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1. Introduction and statement of results. Let p be a prime number,
Fp the algebraic closure of Fp = Z/pZ and let C be an irreducible curve of
degree d in an affine space Ar(Fp). We assume in the following that C is not
contained in any hyperplane and that it is defined over Fp. Our object in
this paper is to study the distribution of the set C(Fp) of Fp-points on C.
We are interested in obtaining asymptotic results as p goes to infinity, while
r is fixed, d is bounded and C is as above. In particular we would like to
understand the distribution of distances between the coordinates of a point
x = (x1, . . . , xr) ∈ Frp which moves along the curve. Our original motivation
for investigating these distances came from the problem of the distribution
of |a−a|, where a, a run over the set {1, . . . , p−1} such that aa ≡ 1 (mod p).
This problem was solved by Wenpeng Zhang [4] who proved that for any
integer n ≥ 2 and any 0 < δ ≤ 1,

(1) |{a : 1 ≤ a ≤ n− 1, (a, n) = 1, |a− a| < δn}|
= δ(2− δ)ϕ(n) +O(n1/2d2(n) log3 n),

where ϕ(n) is the Euler function and d(n) denotes the number of divisors of
n. In [5] Zhiyong Zheng investigated the same problem, with (a, a) replaced
by a pair (x, y) satisfying a more general congruence. Precisely, let p be a
prime number and let f(x, y) be a polynomial with integer coefficients of
total degree d ≥ 2, absolutely irreducible modulo p. Then it is proved in [5]
that for any 0 < δ ≤ 1,

(2) |{(x, y) ∈ Z2 : 0 ≤ x, y < p, f(x, y) ≡ 0 (mod p), |x− y| < δp}|
= δ(2− δ)p+Od(p1/2 log2 p).
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Returning to our context, we fix an r ≥ 2, then choose a large prime
number p and a curve C in Ar(Fp) as before. We view C(Fp) as sitting in
the torus Tr = Rr/Zr. Precisely, one has a natural injection Fp → T = R/Z
defined as follows. Given x ∈ Fp, choose a representative m of x in Z and
then project m/p ∈ R to its image t = t(x) in T. Note that t(x) does not
depend on the choice of m. Then Frp injects in Tr, a point x = (x1, . . . , xr) ∈
Frp being sent to t(x) = (t(x1), . . . , t(xr)) ∈ Tr. To study the distribution of
C(Fp) in Tr, consider the probability measure µr,p,C on Tr defined by

µr,p,C =
1

|C(Fp)|
∑

x∈C(Fp)

δt(x),

where δt(x) is a unit point delta mass at t(x). The first question one would
ask about these measures is whether they converge to a certain measure on
Tr as p → ∞ and C is as before, say of bounded degree d. The answer is
that they weakly converge to the (normalized) Haar measure µ on Tr. Next,
we would like to know how fast µr,p,C(Ω) approaches µ(Ω) for a given nice
domain Ω in Tr, so that one could produce quantitative results for any large
prime number p. We prove the following

Theorem 1. Let r ≥ 2 be an integer and Ω a domain in Tr with piece-
wise smooth boundary. Then for any prime p and any irreducible curve C of
degree d in Ar(Fp), defined over Fp and not contained in any hyperplane,

µr,p,C(Ω) = µ(Ω) +Or,d,Ω(p−1/(2(r+1)) logr/(r+1) p).

Next, we look at the distances between the coordinates x1, . . . , xr of
a point x ∈ C(Fp). Consider the concrete problem of finding, for a given
δ = (δ1, . . . , δr−1) ∈ Rr−1 with 0 < δ1, . . . , δr−1 ≤ 1, the proportion %r,p,C,δ
of points x ∈ C(Fp) for which

|t(x1)− t(xr)| ≤ δ1, |t(x2)− t(xr)| ≤ δ2, . . . , |t(xr−1)− t(xr)| ≤ δr−1.

The map from Rr to Rr−1 given by (y1, . . . , yr) 7→ (y1 − yr, . . . , yr−1 − yr)
sends Zr to Zr−1, and so it induces a map, call it ψ, from Tr to Tr−1. Note
that ψ is additive and it preserves the Haar measure:

(3) µ(U) = µ(ψ−1(U))

for any open subset U of Tr−1, where we denoted by µ the Haar measure
on both Tr and Tr−1. Let Uδ be the image in Tr−1 of the box [−δ1, δ1] ×
. . . × [−δr−1, δr−1] ⊂ Rr−1. Assume 0 < δ1, . . . , δr−1 ≤ 1/2, then µ(Uδ) =
2r−1δ1 . . . δr−1. By the definition of µr,p,C , ψ and %r,p,C,δ one sees that

(4) %r,p,C,δ = µr,p,C(ψ−1(Uδ)).

