On the real roots of generalized Thue–Morse polynomials

by

CHRISTOPHE DOCHE (Talence)

In this article we investigate real roots of real polynomials. By results of M. Kac [8–10] we know that a polynomial of degree n has on average $(2/\pi)\log n$ real zeros. See also results of Edelman and Kostlan [6] on the same subject. Some 10 years later Erdős and Offord [7] proved that the mean number of real roots of a random polynomial of degree n with coefficients ± 1 is again $(2/\pi)\log n$. This leads us to the following question: can we find sequences $(\alpha_i)_{i\in\mathbb{N}}$ with coefficients ± 1 such that the corresponding polynomials $\sum_{i=0}^{n} \alpha_i X^i$ have $O(\log n)$ real roots, and are these sequences random in some sense?

We introduce generalized Thue–Morse sequences whose corresponding polynomials of large degree n have at least $C \log n$ real roots, where C is an explicit positive constant. Finally, we discuss the spectral measure of these sequences.

1. Introduction. Erdős and Offord [7] established that the average number of real zeros of the degree n polynomial $\sum_{i=0}^{n} \pm X^{i}$ is equivalent to $(2/\pi) \log n$. A natural question could then be to find a sequence $(\alpha_{i})_{i \in \mathbb{N}}$ of ± 1 such that

(1)
$$\frac{1}{N} \sum_{n=0}^{N-1} \varrho(g_n) \sim \frac{2}{\pi} \log N$$

where $\rho(g_n)$ is the number of real zeros of the polynomial

$$g_n(X) = \sum_{i=0}^n \alpha_i X^i$$

In a previous article [5] we tested the Thue–Morse sequence $(\varepsilon_i)_{i \in \mathbb{N}}$, defined by $\varepsilon_i = (-1)^{\nu(i)}$ where $\nu(i)$ is the sum of the binary digits of *i*.

²⁰⁰⁰ Mathematics Subject Classification: Primary 12D10.

 $Key\ words\ and\ phrases:$ real roots of polynomials, Thue–Morse sequence, spectral measure.

C. Doche

Unfortunately, we proved that (1) does not hold in this case. More precisely we have

$$\frac{1}{N}\sum_{n=0}^{N-1}\varrho(f_n)\underset{N\to\infty}{\longrightarrow}\frac{11}{4},$$

with $f_n(X) = \sum_{i=0}^n \varepsilon_i X^i$.

In this paper we show the existence of families $(\varepsilon_{w,i})_{i\in\mathbb{N}}$ of (± 1) -sequences for which

$$\liminf_{N \to \infty} \frac{1}{N \log N} \sum_{n=0}^{N-1} \varrho(f_{w,n}) > 0,$$

where $f_{w,n}(X) = \sum_{i=0}^{n} \varepsilon_{w,i} X^{i}$. These sequences have, to some extent, a similar structure to the Thue–Morse sequence. They can be obtained in a very similar way, by means of iterations of morphisms. We call them generalized Thue–Morse sequences.

Before explaining this we introduce two useful notations. Let w be a word of length ℓ on the alphabet $\{+, -\}$ and $i \leq j$ be integers less than ℓ . Then $_iw_j$ represents the factor of w beginning at letter i and finishing at letter j of w. For instance $_iw_i$ is simply the letter at position i of w and $_0w_{\ell-1} = w$. We put also w[i] = 1 if $_iw_i = +$ and w[i] = -1 if $_iw_i = -$.

Now let φ be the morphism on the alphabet $\{+, -\}$ defined by

$$\varphi: \left\{ \begin{array}{c} + \to +-, \\ - \to -+ \, . \end{array} \right.$$

The first iterations of φ are

$$\varphi(+) = +-,$$

 $\varphi^{2}(+) = +--+,$
 $\varphi^{3}(+) = +--++-.$

Let

$$\mathcal{E} = \lim_{n \to \infty} \varphi^n(+)$$

be the Thue–Morse word. There exists an obvious link between \mathcal{E} and $(\varepsilon_i)_{i\in\mathbb{N}}$, i.e.

$$\varepsilon_i = \mathcal{E}[i].$$

In the next section we slightly modify the definition of φ to get a wider family of sequences.

