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On the real roots of generalized Thue–Morse polynomials

by

Christophe Doche (Talence)

In this article we investigate real roots of real polynomials. By results
of M. Kac [8–10] we know that a polynomial of degree n has on average
(2/π) logn real zeros. See also results of Edelman and Kostlan [6] on the
same subject. Some 10 years later Erdős and Offord [7] proved that the
mean number of real roots of a random polynomial of degree n with coeffi-
cients ±1 is again (2/π) logn. This leads us to the following question: can
we find sequences (αi)i∈N with coefficients ±1 such that the corresponding
polynomials

∑n
i=0 αiX

i have O(logn) real roots, and are these sequences
random in some sense?

We introduce generalized Thue–Morse sequences whose corresponding
polynomials of large degree n have at least C logn real roots, where C is an
explicit positive constant. Finally, we discuss the spectral measure of these
sequences.

1. Introduction. Erdős and Offord [7] established that the average
number of real zeros of the degree n polynomial

∑n
i=0±Xi is equivalent to

(2/π) logn. A natural question could then be to find a sequence (αi)i∈N of
±1 such that

1
N

N−1∑

n=0

%(gn) v 2
π

logN(1)

where %(gn) is the number of real zeros of the polynomial

gn(X) =
n∑

i=0

αiX
i.

In a previous article [5] we tested the Thue–Morse sequence (εi)i∈N,
defined by εi = (−1)ν(i) where ν(i) is the sum of the binary digits of i.
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Unfortunately, we proved that (1) does not hold in this case. More precisely
we have

1
N

N−1∑

n=0

%(fn) −→
N→∞

11
4
,

with fn(X) =
∑n

i=0 εiX
i.

In this paper we show the existence of families (εw,i)i∈N of (±1)-sequences
for which

lim inf
N→∞

1
N logN

N−1∑

n=0

%(fw,n) > 0,

where fw,n(X) =
∑n

i=0 εw,iX
i. These sequences have, to some extent, a

similar structure to the Thue–Morse sequence. They can be obtained in
a very similar way, by means of iterations of morphisms. We call them
generalized Thue–Morse sequences.

Before explaining this we introduce two useful notations. Let w be a
word of length ` on the alphabet {+,−} and i ≤ j be integers less than `.
Then iwj represents the factor of w beginning at letter i and finishing at
letter j of w. For instance iwi is simply the letter at position i of w and
0w`−1 = w. We put also w[i] = 1 if iwi = + and w[i] = −1 if iwi = −.

Now let ϕ be the morphism on the alphabet {+,−} defined by

ϕ :
{+→ +−,
− → −+ .

The first iterations of ϕ are

ϕ(+) = +−,
ϕ2(+) = +−−+,

ϕ3(+) = +−−+−+ +− .
Let

E = lim
n→∞

ϕn(+)

be the Thue–Morse word. There exists an obvious link between E and (εi)i∈N,
i.e.

εi = E [i].

In the next section we slightly modify the definition of ϕ to get a wider
family of sequences.

2. Generalized Thue–Morse sequences. Let w be a word on {+,−}
of length ` ≥ 2 beginning with +. We put

ϕw :
{+→ w,
− → w
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where w, the “opposite” of w, is defined by

iwi =
{
− if iwi = +,
+ if iwi = −.

The Thue–Morse w-word, Ew, is then

Ew = lim
n→∞

ϕnw(+).

Denote by (εw,i)i∈N the corresponding Thue–Morse w-sequence with coeffi-
cients ±1, that is, the sequence satisfying

εw,i = Ew[i].

For example if w = ++ then
∞∑

i=0

εw,iX
i =

1
1−X .

For each word w of length ` we consider Pw its associated polynomial defined
by

Pw(X) =
`−1∑

j=0

w[j]Xj .

Lemma 1. Let w be a word of length ` ≥ 2 on {+,−} beginning with +
and εw its associated generalized Thue–Morse sequence. Then

∞∑

i=0

εw,iX
i =

∞∏

h=0

Pw(X`h).(2)

Proof. Let v be some word of length t on {+,−} and

Pv(X) =
t−1∑

j=0

v[j]Xj

its associated polynomial. It suffices to see that

Pϕw(v)(X) = Pw(X)Pv(X`).

