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Primitive lattice points in a thin strip along the
boundary of a large convex planar domain

by

Ekkehard Krätzel and Werner Georg Nowak (Wien)

1. Introduction. Let D be a convex planar domain containing the
origin in its interior whose boundary ∂D is of class C4 (with respect to the
arclength) and has finite nonvanishing curvature throughout. Let F denote
the distance function of D, i.e.,

F (u) = inf{τ > 0 : u/τ ∈ D} (u ∈ R2).

A point of the standard lattice Z2 is called primitive if its coordinates
are relatively prime (visible from the origin in geometric terms). For a large
real variable x, define BD(x) as the number of primitive lattice points of
Z2
∗ := Z2 \ {(0, 0)} in the “blown up” domain

√
xD. When counting lattice

points, we shall throughout use the convention that points on the boundary
of any two- or three-dimensional domain are counted with weight 1/2, thus

BD(x) = #{m = (m1,m2) ∈ Z2
∗ : F 2(m) < x, gcd(m1,m2) = 1}

+ 1
2#{m = (m1,m2) ∈ Z2

∗ : F 2(m) = x, gcd(m1,m2) = 1}.

The corresponding generating function (Dirichlet series) is obviously
ZD(s)/ζ(2s) where ZD(s) is the Hlawka zeta-function (1) of the domain D.
With Perron’s formula in the back of the mind, it is clear that any un-
conditional asymptotic formula for BD(x) depends on our knowledge about
zero-free regions of the Riemann zeta-function. The sharpest result available
to date reads thus
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(1.1) BD(x) =
6
π2 area(D)x+O(x1/2 exp(−c(log x)3/5(log log x)−1/5)),

as was observed by Huxley & Nowak [7]. Improvements are only possible
under the assumption of the Riemann Hypothesis (RH). In this direction
W. Müller [13] obtained the conditional estimate

(1.2) BD(x) =
6
π2 area(D)x+O(x9/22),

thereby refining the bound O(x5/12+ε) of [7]. If D is a circle, the error term
can be improved to O(x11/30+ε), again under RH (see Zhai & Cao [15]).

The task of the present paper is the asymptotic evaluation of the quantity
BD(x+ h)− BD(x) where h is another large real parameter but of smaller
order than x. In geometric terms, we count the primitive lattice points in a
strip (along the boundary of a “blown up” domain) whose width is of order
hx−1/2, thus (in the nontrivial case) less than unity (2). The question is for
which range of h it can be guaranteed that

(1.3) BD(x+ h)−BD(x) ∼ 6
π2 area(D)h.

It is immediate from (1.1) and (1.2) that (1.3) is true unconditionally for h
greater than x1/2 exp(−c′(log x)3/5(log log x)−1/5) and, under RH, for h≥
x9/22λ(x),λ(x) tending to∞ with x, otherwise arbitrary (9/22=0.40909 . . .).

We shall establish a result which is considerably sharper and independent
of any unproven hypothesis.

Theorem 1. The asymptotics (1.3) is true for h ≥ x11/29λ(x) logx, with
any λ(x) tending to ∞ with x (11/29 = 0.37931 . . .).

In the proof we shall have to consider the number of all lattice points
(except the origin) in

√
xD, i.e.,

AD(x) = #{n ∈ Z2 : 0 < F (n) <
√
x}+ 1

2 #{n ∈ Z2 : F (n) =
√
x}.

Furthermore, we are lead in a natural way to the enumeration of the lat-
tice points in a certain (nonconvex) three-dimensional domain, namely to
evaluate

A(3)(X) = #{(n1, n2, n3) ∈ Z2
∗ × N∗ : F (n1, n2)n3 < X}

+ 1
2 #{(n1, n2, n3) ∈ Z2

∗ × N∗ : F (n1, n2)n3 = X}
where Z2

∗ = Z2 − {(0, 0)} and N∗ is the set of positive integers. For this
quantity we shall develop an asymptotic formula which might be of some
interest for itself.

(2) Actually, for the assertion of Theorem 1 to be true, the width of this strip may be
as small as x−7/58(logx)λ(x), λ(x)→∞.
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Theorem 2. For large X,

A(3)(X) =
π2

6
area(D)X2 + CX +O(X22/29 logX),

where

C = − area(D)F0 +
∞�

F0

P (t2)
t2

dt,

with
F0 := min

n∈Z2−{(0,0)}
F (n), P (u) := AD(u)− area(D)u.