2. Generalized Thue–Morse sequences. Let w be a word on $\{+, -\}$ of length $\ell \geq 2$ beginning with +. We put

$$\varphi_w: \left\{ \begin{array}{c} + \to w, \\ - \to \overline{w} \end{array} \right.$$

310

where \overline{w} , the "opposite" of w, is defined by

$$_{i}\overline{w}_{i} = \begin{cases} - & \text{if } _{i}w_{i} = +, \\ + & \text{if } _{i}w_{i} = -. \end{cases}$$

The Thue–Morse w-word, \mathcal{E}_w , is then

$$\mathcal{E}_w = \lim_{n \to \infty} \varphi_w^n(+).$$

Denote by $(\varepsilon_{w,i})_{i\in\mathbb{N}}$ the corresponding Thue–Morse *w*-sequence with coefficients ±1, that is, the sequence satisfying

$$\varepsilon_{w,i} = \mathcal{E}_w[i].$$

For example if w = ++ then

$$\sum_{i=0}^{\infty} \varepsilon_{w,i} X^i = \frac{1}{1-X}.$$

For each word w of length ℓ we consider P_w its associated polynomial defined by

$$P_w(X) = \sum_{j=0}^{\ell-1} w[j] X^j.$$

LEMMA 1. Let w be a word of length $\ell \geq 2$ on $\{+, -\}$ beginning with + and ε_w its associated generalized Thue–Morse sequence. Then

(2)
$$\sum_{i=0}^{\infty} \varepsilon_{w,i} X^i = \prod_{h=0}^{\infty} P_w(X^{\ell^h}).$$

Proof. Let v be some word of length t on $\{+, -\}$ and

$$P_v(X) = \sum_{j=0}^{t-1} v[j] X^j$$

its associated polynomial. It suffices to see that

$$P_{\varphi_w(v)}(X) = P_w(X)P_v(X^\ell).$$

Indeed,

$$_{j\ell}(\varphi_w(v))_{j\ell+\ell-1} = \begin{cases} w & \text{if } v[j] = 1, \\ \overline{w} & \text{if } v[j] = -1, \end{cases}$$

for all j in [0, t-1]. So we get

$$P_{\varphi_w(v)}(X) = \sum_{j=0}^{t-1} P_w(X)v[j]X^{j\ell}$$

and $P_{\varphi_w(v)}(X) = P_w(X)P_v(X^{\ell})$ as claimed. The lemma immediately follows. Note that the series converges in]-1, 1[.

Using this we can give for $\varepsilon_{w,i}$ a more explicit meaning that generalizes the initial definition of the Thue–Morse sequence. Let m_1, \ldots, m_q be the integers $j \in [\![0, \ell - 1]\!]$ such that $_j w_j = -$. Then from (2) it is clear that

$$\varepsilon_{w,i} = (-1)^{\nu_{m_1}(i) + \dots + \nu_{m_q}(i)}$$

where $\nu_{m_k}(i)$ represents the number of m_k 's in the base ℓ expansion of i.

3. Real roots of generalized Thue–Morse polynomials. For the classical Thue–Morse polynomials the starting word is w = +- so that its associated polynomial is $P_w(X) = 1 - X$. Therefore $\ell = 2$ and since the real roots of $P_w(X^{2^h})$ are -1 and 1, we cannot use the convergence of $\sum_{i=0}^{\infty} \varepsilon_i X^i$ on]-1, 1[. Now the starting polynomial P_w may vanish on]0, 1[and the real roots of $P_w(X^{\ell^h})$ spread in this case along [0, 1[. Using the convergence of (2) on]-1, 1[we show that $\varrho(f_{w,n})$ is in $C \log n$. Let us make this more precise.

THEOREM 1. Let w be a word of length $\ell \geq 2$ on $\{+,-\}$ beginning with + such that P_w has only simple roots on]-1,1[, say t roots $\beta_1 < \ldots < \beta_t$ in]0,1[and t' roots $\beta_{t+t'} < \ldots < \beta_{t+2} < \beta_{t+1}$ in]-1,0[. Let $f_{w,n}$ be the generalized Thue–Morse polynomials associated with ε_w . Assume that $\beta_t < \beta_1^{1/\ell}$. Suppose in addition that $\beta_{t+1}^{1/\ell} < \beta_{t+t'}$ if ℓ is odd. Then there exists K > 0 such that for all $\epsilon > 0$ there is an $N(\epsilon)$ such that for all $n \geq N(\epsilon)$ we have

$$\varrho(f_{w,n}) \ge \frac{2(1-\epsilon)t\log n}{\log \ell} - K \quad if \ \ell \ is \ even, \\
\varrho(f_{w,n}) \ge \frac{(1-\epsilon)(t+t')\log n}{\log \ell} - K \quad if \ \ell \ is \ odd.$$