Indeed,

j`(ϕw(v))j`+`−1 =
{
w if v[j] = 1,
w if v[j] = −1,

for all j in [[0, t− 1]]. So we get

Pϕw(v)(X) =
t−1∑

j=0

Pw(X)v[j]Xj`

and Pϕw(v)(X) = Pw(X)Pv(X`) as claimed. The lemma immediately follows.
Note that the series converges in ]−1, 1[.
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Using this we can give for εw,i a more explicit meaning that generalizes
the initial definition of the Thue–Morse sequence. Let m1, . . . ,mq be the
integers j ∈ [[0, `− 1]] such that jwj = −. Then from (2) it is clear that

εw,i = (−1)νm1(i)+...+νmq (i)

where νmk(i) represents the number of mk’s in the base ` expansion of i.

3. Real roots of generalized Thue–Morse polynomials. For the
classical Thue–Morse polynomials the starting word is w = +− so that its
associated polynomial is Pw(X) = 1−X. Therefore ` = 2 and since the real
roots of Pw(X2h) are −1 and 1, we cannot use the convergence of

∑∞
i=0 εiX

i

on ]−1, 1[. Now the starting polynomial Pw may vanish on ]0, 1[ and the real
roots of Pw(X`h) spread in this case along [0, 1[. Using the convergence of
(2) on ]−1, 1[ we show that %(fw,n) is in C logn. Let us make this more
precise.

Theorem 1. Let w be a word of length ` ≥ 2 on {+,−} beginning with
+ such that Pw has only simple roots on ]−1, 1[, say t roots β1 < . . . < βt
in ]0, 1[ and t′ roots βt+t′ < . . . < βt+2 < βt+1 in ]−1, 0[. Let fw,n be
the generalized Thue–Morse polynomials associated with εw. Assume that
βt < β

1/`
1 . Suppose in addition that β1/`

t+1 < βt+t′ if ` is odd. Then there
exists K > 0 such that for all ε > 0 there is an N(ε) such that for all
n ≥ N(ε) we have

%(fw,n) ≥ 2(1− ε)t logn
log `

−K if ` is even,

%(fw,n) ≥ (1− ε)(t+ t′) logn
log `

−K if ` is odd.

Proof. Put βj,h = β
1/`h

j for all h ∈ Z. The roots of

fw,`k−1(X) =
k−1∏

h=0

Pw(X`h)

in ]0, 1[ are therefore
β1,0 . . . βt,0,

...
...

β1,h . . . βt,h,
...

...
β1,k−1 . . . βt,k−1.

Put also

δj,h =

{√
βj,hβj+1,h for j ∈ [[1, t− 1]], h ∈ Z,

√
βt,hβ1,h+1 for j = t, h ∈ Z.
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The next lemma plays an important part in the following.

Lemma 2. Let u be the multiplicity of 1 as a root of Pw. Then there are
two constants C1 and C2 such that for all large h, k ≥ h and j ∈ [[1, t]],

|fw,`k−1(δj,h)| ≥ C1C
h
2 `
−uh(h+1)/2.(3)

Proof of Lemma 2. First of all we determine C1(j) and C2(j) for any
j in [[1, t]]. Since there are only finitely many j’s the lemma will follow
immediately.

We remark that

fw,`k−1(δj,h) =
k−1∏

s=0

Pw(δ`
s

j,h) =
h∏

i=h−k+1

Pw(δj,i).

Now

Pw(δj,i) =
P

(u)
w (1)
u!

(1− δj,i)u + o((1− δj,i)u)

when 1− δj,i → 0, so there are C5 ∈ R+ and i0 > 0 such that for all i > i0,

|Pw(δj,i)| ≥ C5|1− δj,i|u ≥ C5

∣∣∣∣
log δj,0

2`i

∣∣∣∣
u

since |1− ex| ≥ |x|/2 near 0. Thus
h∏

i=i0

|Pw(δj,i)| ≥ C4C
h
3 `
−uh(h+1)/2.

The factor
i0−1∏

i=h−k+1

|Pw(δj,i)|

leads us to study the behaviour of Pw near 0. Now Pw is locally either
greater than 1 or less than 1. In the first case it is obvious that for a suitable
constant C1,

h∏

i=h−k+1

|Pw(δj,i)| ≥ C1C
h
2 `
−uh(h+1)/2.

In the second case δj,i ≥ δ2
j,i ≥ . . . ≥ δ`−1

j,i and these quantities are small in
comparison with 1 for all large |i|. Thus

|Pw(δj,i)− 1| ≤ (`− 1)δj,i.