Using (4), (3) and Theorem 1 with Ω = ψ−1(Uδ) we obtain

(5) %r,p,C,δ = 2r−1δ1 . . . δr−1 +Or,d,δ(p−1/(2(r+1)) logr/(r+1) p).
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A more accurate version of (5) is stated in Corollary 1 from Section 4 below.
In case r = 2, δ1 = δ, from (5) one derives

%r,p,C,δ ∼ 2δ as p→∞.
The reader noticed that this is different from the asymptotic result which
follows from (2). The reason for this comes from the way the distance was
defined: in (5) the distances are computed on the torus T while in (2) the
set C(Fp) is injected in a Euclidean space. Precisely, the points (x, y) ∈ Z2,
0 ≤ x, y < p, (x, y) (mod p) ∈ C for which |x−y−p| < δp or |x−y+p|
< δp do contribute to %r,p,C,δ, and they account for the difference δ2 in the
two asymptotic results. Actually one can recover a result of type (2) from
Theorem 1 above, as follows. Fix a point u ∈ Tr and choose a representative
v = (v1, . . . , vr) of u in Rr. Any t = (t1, . . . , tr) ∈ Tr has a unique repre-
sentative (v1 + y1, . . . , vr + yr) ∈ Rr with 0 ≤ y1, . . . , yr < 1. We define the
distances between the components of t with respect to v, by

|ti − tj |v = |yi − yj |, 1 ≤ i, j ≤ r.
These distances depend on u but not on the choice of v, so we denote them
by |ti − tj |u. Given a point t ∈ Tr and two of its components ti, tj ∈ T,
there are two arcs in T which join the points ti and tj . For any u ∈ Tr the
distance |ti − tj |u equals the length of one of these two arcs. Thus in some
sense working with distances with respect to a fixed point u ∈ Tr gives us
a coherent way of choosing between the above two arcs associated to any
pair (ti, tj), as t runs over Tr. We now consider for a given u ∈ Tr and a
given δ = (δ1, . . . , δr−1) ∈ Rr−1 with 0 < δ1, . . . , δr−1 ≤ 1, the proportion
ηr,p,C,u,δ of points x = (x1, . . . , xr) ∈ C(Fp) for which

|t(x1)− t(xr)|u ≤ δ1, . . . , |t(xr−1)− t(xr)|u ≤ δr−1.

We remark that ηr,p,C,u,δ does depend on u. However, the fact that changing
u, that is, changing the lifting of Tr in Rr does not affect the Haar mea-
sure which is invariant under translations, together with the fact that µr,p,C
approaches the Haar measure as p→∞, make ηr,p,C,u,δ converge to a limit
which is independent of u. To state our result, we introduce the following
function h : [0, 1]× [0, 1]→ [0, 1]. For 0 ≤ z < 1/2 we define

h(y, z) =

{
y + z if 0 ≤ y < z,
2z if z ≤ y < 1− z,
1− y + z if 1− z ≤ y ≤ 1.

For 1/2 ≤ z ≤ 1 we let

h(y, z) =

{
y + z if 0 ≤ y < 1− z,
1 if 1− z ≤ y < z,
1− y + z if z ≤ y ≤ 1.
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Next, for any 0 < δ1, . . . , δr−1 ≤ 1 we set

c(δ1, . . . , δr−1) =
1�

0

r−1∏

j=1

h(y, δj) dy.

Then we prove the following result.

Theorem 2. Let r ≥ 2 be an integer , u ∈ Tr, δ = (δ1, . . . , δr−1) ∈ Rr−1

with 0 < δ1, . . . , δr−1 ≤ 1, p a prime number and C an irreducible curve of
degree d in Ar(Fp), defined over Fp and not contained in any hyperplane.
Then

ηr,p,C,u,δ = c(δ1, . . . , δr−1) +Or,d,u,δ(p−1/(2(r+1)) logr/(r+1) p).

In particular, when r = 2 one has

c(δ) =
1�

0

h(y, δ) dy = 2δ − δ2

which agrees with (2).

Acknowledgements. The authors are grateful to Andrew Granville
for suggesting the problem which led to Theorem 1 above. They are also
grateful to the referee whose suggestions improved the presentation of the
paper.

2. Proof of Theorem 1. Let r, p, C and Ω be as in the statement of
the theorem. We split the torus Tr in little cubes with edge length 1/T ,
where T is a positive integer. As we shall see later, the optimal choice for T
in this proof is T = [p1/(2(r+1)) log−r/(r+1) p]. For each such cube J one has
µ(J) = T−r. We denote by D(T ) the union of those cubes contained in Ω
and by E(T ) the union of those cubes which have a nonempty intersection
with Ω. Therefore

(6) D(T ) ⊆ Ω ⊆ E(T ).

