On the real roots of generalized Thue-Morse polynomials

by
Christophe Doche (Talence)

In this article we investigate real roots of real polynomials. By results of M. Kac [8-10] we know that a polynomial of degree n has on average $(2 / \pi) \log n$ real zeros. See also results of Edelman and Kostlan [6] on the same subject. Some 10 years later Erdős and Offord [7] proved that the mean number of real roots of a random polynomial of degree n with coefficients ± 1 is again $(2 / \pi) \log n$. This leads us to the following question: can we find sequences $\left(\alpha_{i}\right)_{i \in \mathbb{N}}$ with coefficients ± 1 such that the corresponding polynomials $\sum_{i=0}^{n} \alpha_{i} X^{i}$ have $O(\log n)$ real roots, and are these sequences random in some sense?

We introduce generalized Thue-Morse sequences whose corresponding polynomials of large degree n have at least $C \log n$ real roots, where C is an explicit positive constant. Finally, we discuss the spectral measure of these sequences.

1. Introduction. Erdős and Offord [7] established that the average number of real zeros of the degree n polynomial $\sum_{i=0}^{n} \pm X^{i}$ is equivalent to $(2 / \pi) \log n$. A natural question could then be to find a sequence $\left(\alpha_{i}\right)_{i \in \mathbb{N}}$ of ± 1 such that

$$
\begin{equation*}
\frac{1}{N} \sum_{n=0}^{N-1} \varrho\left(g_{n}\right) \backsim \frac{2}{\pi} \log N \tag{1}
\end{equation*}
$$

where $\varrho\left(g_{n}\right)$ is the number of real zeros of the polynomial

$$
g_{n}(X)=\sum_{i=0}^{n} \alpha_{i} X^{i}
$$

In a previous article [5] we tested the Thue-Morse sequence $\left(\varepsilon_{i}\right)_{i \in \mathbb{N}}$, defined by $\varepsilon_{i}=(-1)^{\nu(i)}$ where $\nu(i)$ is the sum of the binary digits of i.

[^0]Unfortunately, we proved that (1) does not hold in this case. More precisely we have

$$
\frac{1}{N} \sum_{n=0}^{N-1} \varrho\left(f_{n}\right) \underset{N \rightarrow \infty}{\longrightarrow} \frac{11}{4}
$$

with $f_{n}(X)=\sum_{i=0}^{n} \varepsilon_{i} X^{i}$.
In this paper we show the existence of families $\left(\varepsilon_{w, i}\right)_{i \in \mathbb{N}}$ of (± 1)-sequences for which

$$
\liminf _{N \rightarrow \infty} \frac{1}{N \log N} \sum_{n=0}^{N-1} \varrho\left(f_{w, n}\right)>0
$$

where $f_{w, n}(X)=\sum_{i=0}^{n} \varepsilon_{w, i} X^{i}$. These sequences have, to some extent, a similar structure to the Thue-Morse sequence. They can be obtained in a very similar way, by means of iterations of morphisms. We call them generalized Thue-Morse sequences.

Before explaining this we introduce two useful notations. Let w be a word of length ℓ on the alphabet $\{+,-\}$ and $i \leq j$ be integers less than ℓ. Then ${ }_{i} w_{j}$ represents the factor of w beginning at letter i and finishing at letter j of w. For instance ${ }_{i} w_{i}$ is simply the letter at position i of w and ${ }_{0} w_{\ell-1}=w$. We put also $w[i]=1$ if ${ }_{i} w_{i}=+$ and $w[i]=-1$ if ${ }_{i} w_{i}=-$.

Now let φ be the morphism on the alphabet $\{+,-\}$ defined by

$$
\varphi:\left\{\begin{array}{l}
+\rightarrow+- \\
-\rightarrow-+
\end{array}\right.
$$

The first iterations of φ are

$$
\begin{aligned}
\varphi(+) & =+- \\
\varphi^{2}(+) & =+--+ \\
\varphi^{3}(+) & =+--+-++-
\end{aligned}
$$

Let

$$
\mathcal{E}=\lim _{n \rightarrow \infty} \varphi^{n}(+)
$$

be the Thue-Morse word. There exists an obvious link between \mathcal{E} and $\left(\varepsilon_{i}\right)_{i \in \mathbb{N}}$, i.e.