Proof. Put $\beta_{j,h} = \beta_j^{1/\ell^h}$ for all $h \in \mathbb{Z}$. The roots of

$$f_{w,\ell^k-1}(X) = \prod_{h=0}^{k-1} P_w(X^{\ell^h})$$

in]0,1[are therefore

Put also

$$\delta_{j,h} = \begin{cases} \sqrt{\beta_{j,h}\beta_{j+1,h}} & \text{for } j \in \llbracket 1, t-1 \rrbracket, h \in \mathbb{Z}, \\ \sqrt{\beta_{t,h}\beta_{1,h+1}} & \text{for } j = t, h \in \mathbb{Z}. \end{cases}$$

The next lemma plays an important part in the following.

LEMMA 2. Let u be the multiplicity of 1 as a root of P_w . Then there are two constants C_1 and C_2 such that for all large $h, k \ge h$ and $j \in [\![1,t]\!]$,

(3)
$$|f_{w,\ell^k-1}(\delta_{j,h})| \ge C_1 C_2^h \ell^{-uh(h+1)/2}$$

Proof of Lemma 2. First of all we determine $C_1(j)$ and $C_2(j)$ for any j in $[\![1,t]\!]$. Since there are only finitely many j's the lemma will follow immediately.

We remark that

$$f_{w,\ell^k-1}(\delta_{j,h}) = \prod_{s=0}^{k-1} P_w(\delta_{j,h}^{\ell^s}) = \prod_{i=h-k+1}^h P_w(\delta_{j,i}).$$

Now

$$P_w(\delta_{j,i}) = \frac{P_w^{(u)}(1)}{u!} (1 - \delta_{j,i})^u + o((1 - \delta_{j,i})^u)$$

when $1 - \delta_{j,i} \to 0$, so there are $C_5 \in \mathbb{R}_+$ and $i_0 > 0$ such that for all $i > i_0$,

$$|P_w(\delta_{j,i})| \ge C_5 |1 - \delta_{j,i}|^u \ge C_5 \left| \frac{\log \delta_{j,0}}{2\ell^i} \right|$$

since $|1 - e^x| \ge |x|/2$ near 0. Thus

$$\prod_{i=i_0}^h |P_w(\delta_{j,i})| \ge C_4 C_3^h \ell^{-uh(h+1)/2}.$$

The factor

$$\prod_{i=h-k+1}^{i_0-1} |P_w(\delta_{j,i})|$$

leads us to study the behaviour of P_w near 0. Now P_w is locally either greater than 1 or less than 1. In the first case it is obvious that for a suitable constant C_1 ,

$$\prod_{i=h-k+1}^{h} |P_w(\delta_{j,i})| \ge C_1 C_2^h \ell^{-uh(h+1)/2}.$$

In the second case $\delta_{j,i} \geq \delta_{j,i}^2 \geq \ldots \geq \delta_{j,i}^{\ell-1}$ and these quantities are small in comparison with 1 for all large |i|. Thus

$$|P_w(\delta_{j,i}) - 1| \le (\ell - 1)\delta_{j,i}.$$

Since for $i \leq 0$ we have $\delta_{j,i} = \delta_{j,0}^{\ell^{|i|}}$, we obtain the convergence of

$$\prod_{i=-\infty}^{i_0-1} |P_w(\delta_{j,i})|.$$

The lemma is then proved. \blacksquare

C. Doche

REMARK. When $P_w(1) \neq 0$ it is possible to replace $C_1 C_2^h \ell^{-uh(h+1)/2}$ in (3) by a positive constant independent of h.

Since $f_{w,\ell^{k}-1}$ has t-1 simple roots between $\delta_{1,h}$ and $\delta_{t,h}$, it follows that $f_{w,\ell^{k}-1}$ changes sign t-1 times, passing above and below the lines

$$y = C_1 C_2^h \ell^{-uh(h+1)/2}$$
 and $y = -C_1 C_2^h \ell^{-uh(h+1)/2}$.

For example, consider Figure 1 which displays $f_{w,728}$ built from the word w = + - -. As $P_w(1) = -1$ the remark ensures that $f_{w,728}$ and more generally $f_{w,3^k-1}$ winds itself round two absolute axes. Here they are y = 0.067130 and y = -0.067130 (bold lines on Figure 1).