Since for i ≤ 0 we have δj,i = δ`
|i|
j,0 , we obtain the convergence of

i0−1∏

i=−∞
|Pw(δj,i)|.

The lemma is then proved.
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Remark. When Pw(1) 6= 0 it is possible to replace C1C
h
2 `
−uh(h+1)/2 in

(3) by a positive constant independent of h.

Since fw,`k−1 has t− 1 simple roots between δ1,h and δt,h, it follows that
fw,`k−1 changes sign t− 1 times, passing above and below the lines

y = C1C
h
2 `
−uh(h+1)/2 and y = −C1C

h
2 `
−uh(h+1)/2.

For example, consider Figure 1 which displays fw,728 built from the
word w = +−−. As Pw(1) = −1 the remark ensures that fw,728 and more
generally fw,3k−1 winds itself round two absolute axes. Here they are y =
0.067130 and y = −0.067130 (bold lines on Figure 1).

0.2 0.4 0.6 0.8 1

-0.2

0.2

0.4

0.6

0.8

1

Fig. 1. fw,728(X) on [0, 1]

Now if n ≥ `k it is clear that on ]0, 1[,

|fw,n(x)− fw,`k−1(x)| ≤ x`
k

1− x.

Let ε > 0. Since δ`
k

t,b(1−ε)kc = δt,b(1−ε)kc−k ≤ δ`
εk

t , we have

δ`
k

t,b(1−ε)kc
1− δt,b(1−ε)kc

· `
uk(k+1)/2

C1Ck2
−→
k→∞

0.

So there is k(ε) such that for all k ≥ k(ε),

δ`
k

t,b(1−ε)kc − C1C
k
2 `
−uk(k+1)/2(1− δt,b(1−ε)kc) ≤ 0.

Moreover the function x`
k − C1C

k
2 `
−uk(k+1)/2(1 − x) is increasing on ]0, 1[.
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So on ]0, δt,b(1−ε)kc]

x`
k

1− x < C1C
k
2 `
−uk(k+1)/2.

This inequality ensures that fw,n is subject to the same oscillations as fw,`k−1
provided Lemma 2 holds. Indeed, for h and k large,

fw,n(δj,h) ≥ fw,`k−1(δj,h)− x`
k

1− x > 0

when fw,`k−1(δj,h) > 0 and

fw,n(δj,h) ≤ fw,`k−1(δj,h) +
x`
k

1− x < 0

when fw,`k−1(δj,h) < 0.
Let %1(fw,n) be the number of real roots of fw,n in ]0, 1[. So

%1(fw,n) ≥ (1− ε)t logn
log `

−K1,

for a suitable absolute constant K1, as soon as n ≥ N(ε) = `k(ε).

If ` is even then fw,n has at least b(1− ε)kct roots in ]−1, 0[ for large k
and n ≥ `k. Then

%(fw,n) ≥ 2(1− ε)t logn
log `

−K,

for all large n.
If ` is odd we apply what we have just seen to Pw(−X). This polynomial

has by hypothesis t′ roots in ]0, 1[ so that fw,n(−X) has at least b(1− ε)kct′
roots in ]0, 1[. Thus

%(fw,n) ≥ (1− ε)(t+ t′) logn
log `

−K,

for all large n.
This ends the proof of Theorem 1.

Under the assumptions of Theorem 1 we have the following inequalities.

Corollary. If ` is even then

lim inf
N→∞

1
N logN

N−1∑

n=0

%(fw,n) ≥ 2t
log `

.

If ` is odd then

lim inf
N→∞

1
N logN

N−1∑

n=0

%(fw,n) ≥ t+ t′

log `
.
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Proof. Assuming ` to be even, we apply Theorem 1 to obtain

1
N logN

N−1∑

n=0

%(fw,n) ≥ 1
N logN

· 2(1− ε)t
log `

( N−1∑

n=N(ε)

logn−NK
)

≥ 2(1− ε)t
log `

− K ′

logN
.

When N tends to infinity we get

lim inf
N→∞

1
N logN

N−1∑

n=0

%(fw,n) ≥ 2(1− ε)t
log `

.

Since this is true for all ε > 0 we deduce that

lim inf
N→∞

1
N logN

N−1∑

n=0

%(fw,n) ≥ 2t
log `

.

If ` is odd the same argument works.

So generalized Thue–Morse sequences yield polynomials with many real
roots; but what can we say on their random behaviour? In the next section
we say a few words about this.