$$
\varepsilon_{i}=\mathcal{E}[i] .
$$

In the next section we slightly modify the definition of φ to get a wider family of sequences.
2. Generalized Thue-Morse sequences. Let w be a word on $\{+,-\}$ of length $\ell \geq 2$ beginning with + . We put

$$
\varphi_{w}:\left\{\begin{array}{l}
+\rightarrow w \\
-\rightarrow \bar{w}
\end{array}\right.
$$

where \bar{w}, the "opposite" of w, is defined by

$$
{ }_{i} \bar{w}_{i}= \begin{cases}- & \text { if }{ }_{i} w_{i}=+ \\ + & \text { if }{ }_{i} w_{i}=-\end{cases}
$$

The Thue-Morse w-word, \mathcal{E}_{w}, is then

$$
\mathcal{E}_{w}=\lim _{n \rightarrow \infty} \varphi_{w}^{n}(+)
$$

Denote by $\left(\varepsilon_{w, i}\right)_{i \in \mathbb{N}}$ the corresponding Thue-Morse w-sequence with coefficients ± 1, that is, the sequence satisfying

$$
\varepsilon_{w, i}=\mathcal{E}_{w}[i] .
$$

For example if $w=++$ then

$$
\sum_{i=0}^{\infty} \varepsilon_{w, i} X^{i}=\frac{1}{1-X}
$$

For each word w of length ℓ we consider P_{w} its associated polynomial defined by

$$
P_{w}(X)=\sum_{j=0}^{\ell-1} w[j] X^{j}
$$

Lemma 1. Let w be a word of length $\ell \geq 2$ on $\{+,-\}$ beginning with + and ε_{w} its associated generalized Thue-Morse sequence. Then

$$
\begin{equation*}
\sum_{i=0}^{\infty} \varepsilon_{w, i} X^{i}=\prod_{h=0}^{\infty} P_{w}\left(X^{\ell^{h}}\right) \tag{2}
\end{equation*}
$$

Proof. Let v be some word of length t on $\{+,-\}$ and

$$
P_{v}(X)=\sum_{j=0}^{t-1} v[j] X^{j}
$$

its associated polynomial. It suffices to see that

$$
P_{\varphi_{w}(v)}(X)=P_{w}(X) P_{v}\left(X^{\ell}\right)
$$

Indeed,

$$
j \ell\left(\varphi_{w}(v)\right)_{j \ell+\ell-1}= \begin{cases}w & \text { if } v[j]=1 \\ \bar{w} & \text { if } v[j]=-1\end{cases}
$$

for all j in $\llbracket 0, t-1 \rrbracket$. So we get

$$
P_{\varphi_{w}(v)}(X)=\sum_{j=0}^{t-1} P_{w}(X) v[j] X^{j \ell}
$$

and $P_{\varphi_{w}(v)}(X)=P_{w}(X) P_{v}\left(X^{\ell}\right)$ as claimed. The lemma immediately follows. Note that the series converges in $]-1,1[$.

Using this we can give for $\varepsilon_{w, i}$ a more explicit meaning that generalizes the initial definition of the Thue-Morse sequence. Let m_{1}, \ldots, m_{q} be the integers $j \in \llbracket 0, \ell-1 \rrbracket$ such that ${ }_{j} w_{j}=-$. Then from (2) it is clear that

$$
\varepsilon_{w, i}=(-1)^{\nu_{m_{1}}(i)+\ldots+\nu_{m_{q}}(i)}
$$

where $\nu_{m_{k}}(i)$ represents the number of m_{k} 's in the base ℓ expansion of i.
3. Real roots of generalized Thue-Morse polynomials. For the classical Thue-Morse polynomials the starting word is $w=+-$ so that its associated polynomial is $P_{w}(X)=1-X$. Therefore $\ell=2$ and since the real roots of $P_{w}\left(X^{2^{h}}\right)$ are -1 and 1 , we cannot use the convergence of $\sum_{i=0}^{\infty} \varepsilon_{i} X^{i}$ on $]-1,1\left[\right.$. Now the starting polynomial P_{w} may vanish on $] 0,1[$ and the real roots of $P_{w}\left(X^{\ell^{h}}\right)$ spread in this case along $[0,1[$. Using the convergence of (2) on $]-1,1\left[\right.$ we show that $\varrho\left(f_{w, n}\right)$ is in $C \log n$. Let us make this more precise.