Now if $n \ge \ell^k$ it is clear that on [0, 1],

$$|f_{w,n}(x) - f_{w,\ell^k-1}(x)| \le \frac{x^{\ell^k}}{1-x}$$

Let $\epsilon > 0$. Since $\delta_{t, \lfloor (1-\epsilon)k \rfloor}^{\ell^k} = \delta_{t, \lfloor (1-\epsilon)k \rfloor - k} \leq \delta_t^{\ell^{\epsilon k}}$, we have

$$\frac{\delta_{t,\lfloor(1-\epsilon)k\rfloor}^{\ell^*}}{1-\delta_{t,\lfloor(1-\epsilon)k\rfloor}} \cdot \frac{\ell^{uk(k+1)/2}}{C_1 C_2^k} \xrightarrow[k \to \infty]{} 0.$$

So there is $k(\epsilon)$ such that for all $k \ge k(\epsilon)$,

$$\delta_{t,\lfloor (1-\epsilon)k\rfloor}^{\ell^k} - C_1 C_2^k \ell^{-uk(k+1)/2} (1 - \delta_{t,\lfloor (1-\epsilon)k\rfloor}) \leq 0.$$

Moreover the function $x^{\ell^k} - C_1 C_2^k \ell^{-uk(k+1)/2} (1-x)$ is increasing on]0,1[.

So on $]0, \delta_{t, \lfloor (1-\epsilon)k \rfloor}]$

$$\frac{x^{\ell^k}}{1-x} < C_1 C_2^k \ell^{-uk(k+1)/2}$$

This inequality ensures that $f_{w,n}$ is subject to the same oscillations as f_{w,ℓ^k-1} provided Lemma 2 holds. Indeed, for h and k large,

$$f_{w,n}(\delta_{j,h}) \ge f_{w,\ell^k-1}(\delta_{j,h}) - \frac{x^{\ell^k}}{1-x} > 0$$

when $f_{w,\ell^k-1}(\delta_{j,h}) > 0$ and

$$f_{w,n}(\delta_{j,h}) \le f_{w,\ell^k-1}(\delta_{j,h}) + \frac{x^{\ell^k}}{1-x} < 0$$

when $f_{w,\ell^k-1}(\delta_{j,h}) < 0.$

Let $\rho_1(f_{w,n})$ be the number of real roots of $f_{w,n}$ in [0,1]. So

$$\varrho_1(f_{w,n}) \ge \frac{(1-\epsilon)t\log n}{\log \ell} - K_1,$$

for a suitable absolute constant K_1 , as soon as $n \ge N(\epsilon) = \ell^{k(\epsilon)}$.

If ℓ is even then $f_{w,n}$ has at least $\lfloor (1-\epsilon)k \rfloor t$ roots in]-1,0[for large k and $n \geq \ell^k$. Then

$$\varrho(f_{w,n}) \ge \frac{2(1-\epsilon)t\log n}{\log \ell} - K,$$

for all large n.

If ℓ is odd we apply what we have just seen to $P_w(-X)$. This polynomial has by hypothesis t' roots in]0, 1[so that $f_{w,n}(-X)$ has at least $\lfloor (1-\epsilon)k \rfloor t'$ roots in]0, 1[. Thus

$$\varrho(f_{w,n}) \ge \frac{(1-\epsilon)(t+t')\log n}{\log \ell} - K,$$

for all large n.

This ends the proof of Theorem 1. \blacksquare

Under the assumptions of Theorem 1 we have the following inequalities.

COROLLARY. If ℓ is even then

$$\liminf_{N \to \infty} \frac{1}{N \log N} \sum_{n=0}^{N-1} \varrho(f_{w,n}) \ge \frac{2t}{\log \ell}$$

If ℓ is odd then

$$\liminf_{N \to \infty} \frac{1}{N \log N} \sum_{n=0}^{N-1} \varrho(f_{w,n}) \ge \frac{t+t'}{\log \ell}.$$

C. Doche

Proof. Assuming ℓ to be even, we apply Theorem 1 to obtain

$$\frac{1}{N\log N} \sum_{n=0}^{N-1} \varrho(f_{w,n}) \ge \frac{1}{N\log N} \cdot \frac{2(1-\epsilon)t}{\log \ell} \Big(\sum_{n=N(\epsilon)}^{N-1} \log n - NK \Big)$$
$$\ge \frac{2(1-\epsilon)t}{\log \ell} - \frac{K'}{\log N}.$$

When N tends to infinity we get

$$\liminf_{N \to \infty} \frac{1}{N \log N} \sum_{n=0}^{N-1} \varrho(f_{w,n}) \ge \frac{2(1-\epsilon)t}{\log \ell}.$$

Since this is true for all $\epsilon > 0$ we deduce that

$$\liminf_{N \to \infty} \frac{1}{N \log N} \sum_{n=0}^{N-1} \varrho(f_{w,n}) \ge \frac{2t}{\log \ell}$$

If ℓ is odd the same argument works.