Remarks. 1. For the constant C we can give the alternative represen-
tation C = ZD(1/2) where ZD is the Hlawka zeta-function of the convex
set D. (This is immediate, e.g., from the unnumbered formula below (3.5)
in Huxley & Nowak [7].) Consequently, the main term can be written in the
lucid form

π2

6
area(D)X2 + CX =

∑

s0=1,1/2

Ress=s0

(
ζ(2s)ZD(s)

X2s

s

)
.

2. If D is a circle, much sharper estimates are true. In fact, for this
case (3)

(1.4) A(3)(X) =
∑

m,k∈N∗
m2k≤X2

r(k) = 4
∑′

l≤X2

( ∑

uvw2=l
u≡1 (mod 4)

1−
∑

uvw2=l
u≡3 (mod 4)

1
)
,

where u, v, w ranges over positive integers and r(k) denotes as usual the
number of ways to write k ∈ N∗ as a sum of two squares. Clearly this is
quite closely related to the three-dimensional asymmetric divisor function
d(1, 1, 2; k). For the latter, Liu [11] recently established an asymptotic for-
mula of the shape

∑

k≤x
d(1, 1, 2; k) = main terms +O(x29/80+ε).

Applying the corresponding argument to (1.4), one obtains Theorem 2
with the better error term O(X29/40+ε) and consequently the validity of
(1.3) for any h ≥ x29/80+ε (29/80 = 0.3625).

2. Deduction of Theorem 1 from Theorem 2. We shall employ
the usual technique for the investigation of the average order of arithmetic

(3)
∑′ means throughout that terms corresponding to the upper limit(s) of summation

are weighted with the factor 1/2.
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functions in short intervals. (For a textbook reference, see e.g. Krätzel [8],
p. 288.) We assume throughout that h ≤ x, otherwise Theorem 1 is trivial.
By a usual device (cf. formula (1.4) in [7] (4)),

BD(x+ h)−BD(x) =
∑

m∈N∗
µ(m)

(
AD

(
x+ h

m2

)
− AD

(
x

m2

))
(2.1)

= S1 +O(S2)

where µ(·) is the Möbius function,

S1 :=
∑

m≤xδ
µ(m)

(
AD

(
x+ h

m2

)
−AD

(
x

m2

))
,

S2 :=
∑

m>xδ

(
AD

(
x+ h

m2

)
− AD

(
x

m2

))
,

δ > 0 a suitably small fixed number. By the classic van der Corput’s lattice
point estimate,

S1 =
∑

m≤xδ
µ(m)

(
area(D)

h

m2 +O(x1/3m−2/3)
)

(2.2)

=
6
π2 area(D)h+O(hx−δ) +O(x(1+δ)/3).

Further, since

∑

m

AD

(
x

m2

)
=
∑

m

∑′

n∈Z2
∗

F (n)2≤x/m2

1 =
∑′

(m,n)∈N∗×Z2
∗

mF (n)≤√x

1 = A(3)(
√
x),

it follows that

S2 = A(3)(
√
x+ h)− A(3)(

√
x)− S3,

S3 :=
∑

m≤xδ

(
AD

(
x+ h

m2

)
− AD

(
x

m2

))
.

As a consequence of Theorem 2,

A(3)(
√
x+ h)−A(3)(

√
x) =

π2

6
area(D)h+O(hx−1/2) +O(x11/29 log x).

Repeating the argument used for S1, we further get

(4) Our convention concerning the weight of boundary lattice points does not affect
the validity of this identity.
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S3 =
∑

m≤xδ

(
area(D)

h

m2 +O(x1/3m−2/3)
)

(2.3)

=
π2

6
area(D)h+O(hx−δ) +O(x(1+δ)/3).

Collecting all partial results finally gives

BD(x+ h)−BD(x) =
6
π2 area(D)h+O(hx−δ) +O(x11/29 log x)

∼ 6
π2 area(D)h

for h ≥ x11/29(log x)λ(x), as asserted by Theorem 1.

3. Proof of Theorem 2. We start with one more convention: For
integers a < b and arbitrary f (defined on the integers from a to b), we
write

∑′′

a≤n≤b
f(n) =

f(a) + f(b)
2

+
∑

a<n<b

f(n).