Theorem 1. Let w be a word of length $\ell \geq 2$ on $\{+,-\}$ beginning with + such that P_{w} has only simple roots on $]-1,1\left[\right.$, say t roots $\beta_{1}<\ldots<\beta_{t}$ in $] 0,1\left[\right.$ and t^{\prime} roots $\beta_{t+t^{\prime}}<\ldots<\beta_{t+2}<\beta_{t+1}$ in $]-1,0\left[\right.$. Let $f_{w, n}$ be the generalized Thue-Morse polynomials associated with ε_{w}. Assume that $\beta_{t}<\beta_{1}^{1 / \ell}$. Suppose in addition that $\beta_{t+1}^{1 / \ell}<\beta_{t+t^{\prime}}$ if ℓ is odd. Then there exists $K>0$ such that for all $\epsilon>0$ there is an $N(\epsilon)$ such that for all $n \geq N(\epsilon)$ we have

$$
\begin{array}{ll}
\varrho\left(f_{w, n}\right) \geq \frac{2(1-\epsilon) t \log n}{\log \ell}-K & \text { if } \ell \text { is even, } \\
\varrho\left(f_{w, n}\right) \geq \frac{(1-\epsilon)\left(t+t^{\prime}\right) \log n}{\log \ell}-K & \text { if } \ell \text { is odd. }
\end{array}
$$

Proof. Put $\beta_{j, h}=\beta_{j}^{1 / \ell^{h}}$ for all $h \in \mathbb{Z}$. The roots of

$$
f_{w, \ell^{k}-1}(X)=\prod_{h=0}^{k-1} P_{w}\left(X^{\ell^{h}}\right)
$$

in $] 0,1[$ are therefore

$$
\begin{array}{ccc}
\beta_{1,0} & \ldots & \beta_{t, 0} \\
\vdots & & \vdots \\
\beta_{1, h} & \ldots & \beta_{t, h}, \\
\vdots & & \vdots \\
\beta_{1, k-1} & \ldots & \beta_{t, k-1} .
\end{array}
$$

Put also

$$
\delta_{j, h}= \begin{cases}\sqrt{\beta_{j, h} \beta_{j+1, h}} & \text { for } j \in \llbracket 1, t-1 \rrbracket, h \in \mathbb{Z}, \\ \sqrt{\beta_{t, h} \beta_{1, h+1}} & \text { for } j=t, h \in \mathbb{Z} .\end{cases}
$$

The next lemma plays an important part in the following.
Lemma 2. Let u be the multiplicity of 1 as a root of P_{w}. Then there are two constants C_{1} and C_{2} such that for all large $h, k \geq h$ and $j \in \llbracket 1, t \rrbracket$,

$$
\begin{equation*}
\left|f_{w, \ell^{k}-1}\left(\delta_{j, h}\right)\right| \geq C_{1} C_{2}^{h} \ell^{-u h(h+1) / 2} \tag{3}
\end{equation*}
$$

Proof of Lemma 2. First of all we determine $C_{1}(j)$ and $C_{2}(j)$ for any j in $\llbracket 1, t \rrbracket$. Since there are only finitely many j 's the lemma will follow immediately.

We remark that

$$
f_{w, \ell^{k}-1}\left(\delta_{j, h}\right)=\prod_{s=0}^{k-1} P_{w}\left(\delta_{j, h}^{\ell^{s}}\right)=\prod_{i=h-k+1}^{h} P_{w}\left(\delta_{j, i}\right)
$$

Now

$$
P_{w}\left(\delta_{j, i}\right)=\frac{P_{w}^{(u)}(1)}{u!}\left(1-\delta_{j, i}\right)^{u}+o\left(\left(1-\delta_{j, i}\right)^{u}\right)
$$

when $1-\delta_{j, i} \rightarrow 0$, so there are $C_{5} \in \mathbb{R}_{+}$and $i_{0}>0$ such that for all $i>i_{0}$,

$$
\left|P_{w}\left(\delta_{j, i}\right)\right| \geq C_{5}\left|1-\delta_{j, i}\right|^{u} \geq C_{5}\left|\frac{\log \delta_{j, 0}}{2 \ell^{i}}\right|^{u}
$$

since $\left|1-e^{x}\right| \geq|x| / 2$ near 0 . Thus

$$
\prod_{i=i_{0}}^{h}\left|P_{w}\left(\delta_{j, i}\right)\right| \geq C_{4} C_{3}^{h} \ell^{-u h(h+1) / 2}
$$