Now fix an arbitrary such cube J and estimate the number N(J) of points
x ∈ C(Fp) for which t(x) ∈ J. Since J is a cube, there are subsets J1, . . . , Jr
of Fp of the form Jj = {aj + 1, aj + 2, . . . , aj + bj}, 1 ≤ j ≤ r, such that
a point x ∈ Frp lies in J1 × . . . × Jr if and only if t(x) ∈ J. The number of
elements of Jj is

#(Jj) = p/T +O(1), 1 ≤ j ≤ r.
One has

(7) N(J) =
∑

x∈C(Fp)

χJ1(x1) . . . χJr(xr),
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where χJ (x) is the characteristic function of the interval J . An analytic
expression for χJ (x) with x ∈ Fp is given by

(8) χJ (x) =
∑

y∈J

1
p

∑

k (mod p)

ep(k(x− y)),

where ep(x) = e2πix/p. Using (8) in (7) and changing the order of summation,
we obtain

(9) N(J) =
1
pr

∑

k1 (mod p)

. . .
∑

kr (mod p)

r∏

j=1

( ∑

yj∈Jj
ep(−kjyj)

)
Sk(x),

where k = (k1, . . . , kr) and

Sk(x) = Sk,p,r,C(x) =
∑

x∈C(Fp)

ep(k1x1 + . . .+ krxr).

Since by hypothesis C is not contained in any hyperplane it follows that the
linear form k1x1 + . . .+ krxr is constant along C if and only if k1 = . . . = kr
= 0. This suggests separating the sum of the terms with k1 = . . . = kr = 0
and we will see that they give the main contribution in (9). It equals

(10) M =
1
pr

( r∏

j=1

|Jj |
) ∑

x∈C(Fp)

1 =
|C(Fp)|
T r

(
1 +Or

(
T

p

))
.

By the Riemann Hypothesis for curves over finite fields (Weil [3]) we know
that

(11) |C(Fp)| = p+Or,d(
√
p).

In what follows we assume that T ≤ √p. Then we have

(12) M =
p

T r

(
1 +Or,d

(
1√
p

))
.

The remainder is

E =
1
pr

∑′

k (mod p)

r∏

j=1

( ∑

yj∈Jj
ep(−kjyj)

)
Sk(x),

where the prime means that the terms with k1 = . . . = kr = 0 are excluded
from the summation. Each of the factors of the product over j (1 ≤ j ≤ r)
is a geometric progression and can be estimated accurately. Indeed, we have
∣∣∣
∑

yj∈Jj
ep(−kjyj)

∣∣∣ ≤ min
{
|Jj |,

2
|1− ep(kj)|

}
≤ min

{
|Jj |,

1∣∣sin πkj
p

∣∣

}

≤ min
{
|Jj |,

1

2
∥∥kj
p

∥∥

}
,
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where ‖ · ‖ denotes the distance to the nearest integer. For each k 6= 0 our
hypotheses on C allow us to apply the Bombieri–Weil inequality (see [1,
Theorem 6]), which gives Sk(x) = Or,d(p1/2). Assuming, as we can, that in
the summation over k in the definition of E one has |kj | ≤ (p − 1)/2 for
1 ≤ j ≤ r, we obtain

|E| ≤ 1
pr

∑′

k (mod p)

r∏

j=1

(
min

{
p

T
,
p

|kj |

})
|Sk(x)|

�r

∑′

k (mod p)

1
T + |k1|

. . .
1

T + |kr|
|Sk(x)|.

Consequently we deduce

(13) |E| = Or,d(p1/2 logr p).

By putting together (12) and (13) we obtain the required estimation for a
cube:

(14) N(J) = p/T r +Or,d(p1/2 logr p).

We know by the Lipschitz principle on the number of integer points in an
r-dimensional domain (see Davenport [2]), applied in this case via our lifting
of Tr in Rr, that

µ(E(T ) \ D(T )) = Or,Ω(1/T ).

That is, both D(T ) and E(T ) are unions of T rµ(Ω) + OΩ,r(T r−1) cubes
with edge equal to 1/T . Using (14) for all these cubes one obtains

|{x ∈ C(Fp) : t(x) ∈ D(T )}|
= (p/T r +Or,d(p1/2 logr p))(T rµ(Ω) +OΩ,r(T r−1))

= pµ(Ω) +Or,d,Ω(T rp1/2 logr p) +OΩ,r(p/T )

and similarly

|{x ∈ C(Fp) : t(x) ∈ E(T )}| = pµ(Ω) +Or,d,Ω(T rp1/2 logr p) +OΩ,r(p/T ).

Therefore

(15) |{x ∈ C(Fp) : t(x) ∈ Ω}| = pµ(Ω)+Or,d,Ω(T rp1/2 logr p)+OΩ,r(p/T ).