To prepare the proof of Theorem 2, we split up (writing n = (n1, n2) ∈ Z2
∗

for short)

A(3)(X) =
∑′

F (n)n3≤X
n3≤X5/8

1 +
∑′

F (n)n3≤X
F (n)≤X3/8

1−
∑′

n3≤X5/8

F (n)≤X3/8

1 +O(1)(3.1)

=
∑′

n≤X5/8

(
area(D)

X2

n2 + P

(
X2

n2

))

+
∑′

F (n)≤X3/8

(
X

F (n)
+O(1)

)

− (X5/8 +O(1))(area(D)X3/4 + P (X3/4)).

We may evaluate directly some terms of this expression. Since
∑

n>X5/8

1
n2 = X−5/8 +O(X−5/4),

it is clear that

(3.2)
∑′

n≤X5/8

area(D)
X2

n2 =
π2

6
area(D)X2 − area(D)X11/8 +O(X3/4).
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Using Stieltjes integral notation, we see that

∑′

0<F (n)≤X3/8

1
F (n)

=
X3/8�

F0−

1
u
d(area(D)u2 + P (u2))

= 2 area(D)(X3/8 − F0) +
1
u
P (u2)

∣∣∣∣
X3/8

F0−

+
∞�

F0

1
u2P (u2) du−

∞�

X3/8

1
u2P (u2) du.

The very last integral is O(X−3/8). This follows by substituting u2 = v,
then splitting up the range of integration into dyadic subintervals [M, 2M ],
applying the second mean-value theorem on each subinterval, and taking
into account that (as is well known; cf., e.g., Hlawka [3])

V�

0

P (v) dv = −V +
V�

0

(P (v) + 1) dv = −V +O(V 3/4) = O(V ).

Consequently,

(3.3)
∑′

F (n)≤X3/8

X

F (n)
= 2 area(D)X11/8 +X5/8P (X3/4) +CX +O(X5/8),

with C as defined in Theorem 2. Using (3.2) and (3.3) to simplify (3.1), we
arrive at

(3.4) A(3)(X) =
π2

6
area(D)X2 + CX +

∑′

n≤X5/8

P

(
X2

n2

)
+O(X3/4).

The next step is to express the two-dimensional lattice rest P (t2) by (a
variant of) fractional part sums. According to our conventions, we put

ψ(w) =
{
w − [w]− 1/2 for w 6∈ Z,
0 for w ∈ Z.

On the boundary ∂D there exist four points P1, . . . , P4 where the slope is
equal to ±1. Drawing straight line segments from each of P1, . . . , P4 to the
origin, we subdivide D into four domains D1, . . . ,D4. To each of tD1, . . . , tD4

we apply a standard elementary lattice point counting argument (involving
the Euler summation formula) to see that

(3.5) P (t2) =
4∑

r=1

∑

art≤k≤brt
ψ

(
tfr

(
k

t

))
+O(1)

where each fr satisfies either F (u, fr(u)) = 1 or F (fr(u), u) = 1, and ar, br
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are constants depending only on D for which

(3.6) f ′r(ar) = 1, f ′r(br) = −1.

In view of (3.4) and (3.5), our task will be achieved if we can show that, for
r = 1, . . . , 4,

(3.7)
∑′

n≤X5/8

∑

arX/n≤k≤brX/n
ψ

(
X

n
fr

(
kn

X

))
� X22/29 logX.

The next important step is to use a sharp result due to Vaaler [14] which
relates the ψ-sum involved to exponential sums. (Cf. the exposition in the
book of Graham & Kolesnik [2], p. 116) (5): For every positive integer D
there exists a sequence (αh,D)Dh=1 contained in the interval [0, 1] such that
for all real numbers w,
∣∣∣∣ψ(w) +

1
2πi

∑

1≤|h|≤D

α|h|,D
h

e(hw)
∣∣∣∣ ≤

1
2D + 2

D∑

h=−D

(
1− |h|

D + 1

)
e(hw),

with e(u) = e2πiu as usual. From this it is easy to see that there exists a
complex-valued sequence (βh,D)Dh=1 with

(3.8) βh,D �
1
h

such that

(3.9)
∑′

n≤X5/8

∑

arX/n≤k≤brX/n
ψ

(
X

n
fr

(
kn

X

))

�
∣∣∣∣
∑′

n≤X5/8

D∑

h=1

βh,DEh

(
X

n

)∣∣∣∣+
X

D

∑′

n≤X5/8

1
n

with

Eh(t) =
∑

art≤k≤brt
e

(
−htfr

(
k

t

))
.