The factor

$$
\prod_{i=h-k+1}^{i_{0}-1}\left|P_{w}\left(\delta_{j, i}\right)\right|
$$

leads us to study the behaviour of P_{w} near 0 . Now P_{w} is locally either greater than 1 or less than 1 . In the first case it is obvious that for a suitable constant C_{1},

$$
\prod_{i=h-k+1}^{h}\left|P_{w}\left(\delta_{j, i}\right)\right| \geq C_{1} C_{2}^{h} \ell^{-u h(h+1) / 2}
$$

In the second case $\delta_{j, i} \geq \delta_{j, i}^{2} \geq \ldots \geq \delta_{j, i}^{\ell-1}$ and these quantities are small in comparison with 1 for all large $|i|$. Thus

$$
\left|P_{w}\left(\delta_{j, i}\right)-1\right| \leq(\ell-1) \delta_{j, i}
$$

Since for $i \leq 0$ we have $\delta_{j, i}=\delta_{j, 0}^{\ell|i|}$, we obtain the convergence of

$$
\prod_{i=-\infty}^{i_{0}-1}\left|P_{w}\left(\delta_{j, i}\right)\right|
$$

The lemma is then proved.

Remark. When $P_{w}(1) \neq 0$ it is possible to replace $C_{1} C_{2}^{h} \ell^{-u h(h+1) / 2}$ in (3) by a positive constant independent of h.

Since $f_{w, \ell^{k}-1}$ has $t-1$ simple roots between $\delta_{1, h}$ and $\delta_{t, h}$, it follows that $f_{w, \ell^{k}-1}$ changes sign $t-1$ times, passing above and below the lines

$$
y=C_{1} C_{2}^{h} \ell^{-u h(h+1) / 2} \quad \text { and } \quad y=-C_{1} C_{2}^{h} \ell^{-u h(h+1) / 2}
$$

For example, consider Figure 1 which displays $f_{w, 728}$ built from the word $w=+--$. As $P_{w}(1)=-1$ the remark ensures that $f_{w, 728}$ and more generally $f_{w, 3^{k}-1}$ winds itself round two absolute axes. Here they are $y=$ 0.067130 and $y=-0.067130$ (bold lines on Figure 1).

Fig. 1. $f_{w, 728}(X)$ on $[0,1]$

Now if $n \geq \ell^{k}$ it is clear that on $] 0,1[$,

$$
\left|f_{w, n}(x)-f_{w, \ell^{k}-1}(x)\right| \leq \frac{x^{\ell^{k}}}{1-x}
$$

Let $\epsilon>0$. Since $\delta_{t,\lfloor(1-\epsilon) k\rfloor}^{\ell^{k}}=\delta_{t,\lfloor(1-\epsilon) k\rfloor-k} \leq \delta_{t}^{\ell^{\epsilon k}}$, we have

$$
\frac{\delta_{t,\lfloor(1-\epsilon) k\rfloor}^{\ell^{k}}}{1-\delta_{t,\lfloor(1-\epsilon) k\rfloor}^{u m}} \cdot \frac{\ell^{u k(k+1) / 2}}{C_{1} C_{2}^{k}} \underset{k \rightarrow \infty}{\longrightarrow} 0
$$

So there is $k(\epsilon)$ such that for all $k \geq k(\epsilon)$,

$$
\delta_{t,\lfloor(1-\epsilon) k\rfloor}^{\ell^{k}}-C_{1} C_{2}^{k} \ell^{-u k(k+1) / 2}\left(1-\delta_{t,\lfloor(1-\epsilon) k\rfloor}\right) \leq 0
$$

Moreover the function $x^{\ell^{k}}-C_{1} C_{2}^{k} \ell^{-u k(k+1) / 2}(1-x)$ is increasing on $] 0,1[$.