So generalized Thue–Morse sequences yield polynomials with many real roots; but what can we say on their random behaviour? In the next section we say a few words about this.

4. Spectral measure of the generalized Thue–Morse sequences. A good tool to evaluate the random nature of a sequence is to study its spectral measure defined for instance in [11] and in [1]. We recall basic definitions, and then we give just the important results without all intermediate steps.

Let $\gamma_w(h)$ be the correlation function of $(\varepsilon_{w,n})_{n\in\mathbb{N}}$ defined by

$$\gamma_w(h) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \varepsilon_{w,n} \varepsilon_{w,n+h}.$$

This limit always exists for generalized Thue–Morse sequences. The spectral measure $d\sigma_w$ is linked to $\gamma_w(h)$ by the formula

$$\gamma_w(h) = \int_0^1 e^{2i\pi hx} \, d\sigma_w(x).$$

For all $i \in [\![1, \ell - 1]\!]$, γ_w satisfies the recurrence relations

$$\gamma_w(\ell k) = \gamma_w(k),$$

$$\gamma_w(\ell k + i) = \frac{a_{w,i}}{\ell} \gamma_w(k) + \frac{a_{w,\ell-i}}{\ell} \gamma_w(k+1),$$

where $a_{w,i} = \sum_{j=0}^{\ell-i-1} w[j]w[i+j].$

To establish that $d\sigma_w$ is continuous we know [1] that it is sufficient to prove that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \gamma_w(n)^2 = 0.$$

Let

$$\Gamma_w(h) = \lim_{N \to \infty} \frac{1}{N} \sum_{m < N} \gamma_w(m) \gamma_w(m+h),$$

and we are left to show $\Gamma_w(0) = 0$. Following the ideas of [1, Appendix I] we obtain the system

$$S: \begin{cases} c_{11}(w)\Gamma_w(0) + c_{12}(w)\Gamma_w(1) = 0, \\ c_{21}(w)\Gamma_w(0) + c_{22}(w)\Gamma_w(1) = 0, \end{cases}$$

where

$$c_{11}(w) = 1 - \frac{1}{\ell} - 2 \sum_{j=1}^{\ell-1} \frac{a_{w,j}^2}{\ell^3},$$

$$c_{12}(w) = -2 \sum_{j=1}^{\ell-1} \frac{a_{w,j}a_{w,\ell-j}}{\ell^3},$$

$$c_{21}(w) = \frac{2a_{w,1}}{\ell^2} + 2 \sum_{j=1}^{\ell-2} \frac{a_{w,j}a_{w,j+1}}{\ell^3},$$

$$c_{22}(w) = -1 + \frac{2a_{w,\ell-1}}{\ell^2} + \sum_{j=1}^{\ell-2} \frac{a_{w,j+1}a_{w,\ell-j} + a_{w,j}a_{w,\ell-j-1}}{\ell^3}.$$

LEMMA 3. Let w be word of length $\ell \geq 2$. We say w is of type ++ if $w = + \ldots + (\ell \text{ times})$, and of type +-+ if ℓ is odd and $w = +(-+) \ldots (-+)$ $((\ell - 1)/2 \text{ brackets})$. Then the determinant $\Delta(w)$ of S vanishes if and only if w is of type ++ or +-+.

Proof. It is almost immediate that

$$|c_{11}(w)| \ge \frac{\ell^3 - \ell}{3\ell^3}, \qquad |c_{12}(w)| \le \frac{\ell^3 - \ell}{3\ell^3}, |c_{21}(w)| \le \frac{2\ell^3 - 2\ell}{3\ell^3}, \qquad |c_{22}(w)| \ge \frac{2\ell^3 - 2\ell}{3\ell^3}.$$

For example, let us show the last inequality. We know that

$$c_{22}(w) = -1 + \frac{2a_{w,\ell-1}}{\ell^2} + \sum_{j=1}^{\ell-2} \frac{a_{w,j+1}a_{w,\ell-j} + a_{w,j}a_{w,\ell-j-1}}{\ell^3}.$$