(Later on, D will be chosen depending on X but not on n.) Our next
step is to submit this exponential sum to a sufficiently strong form of the
van der Corput transform which we state as follows.

Lemma. Suppose that g is a real-valued function with four continuous
derivatives on the interval [A,B]. Let L and T be real parameters not less
than 2 such that B − A � L,

g(j)(w)� TL1−j for w ∈ [A,B], j = 1, 2, 3, 4,

(5) Properly speaking, both Vaaler and Graham–Kolesnik formulate the result for a
ψ defined differently at the integers. What we need is immediate from this by a continuity
argument or by direct evaluation.
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and , for some C∗ > 0,

g′′(w) ≥ C∗TL−1 for w ∈ [A,B].

Suppose further that g′(A) and g′(B) are integers, and denote by φ the
inverse function of g′. Then

∑

A≤k≤B
e(g(k)) = e

(
1
8

) ∑′′

g′(A)≤m≤g′(B)

e(g(φ(m))−mφ(m))√
g′′(φ(m))

+O(logT ),

with the O-constant depending on C∗ and on the constants implied in the
order symbols in the suppositions.

Remark. It appears that, until recently, this result was not available
explicitly in the literature. There were versions which stated what is needed
but imposed a complicated condition essentially meaning that g be algebraic.
(See Krätzel [8], Theorem 2.11, which is based on ideas due to I. M. Vino-
gradov.) Graham & Kolesnik [2], Lemma 3.6, avoided this restriction but
unfortunately produced an error term O(

√
T/L) (in our notation) which is

too crude for the present purpose. However, it is easy to construct what we
need from the ideas in Graham & Kolesnik [2]. The Lemma in its present
form was verified by the second named author in 1996 and first published
with a proof in Kühleitner [9] (with permission) and also in Kühleitner &
Nowak [10]. The subject was taken up recently also by Liu [12].

We now use this Lemma to transform our exponential sums Eh(t). In
this application, g(w) = −htfr(w/t), thus the suppositions are satisfied with
L = t and T = h. (The lower bound for g′′ follows from the condition that the
curvature of ∂D does not vanish.) Furthermore, (3.6) ensures that g′(art) =
−h, g′(brt) = h, thus integer values. Consequently, the Lemma yields

(3.10) Eh(t) =
∑′′

−h≤m≤h

∣∣∣∣
h

t
f ′′r

(
χ

(
−m
h

))∣∣∣∣
−1/2

e

(
−tH(m,h) +

1
8

)

+O(log(1 + h)).

Here χ is the inverse function of f ′r, and H(m,h) is the so-called tac-function
of the domain D (“Stützfunktion” according to Bonnesen & Fenchel [1])
which is defined by

H(m,h) = sup
(u,v)∈D

(mu+ hv) = max
F (u,v)=1

(mu+ hv).

It is an easy exercise in classic analysis that the expression for g(φ(m))−
mφ(m) which arises directly from the main term of the Lemma is equal to
−tH(m,h).
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We now use (3.10) in (3.9) to obtain

(3.11)
∑′

n≤X5/8

∑

arX/n≤k≤brX/n
ψ

(
X

n
fr

(
kn

X

))

� X1/2

∣∣∣∣
D∑

h=1

βh,D√
h

∑′′

−h≤m≤h

∣∣∣∣f ′′r
(
χ

(
−m
h

))∣∣∣∣
−1/2

Em,h(X)
∣∣∣∣

+O

(
X

D
logX

)
+O(X5/8(logD)2)

with

Em,h(X) =
∑′

n≤X5/8

1√
n
e

(
−X
n
H(m,h)

)
.

(In the estimation of the error terms (3.8) has been used.)
To estimate Em,h(X) we employ the method of (classic) exponent pairs.

According to Krätzel [8], p. 57, (1/9, 13/18) is an exponent pair. By formula
(3.3.4) in Graham & Kolesnik [2],

∑

N<n≤2N

1√
n
e

(
−X
n
H(m,h)

)
�
(
XH(m,h)

N2

)1/9

N13/18−1/2 +
N3/2

XH(m,h)
.