Since

µr,p,C(Ω) =
|{x ∈ C(Fp) : t(x) ∈ Ω}|

|C(Fp)|
,

from (15) and (11) it follows that

(16) µr,p,C(Ω) = µ(Ω) +Or,d,Ω(T rp−1/2 logr p) +Or,d,Ω(1/T ).

We now choose
T = [p1/(2(r+1)) log−r/(r+1) p],
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which gives

µr,p,C(Ω) = µ(Ω) +Or,d,Ω(p−1/(2(r+1)) logr/(r+1) p)

and this completes the proof of Theorem 1.

3. Proof of Theorem 2. Let r, p, C,u and δ be as in the statement of
the theorem. Choose a representative v = (v1, . . . , vr) of u in Rr. Inside the
box

B = {(v1 + y1, . . . , vr + yr) : 0 ≤ y1, . . . , yr < 1}
consider the region

A = {(v1 + y1, . . . , vr + yr) ∈ B : |yj − yr| ≤ δj , 1 ≤ j ≤ r − 1}.
Let Ω be the image of A in Tr. The canonical map from A to Ω is one-to-one
and we have

(17) Vol(A) = µ(Ω).

By the definition of ηr,p,C,u,δ we see that

ηr,p,C,u,δ =
|{x ∈ C(Fp) : t(x) ∈ Ω}|

|C(Fp)|
= µr,p,C(Ω).

From Theorem 1 and (17) we deduce

ηr,p,C,u,δ = Vol(A) +Or,d,u,δ(p−1/(2(r+1)) logr/(r+1) p).

It remains to compute Vol(A). Set

zj = max{0, yr − δj}, wj = min{1, yr + δj}, 1 ≤ j ≤ r − 1.

Then

Vol(A) =
1�

0

wr−1�

zr−1

. . .

w1�

z1

dy1 . . . dyr =
1�

0

(w1 − z1) . . . (wr−1 − zr−1) dyr.

One checks that

wj − zj = h(yr, δj), 1 ≤ j ≤ r − 1.

Hence Vol(A) = c(δ1, . . . , δr−1), which completes the proof of Theorem 2.

4. The case of plane curves revisited. The reader might wonder
why the bound for the error term in Theorem 2 in the case r = 2 is not as
sharp as the bounds for the error terms in (1) and (2). Following the proof
of Theorems 1 and 2 above, it is clear that the quality of the upper bounds
for the error terms provided by this method depends on the shape of the
given region Ω. Let us now see how one can recover the estimate (2), with
exactly the same bound for the error term. We proceed as in the proof of
Theorem 2 with r = 2. The estimate (2) corresponds to the case u = 0, but
we take here a general u and choose a representative v = (v1, v2) of u in R2.
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The point now is that the region A defined in the previous section does not
need to be broken in small cubes since it can be written as a union of two
parallelograms and a square: A = A1 ∪ A2 ∪ A3, where

A1 = {(v1 + y1, v2 + y2) ∈ R2 : 0 ≤ y2 < 1− δ, 0 ≤ y1 − y2 < δ},
A2 = {(v1 + y1, v2 + y2) ∈ R2 : 0 ≤ y1 < 1− δ, 0 ≤ y2 − y1 < δ},
A3 = {(v1 + y1, v2 + y2) ∈ R2 : 1− δ ≤ y1, y2 < 1}.

It follows that

(18) {x ∈ C(Fp) : t(x) ∈ Ω} = Σ1 +Σ2 +Σ3,

where

Σ1 =
∑

x∈C(Fp)

χ[0,(1−δ)p)(x2)χ[0,δp)(x1 − x2),

Σ2 =
∑

x∈C(Fp)

χ[0,(1−δ)p)(x1)χ(0,δp)(x2 − x1),

Σ3 =
∑

x∈C(Fp)

χ[(1−δ)p,p)(x1)χ[(1−δ)p,p)(x2).

Now each of the sums Σ1, Σ2, Σ3 may be treated in the same way we esti-
mated N(J) in the proof of Theorem 1. One obtains asymptotic results with
square root upper bounds for the error terms as in (14). Putting all these
together yields (2).

The above discussion shows that if the region Ω in Theorem 1 can be
written as a union of L nonoverlapping parallelepipeds in Tr then the upper
bound for the error term in Theorem 1 can be replaced byOr,d(Lp−1/2 logrp).
Thus in particular one has the following improved version of (5):

Corollary 1. Let r ≥ 2 be an integer , δ = (δ1, . . . , δr−1) ∈ Rr−1 with
0 < δ1, . . . , δr−1 ≤ 1/2, p a prime number and C an irreducible curve of
degree d in Ar(Fp), defined over Fp and not contained in any hyperplane.
Then

(19) %r,p,C,δ = 2r−1δ1 . . . δr−1 +Or,d(p−1/2 logr p).
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