b+ c).



262 K. Ramachandra

Here we can put x = Hn, a = 1/(n+ 1), b = 1/(n+ 2), c = 1/(n+ 3) and
proceed as before. We conclude that

∞∑

n=1

φ3(n)2−nH3
n

is a rational number for infinitely many non-trivial polynomials φ3(n) with
integer coefficients.

(d) Just as we worked with k = 1, 2 and 3 we can work with k = 4, 5, 6, . . .
We obtain the following theorem.

Theorem 3. Let k ≥ 1 be any fixed integer. Then for a non-trivial
infinite class of polynomials φk(n) (in n) with integer coefficients, the series

∞∑

n=1

φk(n)2−nHk
n

is a rational number.

4. Series evaluations involving Euler’s constant γ. We next con-
sider

b0 = −γ and bn =
1
n
− log

(
n+ 1
n

)
(n = 1, 2, . . .).

Now

Gn = −γ +
n∑

m=1

1
m
− log(n+ 1).

We are led to series involving higher powers of Gn. To illustrate our method
we consider the special case k = 2 of Theorem 1. We go back to the identity
(12) (which is a special case of Theorem 1). Here we put x = Gn, a = bn+1

and b = bn+2. This gives

(15) G2
nbn+2 − (bn+1 + bn+2)G2

n+1 + bn+1G
2
n+2 = (bn+1 + bn+2)bn+1bn+2.

Note that Gn = O(n−1) and bn = O(n−2). We now sum up (15) from n = 1
to ∞. We obtain

(16) G2
1b3 +G2

2b4 +
∞∑

n=1

G2
n+2bn+4 − (b2 + b3)G2

2

−
∞∑

n=1

(bn+2 + bn+3)G2
n+2 +

∞∑

n=1

bn+1G
2
n+2

=
∞∑

n=1

bn+1bn+2(bn+1 + bn+2).
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This leads to the identity (which is not neat but our method leads to a
host of other identities) which we state as Theorem 5.

Theorem 4. Let γ be the limit as n→∞ of Hn − logn. Put

Gn = −γ +
n∑

m=1

(
1
m
− log

m+ 1
m

)
.

Then

(17)
∞∑

n=3

{
1

n(n− 1)
− 1

(n+ 1)(n+ 2)
+ log

(
1− 4

n3 + 3n2

)}
G2
n

+ γ2
(
−1

4
+ log

6
5

)

− 2γ
{

(1− log 2)
(

1
3
− log

4
3

)
+
(

3
2
− log 3

)(
log

8
5
− 7

12

)}

+ (1− log 2)2
(

1
3
− log

4
3

)
+
(

3
2
− log 3

)2(
log

8
5
− 7

12

)

=
∞∑

n=1

(
1

n+ 1
− log

n+ 2
n+ 1

)(
1

n+ 2
− log

n+ 3
n+ 2

)

×
(

1
n+ 1

+
1

n+ 2
− log

n+ 3
n+ 1

)
.

Remark. Certainly we can get series evaluation involving Gkn (k =
3, 4, 5, . . .).

5. A general result on Gkn. Theorem 1 certainly gives the identity

xk + A1(x+ x1)k + . . .+ Ak(x+ xk)k = Dk

where A1, . . . , Ak and Dk are all independent of x.
We now explain how to apply Theorem 1 to the summation of (2). We

choose x = b0 and

(18) x1 = bn+1, x2 = bn+1 + bn+2, . . . , xk = bn+1 + bn+2 + . . .+ bn+k.

We see, with A0 = 1 and A1, . . . , Ak and Dk, that these depend only on
bn+1, . . . , bn+k. For a fixed k and any fixed sequence F (1), F (2), . . . we write

C0(n) = F (n)A0, C1(n) = F (n)A1, . . . , Ck(n) = F (n)Ak,

R(n) = Dk(n)F (n).

Then subject to the convergence condition (and plainly we need xi 6= xj for
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i 6= j) we have the identity

(19)
∞∑

n=1

C0(n)Gkn +
∞∑

n=1

C1(n)Gkn+1 + . . .+
∞∑

n=1

Ck(n)Gkn+k =
∞∑

n=1

R(n).

Here the left hand side is

(20)
( k∑

n=1

C0(n)Gkn +
∞∑

n=1

C0(n+ k)Gkn+k

)

+
( k−1∑

n=1

C1(n)Gkn+1 +
∞∑

n=1

C1(n+ k − 1)Gkn+k

)

+ . . .+
( 1∑

n=1

Ck−1(n)Gkn+k−1 +
∞∑

n=1

Ck−1(n+ 1)Gkn+k

)

+
∞∑

n=1

Ck(n)Gkn+k

=
k∑

n=1

C0(n)Gkn +
k−1∑

n=1

C1(n)Gkn+1 + . . .+
1∑

n=1

Ck−1(n)Gkn+k−1

+
∞∑

n=1

(C0(n+ k) + C1(n+ k − 1) + C2(n+ k − 2)

+ . . .+ Ck(n))Gkn+k.

Writing

(21) f(n+ k) = C0(n+ k) + C1(n+ k − 1) + C2(n+ k − 2) + . . .+ Ck(n)

we have the following theorem.

Theorem 5. In the notation explained above, we have

(22)
∞∑

n=1

f(n+ k)Gkn+k

=
∞∑

n=1

R(n)−
{ k∑

n=1

C0(n)Gkn +
k−1∑

n=1

C1(n)Gkn+1 + . . .+
1∑

n=1

Ck−1(n)Gkn+k−1

}

and plainly
∑∞
n=1 f(n)Gkn equals the left hand side of (22) plus the finite

sum
∑k
n=1 f(n)Gkn.

6. Concluding remarks and acknowledgements. The author is in-
debted to the referee for pointing out the following theorem (see [1]).
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Theorem 6. Let

g1(x) =
∞∑

n=1

anx
n and g2(x) =

∞∑

n=1

bnx
n

be two formal power series with coefficients in a commutative field K. Define
the Hadamard product of g1(x) and g2(x) by the equation

(23) (g1 ∗ g2)(x) =
∞∑

n=1

anbnx
n.

If g1(x) and g2(x) satisfy a linear differential equation with coefficients in
K[x], the same also holds for (g1 ∗ g2)(x).

Remark 1. Note that

h1(x) =
∞∑

n=1

Hnx
n = −(log(1− x))(1− x)−1

satisfies the differential equation (1− x)((1− x)h1(x))′ = 1. Thus Theorem
6 implies that the kth Hadamard product

∞∑

n=1

Hk
nx

n

satisfies a linear differential equation with coefficients in Q[x], Q being the
rational number field. Hence Theorem 6 certainly implies Theorem 3.

Remark 2. It must be mentioned that series involving Hn have recently
been considered by some other authors. See for example [2] which certainly
deserves to be mentioned here.
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