Splitting up the range n ≤ X5/8 into dyadic subintervals thus yields

Em,h(X)� (XH(m,h))1/9 logX +
(X5/8)3/2

XH(m,h)
� (XH(m,h))1/9 logX.

Now we recall that H(m,h) � ‖(m,h)‖ (the Euclidean norm). For −h ≤
m ≤ h this implies further that H(m,h) � h. Therefore, if we combine
the last estimate with (3.11), and observe (3.8) and the fact that the factor
involving f ′′ is bounded, we obtain

∑′

n≤X5/8

∑

arX/n≤k≤brX/n
ψ

(
X

n
fr

(
kn

X

))

� (XD)1/9+1/2 logX +
X

D
logX +X5/8(logD)2.

Balancing out the terms gives D = X7/29 and thus
∑′

n≤X5/8

∑

arX/n≤k≤brX/n
ψ

(
X

n
fr

(
kn

X

))
� X22/29 logX.

But this proves (3.7) and thus the assertion of Theorem 2.

4. Concluding remark. It is possible to improve slightly on the re-
sults of our theorems by means of M. Huxley’s discrete Hardy–Littlewood
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method (as presented in his monograph [6]). An immediate possibility to do
so is to use, instead of our classic exponent pair (1/9, 13/18), Huxley’s pair
(according to his paper [5])

(
187
1692

+ ε′,
305
423

+ ε′
)

= ABA

(
89
570

+ ε′′,
89
570

+
1
2

+ ε′′
)

(ε′, ε′′ arbitrarily small positive numbers, A,B the usual exponent pair
processes). Using this in the above calculation, one obtains Theorem 2
with O(x2066/2725+ε), and thus Theorem 1 in the range h ≥ xθ for any
θ > 1033/2725 = 0.37908 . . .

Professor Huxley had the kindness to inform the authors that there are
some other ways to apply his deep techniques: On the one hand, there is
an unpublished refinement of the results of [5]. On the other hand, since
(3.11) actually involves the average of Em,h(X) with respect to h, some of
his mean value estimates for exponential sums might be employed. However,
these methods yield only small further improvements, at the cost of a lot of
tough technical details. Therefore, it was decided not to pursue the matter
further in the present paper.

The authors are glad to use this opportunity to express to Professor Hux-
ley their most sincere gratitude for his valuable comments on the subject.
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[4] —, Über die Zetafunktion konvexer Körper , ibid., 100–107.
[5] M. N. Huxley, Exponential sums and the Riemann zeta function. IV , Proc. London

Math. Soc. 66 (1993), 1–40.
[6] —, Area, Lattice Points, and Exponential Sums, Oxford Univ. Press, 1996.
[7] M. N. Huxley and W. G. Nowak, Primitive lattice points in convex planar domains,

Acta Arith. 76 (1996), 271–283.
[8] E. Krätzel, Lattice Points, Deutscher Verlag Wiss., Berlin, 1988.
[9] M. Kühleitner, On differences of two kth powers: an asymptotic formula for the

mean-square of the error term, J. Number Theory 76 (1999), 22–44.
[10] M. Kühleitner and W. G. Nowak, The asymptotic behaviour of the mean-square of

fractional part sums, Proc. Edinburgh Math. Soc. 43 (2000), 309–323.
[11] H.-Q. Liu, Divisor problems of 4 and 3 dimensions, Acta Arith. 73 (1995), 249–269.
[12] —, On a fundamental result in van der Corput’s method of estimating exponential

sums, ibid. 90 (1999), 357–370.
[13] W. Müller, Lattice points in convex planar domains: power moments with an ap-

plication to primitive lattice points, in: Proc. Number Theory Conf. 1996 held in
Vienna, W. G. Nowak and J. Schoißengeier (eds.), Vienna, 1996, 189–199.



Primitive lattice points in a thin strip 341

[14] J. D. Vaaler, Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc.
(2) 12 (1985), 183–216.

[15] W. G. Zhai and X. D. Cao, On the number of coprime integer pairs within a circle,
Acta Arith. 90 (1999), 1–16.

Institut für Mathematik
Universität Wien
Strudlhofgasse 4
A-1090 Wien, Austria

Institut für Mathematik und Angewandte Statistik
Universität für Bodenkultur

Peter Jordan-Straße 82
A-1190 Wien, Austria

E-mail: nowak@mail.boku.ac.at

Received on 14.2.2000 (3754)