Since

$$\left|\sum_{j=1}^{\ell-2} \frac{a_{w,j+1}a_{w,\ell-j} + a_{w,j}a_{w,\ell-j-1}}{\ell^3}\right| \le \sum_{j=1}^{\ell-2} \frac{(\ell-j-1)j + (\ell-j)(j+1)}{\ell^3} \le \frac{\ell^3 - 4\ell}{3\ell^3},$$

we have

$$|c_{22}(w)| \ge 1 - \frac{2|a_{w,\ell-1}|}{\ell^2} - \frac{\ell^3 - 4\ell}{3\ell^3} \ge \frac{2\ell^3 - 2\ell}{3\ell^3}.$$

We also notice that the last inequality is an equality if and only if

(4)
$$\begin{cases} |a_{w,j}| = \ell - j & \text{for } j \in [\![0, \ell - 1]\!], \\ a_{w,\ell-1} = 1. \end{cases}$$

If (4) is not satisfied, then $|c_{22}(w)| > (2\ell^3 - 2\ell)/(3\ell^3)$ and

$$|\Delta(w)| \ge |c_{11}(w)c_{22}(w)| - |c_{12}(w)c_{21}(w)| > 0,$$

which implies that $\Gamma_w(0) = 0$. Now if (4) holds then w[j]w[j+1] does not depend on $j \in [\![0, \ell - 2]\!]$. Therefore w[j] = 1 or $w[j] = (-1)^j$ for all $j \in [\![0, \ell - 1]\!]$. When $w[j] = (-1)^j$ the relation $a_{w,\ell-1} = w[0]w[\ell - 1] = 1$ shows that ℓ is necessarily odd. Obviously if w is of type ++ or + - + then $\Delta(w) = 0$, so that the result is proved. \blacksquare

This lemma ensures that the spectral measure of a generalized Thue– Morse sequence is continuous, except for trivial ++ or +-+ cases. However, although continuous, $d\sigma_w$ is singular (see Theorem 6 of [4]). Therefore $d\sigma_w$ is not absolutely continuous, which would be a true random behaviour. Nonetheless this ensures that $(\varepsilon_{w,n})_{n\in\mathbb{N}}$ is pseudo-random in the sense of Bass [2] and Bertrandias [3].

Finally, when w is of type ++ its spectral measure is the Dirac mass $\delta_0(x)$. If w is of type + - +, then $d\sigma_w$ is $\delta_{1/2}(x)$.

Acknowledgements. I am grateful to my supervisor, L. Habsieger, for his continuous help and to M. Mendès France for his helpful comments.

References

- J.-P. Allouche and M. Mendès France, Automata and automatic sequences, in: Beyond Quasicrystals, F. Axel and D. Gratias (eds.), les Éditions de Physique et Springer, 1995, 293–367.
- J. Bass, Suites uniformément denses, moyennes trigonométriques, fonctions pseudoaléatoires, Bull. Soc. Math. France 85 (1959), 1–69.
- [3] J.-P. Bertrandias, Espaces de fonctions bornées et continues en moyenne asymptotique d'ordre p, Bull. Soc. Math. France Mém. 5 (1966).

318

- [4] J. Coquet, T. Kamae et M. Mendès France, Sur la mesure spectrale de certaines suites arithmétiques, Bull. Soc. Math. France 105 (1977), 369–384.
- C. Doche and M. Mendès France, Integral geometry and real zeros of Thue-Morse polynomials, Experiment. Math. 9 (2000), 339–350.
- [6] A. Edelman and E. Kostlan, How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc. (N.S.) 32 (1995), 1–37.
- [7] P. Erdős and A. C. Offord, On the number of real roots of a random algebraic equation, Proc. London Math. Soc. 6 (1956), 139–160.
- [8] M. Kac, On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc. 49 (1943), 314–320 and 938.
- [9] —, On the average number of real roots of a random algebraic equation (II), Proc. London Math. Soc. 50 (1949), 390–408.
- [10] —, Probability and Related Topics in Physical Sciences, Lectures in Appl. Math., Interscience, 1959.
- [11] S. Kakutani, Strictly ergodic symbolic dynamical systems, in: Proc. of the 6th Berkeley Symposium on Mathematical Statistics and Probability (Berkeley, 1970), Vol. 2, Univ. of California Press, Berkeley, 1972, 319–326.

Laboratoire d'Algorithmique Arithmétique Université Bordeaux I 351, cours de la Libération F-33405 Talence Cedex, France E-mail: cdoche@math.u-bordeaux.fr

> Received on 8.10.1999 and in revised form on 18.1.2001

(3695)