4. Spectral measure of the generalized Thue–Morse sequences.
A good tool to evaluate the random nature of a sequence is to study its
spectral measure defined for instance in [11] and in [1]. We recall basic defi-
nitions, and then we give just the important results without all intermediate
steps.

Let γw(h) be the correlation function of (εw,n)n∈N defined by

γw(h) = lim
N→∞

1
N

N−1∑

n=0

εw,nεw,n+h.

This limit always exists for generalized Thue–Morse sequences. The spectral
measure dσw is linked to γw(h) by the formula

γw(h) =
1�

0

e2iπhx dσw(x).

For all i ∈ [[1, `− 1]], γw satisfies the recurrence relations

γw(`k) = γw(k),

γw(`k + i) =
aw,i
`
γw(k) +

aw,`−i
`

γw(k + 1),

where aw,i =
∑`−i−1

j=0 w[j]w[i+ j].
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To establish that dσw is continuous we know [1] that it is sufficient to
prove that

lim
N→∞

1
N

N−1∑

n=0

γw(n)2 = 0.

Let

Γw(h) = lim
N→∞

1
N

∑

m<N

γw(m)γw(m+ h),

and we are left to show Γw(0) = 0. Following the ideas of [1, Appendix I]
we obtain the system

S :
{
c11(w)Γw(0) + c12(w)Γw(1) = 0,
c21(w)Γw(0) + c22(w)Γw(1) = 0,

where

c11(w) = 1− 1
`
− 2

`−1∑

j=1

a2
w,j

`3
,

c12(w) = −2
`−1∑

j=1

aw,jaw,`−j
`3

,

c21(w) =
2aw,1
`2

+ 2
`−2∑

j=1

aw,jaw,j+1

`3
,

c22(w) = −1 +
2aw,`−1

`2
+

`−2∑

j=1

aw,j+1aw,`−j + aw,jaw,`−j−1

`3
.

Lemma 3. Let w be word of length ` ≥ 2. We say w is of type ++ if
w = + . . .+ (` times), and of type +−+ if ` is odd and w = +(−+) . . . (−+)
((`− 1)/2 brackets). Then the determinant ∆(w) of S vanishes if and only
if w is of type ++ or +−+.

Proof. It is almost immediate that

|c11(w)| ≥ `3 − `
3`3

, |c12(w)| ≤ `3 − `
3`3

,

|c21(w)| ≤ 2`3 − 2`
3`3

, |c22(w)| ≥ 2`3 − 2`
3`3

.

For example, let us show the last inequality. We know that

c22(w) = −1 +
2aw,`−1

`2
+

`−2∑

j=1

aw,j+1aw,`−j + aw,jaw,`−j−1

`3
.
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Since
∣∣∣∣
`−2∑

j=1

aw,j+1aw,`−j + aw,jaw,`−j−1

`3

∣∣∣∣ ≤
`−2∑

j=1

(`− j − 1)j + (`− j)(j + 1)
`3

≤ `3 − 4`
3`3

,

we have

|c22(w)| ≥ 1− 2|aw,`−1|
`2

− `3 − 4`
3`3

≥ 2`3 − 2`
3`3

.

We also notice that the last inequality is an equality if and only if
{
|aw,j| = `− j for j ∈ [[0, `− 1]],
aw,`−1 = 1.(4)

If (4) is not satisfied, then |c22(w)| > (2`3 − 2`)/(3`3) and

|∆(w)| ≥ |c11(w)c22(w)| − |c12(w)c21(w)| > 0,

which implies that Γw(0) = 0. Now if (4) holds then w[j]w[j + 1] does
not depend on j ∈ [[0, ` − 2]]. Therefore w[j] = 1 or w[j] = (−1)j for all
j ∈ [[0, ` − 1]]. When w[j] = (−1)j the relation aw,`−1 = w[0]w[` − 1] = 1
shows that ` is necessarily odd. Obviously if w is of type ++ or +−+ then
∆(w) = 0, so that the result is proved.

This lemma ensures that the spectral measure of a generalized Thue–
Morse sequence is continuous, except for trivial ++ or +−+ cases. However,
although continuous, dσw is singular (see Theorem 6 of [4]). Therefore dσw
is not absolutely continuous, which would be a true random behaviour.
Nonetheless this ensures that (εw,n)n∈N is pseudo-random in the sense of
Bass [2] and Bertrandias [3].

Finally, when w is of type ++ its spectral measure is the Dirac mass
δ0(x). If w is of type +−+, then dσw is δ1/2(x).
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