So on $\left.] 0, \delta_{t,\lfloor(1-\epsilon) k\rfloor}\right]$

$$
\frac{x^{\ell^{k}}}{1-x}<C_{1} C_{2}^{k} \ell^{-u k(k+1) / 2}
$$

This inequality ensures that $f_{w, n}$ is subject to the same oscillations as $f_{w, \ell^{k}-1}$ provided Lemma 2 holds. Indeed, for h and k large,

$$
f_{w, n}\left(\delta_{j, h}\right) \geq f_{w, \ell^{k}-1}\left(\delta_{j, h}\right)-\frac{x^{\ell^{k}}}{1-x}>0
$$

when $f_{w, \ell^{k}-1}\left(\delta_{j, h}\right)>0$ and

$$
f_{w, n}\left(\delta_{j, h}\right) \leq f_{w, \ell^{k}-1}\left(\delta_{j, h}\right)+\frac{x^{\ell^{k}}}{1-x}<0
$$

when $f_{w, \ell^{k}-1}\left(\delta_{j, h}\right)<0$.
Let $\varrho_{1}\left(f_{w, n}\right)$ be the number of real roots of $f_{w, n}$ in $] 0,1[$. So

$$
\varrho_{1}\left(f_{w, n}\right) \geq \frac{(1-\epsilon) t \log n}{\log \ell}-K_{1}
$$

for a suitable absolute constant K_{1}, as soon as $n \geq N(\epsilon)=\ell^{k(\epsilon)}$.
If ℓ is even then $f_{w, n}$ has at least $\lfloor(1-\epsilon) k\rfloor t$ roots in]-1, 0 [for large k and $n \geq \ell^{k}$. Then

$$
\varrho\left(f_{w, n}\right) \geq \frac{2(1-\epsilon) t \log n}{\log \ell}-K
$$

for all large n.
If ℓ is odd we apply what we have just seen to $P_{w}(-X)$. This polynomial has by hypothesis t^{\prime} roots in $] 0,1\left[\right.$ so that $f_{w, n}(-X)$ has at least $\lfloor(1-\epsilon) k\rfloor t^{\prime}$ roots in $] 0,1[$. Thus

$$
\varrho\left(f_{w, n}\right) \geq \frac{(1-\epsilon)\left(t+t^{\prime}\right) \log n}{\log \ell}-K
$$

for all large n.
This ends the proof of Theorem 1.
Under the assumptions of Theorem 1 we have the following inequalities.
Corollary. If ℓ is even then

$$
\liminf _{N \rightarrow \infty} \frac{1}{N \log N} \sum_{n=0}^{N-1} \varrho\left(f_{w, n}\right) \geq \frac{2 t}{\log \ell}
$$

If ℓ is odd then

$$
\liminf _{N \rightarrow \infty} \frac{1}{N \log N} \sum_{n=0}^{N-1} \varrho\left(f_{w, n}\right) \geq \frac{t+t^{\prime}}{\log \ell}
$$

Proof. Assuming ℓ to be even, we apply Theorem 1 to obtain

$$
\begin{aligned}
\frac{1}{N \log N} \sum_{n=0}^{N-1} \varrho\left(f_{w, n}\right) & \geq \frac{1}{N \log N} \cdot \frac{2(1-\epsilon) t}{\log \ell}\left(\sum_{n=N(\epsilon)}^{N-1} \log n-N K\right) \\
& \geq \frac{2(1-\epsilon) t}{\log \ell}-\frac{K^{\prime}}{\log N}
\end{aligned}
$$

When N tends to infinity we get

$$
\liminf _{N \rightarrow \infty} \frac{1}{N \log N} \sum_{n=0}^{N-1} \varrho\left(f_{w, n}\right) \geq \frac{2(1-\epsilon) t}{\log \ell}
$$

Since this is true for all $\epsilon>0$ we deduce that

$$
\liminf _{N \rightarrow \infty} \frac{1}{N \log N} \sum_{n=0}^{N-1} \varrho\left(f_{w, n}\right) \geq \frac{2 t}{\log \ell}
$$

If ℓ is odd the same argument works.
So generalized Thue-Morse sequences yield polynomials with many real roots; but what can we say on their random behaviour? In the next section we say a few words about this.
4. Spectral measure of the generalized Thue-Morse sequences. A good tool to evaluate the random nature of a sequence is to study its spectral measure defined for instance in [11] and in [1]. We recall basic definitions, and then we give just the important results without all intermediate steps.

Let $\gamma_{w}(h)$ be the correlation function of $\left(\varepsilon_{w, n}\right)_{n \in \mathbb{N}}$ defined by

$$
\gamma_{w}(h)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \varepsilon_{w, n} \varepsilon_{w, n+h}
$$

This limit always exists for generalized Thue-Morse sequences. The spectral measure $d \sigma_{w}$ is linked to $\gamma_{w}(h)$ by the formula

$$
\gamma_{w}(h)=\int_{0}^{1} e^{2 i \pi h x} d \sigma_{w}(x)
$$

For all $i \in \llbracket 1, \ell-1 \rrbracket, \gamma_{w}$ satisfies the recurrence relations

$$
\begin{aligned}
\gamma_{w}(\ell k) & =\gamma_{w}(k) \\
\gamma_{w}(\ell k+i) & =\frac{a_{w, i}}{\ell} \gamma_{w}(k)+\frac{a_{w, \ell-i}}{\ell} \gamma_{w}(k+1),
\end{aligned}
$$

where $a_{w, i}=\sum_{j=0}^{\ell-i-1} w[j] w[i+j]$.

To establish that $d \sigma_{w}$ is continuous we know [1] that it is sufficient to prove that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \gamma_{w}(n)^{2}=0
$$

Let

$$
\Gamma_{w}(h)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{m<N} \gamma_{w}(m) \gamma_{w}(m+h)
$$

and we are left to show $\Gamma_{w}(0)=0$. Following the ideas of [1, Appendix I] we obtain the system

$$
\mathcal{S}:\left\{\begin{array}{l}
c_{11}(w) \Gamma_{w}(0)+c_{12}(w) \Gamma_{w}(1)=0 \\
c_{21}(w) \Gamma_{w}(0)+c_{22}(w) \Gamma_{w}(1)=0
\end{array}\right.
$$

where

$$
\begin{aligned}
& c_{11}(w)=1-\frac{1}{\ell}-2 \sum_{j=1}^{\ell-1} \frac{a_{w, j}^{2}}{\ell^{3}} \\
& c_{12}(w)=-2 \sum_{j=1}^{\ell-1} \frac{a_{w, j} a_{w, \ell-j}}{\ell^{3}}, \\
& c_{21}(w)=\frac{2 a_{w, 1}}{\ell^{2}}+2 \sum_{j=1}^{\ell-2} \frac{a_{w, j} a_{w, j+1}}{\ell^{3}}, \\
& c_{22}(w)=-1+\frac{2 a_{w, \ell-1}}{\ell^{2}}+\sum_{j=1}^{\ell-2} \frac{a_{w, j+1} a_{w, \ell-j}+a_{w, j} a_{w, \ell-j-1}}{\ell^{3}} .
\end{aligned}
$$

Lemma 3. Let w be word of length $\ell \geq 2$. We say w is of type ++ if $w=+\ldots+(\ell$ times $)$, and of type +-+ if ℓ is odd and $w=+(-+) \ldots(-+)$ $((\ell-1) / 2$ brackets $)$. Then the determinant $\Delta(w)$ of \mathcal{S} vanishes if and only if w is of type ++ or +-+ .

Proof. It is almost immediate that

$$
\begin{array}{ll}
\left|c_{11}(w)\right| \geq \frac{\ell^{3}-\ell}{3 \ell^{3}}, & \left|c_{12}(w)\right| \leq \frac{\ell^{3}-\ell}{3 \ell^{3}} \\
\left|c_{21}(w)\right| \leq \frac{2 \ell^{3}-2 \ell}{3 \ell^{3}}, & \left|c_{22}(w)\right| \geq \frac{2 \ell^{3}-2 \ell}{3 \ell^{3}}
\end{array}
$$

For example, let us show the last inequality. We know that

$$
c_{22}(w)=-1+\frac{2 a_{w, \ell-1}}{\ell^{2}}+\sum_{j=1}^{\ell-2} \frac{a_{w, j+1} a_{w, \ell-j}+a_{w, j} a_{w, \ell-j-1}}{\ell^{3}}
$$

Since

$$
\begin{aligned}
\left|\sum_{j=1}^{\ell-2} \frac{a_{w, j+1} a_{w, \ell-j}+a_{w, j} a_{w, \ell-j-1}}{\ell^{3}}\right| & \leq \sum_{j=1}^{\ell-2} \frac{(\ell-j-1) j+(\ell-j)(j+1)}{\ell^{3}} \\
& \leq \frac{\ell^{3}-4 \ell}{3 \ell^{3}}
\end{aligned}
$$

we have

$$
\left|c_{22}(w)\right| \geq 1-\frac{2\left|a_{w, \ell-1}\right|}{\ell^{2}}-\frac{\ell^{3}-4 \ell}{3 \ell^{3}} \geq \frac{2 \ell^{3}-2 \ell}{3 \ell^{3}}
$$

We also notice that the last inequality is an equality if and only if

$$
\left\{\begin{array}{l}
\left|a_{w, j}\right|=\ell-j \quad \text { for } j \in \llbracket 0, \ell-1 \rrbracket \tag{4}\\
a_{w, \ell-1}=1
\end{array}\right.
$$

If (4) is not satisfied, then $\left|c_{22}(w)\right|>\left(2 \ell^{3}-2 \ell\right) /\left(3 \ell^{3}\right)$ and

$$
|\Delta(w)| \geq\left|c_{11}(w) c_{22}(w)\right|-\left|c_{12}(w) c_{21}(w)\right|>0
$$

which implies that $\Gamma_{w}(0)=0$. Now if (4) holds then $w[j] w[j+1]$ does not depend on $j \in \llbracket 0, \ell-2 \rrbracket$. Therefore $w[j]=1$ or $w[j]=(-1)^{j}$ for all $j \in \llbracket 0, \ell-1 \rrbracket$. When $w[j]=(-1)^{j}$ the relation $a_{w, \ell-1}=w[0] w[\ell-1]=1$ shows that ℓ is necessarily odd. Obviously if w is of type ++ or +-+ then $\Delta(w)=0$, so that the result is proved.

This lemma ensures that the spectral measure of a generalized ThueMorse sequence is continuous, except for trivial ++ or +-+ cases. However, although continuous, $d \sigma_{w}$ is singular (see Theorem 6 of [4]). Therefore $d \sigma_{w}$ is not absolutely continuous, which would be a true random behaviour. Nonetheless this ensures that $\left(\varepsilon_{w, n}\right)_{n \in \mathbb{N}}$ is pseudo-random in the sense of Bass [2] and Bertrandias [3].

Finally, when w is of type ++ its spectral measure is the Dirac mass $\delta_{0}(x)$. If w is of type +-+ , then $d \sigma_{w}$ is $\delta_{1 / 2}(x)$.

Acknowledgements. I am grateful to my supervisor, L. Habsieger, for his continuous help and to M. Mendès France for his helpful comments.

References

[1] J.-P. Allouche and M. Mendès France, Automata and automatic sequences, in: Beyond Quasicrystals, F. Axel and D. Gratias (eds.), les Éditions de Physique et Springer, 1995, 293-367.
[2] J. Bass, Suites uniformément denses, moyennes trigonométriques, fonctions pseudoaléatoires, Bull. Soc. Math. France 85 (1959), 1-69.
[3] J.-P. Bertrandias, Espaces de fonctions bornées et continues en moyenne asymptotique d'ordre p, Bull. Soc. Math. France Mém. 5 (1966).
[4] J. Coquet, T. Kamae et M. Mendès France, Sur la mesure spectrale de certaines suites arithmétiques, Bull. Soc. Math. France 105 (1977), 369-384.
[5] C. Doche and M. Mendès France, Integral geometry and real zeros of Thue-Morse polynomials, Experiment. Math. 9 (2000), 339-350.
[6] A. Edelman and E. Kostlan, How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc. (N.S.) 32 (1995), 1-37.
[7] P. Erdős and A. C. Offord, On the number of real roots of a random algebraic equation, Proc. London Math. Soc. 6 (1956), 139-160.
[8] M. Kac, On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc. 49 (1943), 314-320 and 938.
[9] -, On the average number of real roots of a random algebraic equation (II), Proc. London Math. Soc. 50 (1949), 390-408.
[10] -, Probability and Related Topics in Physical Sciences, Lectures in Appl. Math., Interscience, 1959.
[11] S. Kakutani, Strictly ergodic symbolic dynamical systems, in: Proc. of the 6th Berkeley Symposium on Mathematical Statistics and Probability (Berkeley, 1970), Vol. 2, Univ. of California Press, Berkeley, 1972, 319-326.

Laboratoire d'Algorithmique Arithmétique
Université Bordeaux I
351, cours de la Libération
F-33405 Talence Cedex, France
E-mail: cdoche@math.u-bordeaux.fr

Received on 8.10.1999
and in revised form on 18.1.2001

[^0]: 2000 Mathematics Subject Classification: Primary 12D10.
 Key words and phrases: real roots of polynomials, Thue-Morse sequence, spectral measure.

