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FUNCTIONAL CENTRAL LIMIT THEOREMS FOR SEEDS
IN A LINEAR BIRTH AND GROWTH MODEL

Abstract. A problem of heredity of mixing properties (α-mixing, β-mixing
and ρ-mixing) from a stationary point process onR×R+ to a sequence of some
of its points called ‘seeds’ is considered. Next, using the mixing properties,
several versions of functional central limit theorems for the distances between
seeds and the process of the number of seeds are obtained.

1. Introduction. The problem considered in the paper has a practical
motivation and it can be illustrated in the following way. The points (for
example drops of rain) land in a random fashion on the interval [0, L], which
is ‘uncovered’ (dry) initially, and a point (seed) landing on an uncovered
(dry) section starts to spill over into the interval in a uniform rate in both
directions. To this phenomenon, called in Quine & Szczotka 2000 (later re-
ferred to as Q-S) a linear birth and growth model, two problems are related.
The first one is to characterize the number N(L) of seeds on [0, L], and the
second one is to characterize the asymptotic of the distribution of the time to
complete coverage of the interval [0, L] as L→∞. In this paper we consider
the first problem. The above set-up may have applications in a number of
diverse fields.

The analysis of the problem is facilitated by considering the points as
a bivariate point process Ξ in (−∞,∞) × [0,∞), with the vertical axis
representing arrival times and the horizontal axis representing location on
the line. Points in Ξ whose positions represent arrivals to the uncovered part
of the line are the “seeds” and the other points of Ξ are “thinned”. The way
of thinning can be described as follows. With each point of the process Ξ on
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R × R+ two branches (half-lines) are associated and they go upwards with
slopes (rates) +1 and −1, respectively. This gives a set of zigzag functions
on the upper half-plane. Take the minimum of all zigzag functions. Then the
bottom vertices of that zigzag function are called the seeds of the process Ξ.

The problems formulated above were considered by many authors; the
references can be found in Quine & Robinson (1990), Holst et al. (1996)
and Q-S. Except for Q-S, in all other papers it was assumed that the point
process Ξ on R×R+ or on R×Rd+ is a Poisson point process. We start from
the assumption that Ξ on R×R+ is only stationary. This requires a different
approach to the problem. Here we use the approach from Section 2 of Q-S,
where for the stationary point process Ξ a stationary simple marked point
process {(Xi, ti), i ∈ Z}was defined (for definition a stationary simple marked
point process see Brandt et al. (1990)). Theorem 2.1 of Q-S shows that the
process of seeds of Ξ is the same as the process of seeds of {(Xi, ti), i ∈ Z}
obtained in the same way as above forΞ.The seeds process of {(Xi, ti), i ∈ Z}
is denoted by {(X∗i , t∗i ), i ∈ Z}. Let {(X̂i, t̂i), i ∈ Z} and {(X̃∗i , t̃∗i ), i ∈ Z}
be the Palm versions of {(Xi, ti), i ∈ Z} and {(X∗i , t∗i ), i ∈ Z}, respectively.
This means that the distributions of {(X̂i, t̂i), i ∈ Z} and {(X̃∗i , t̃∗i ), i ∈ Z}
are the conditional distributions of {(Xi, ti), i ∈ Z} given X0 = 0 and of
{(X∗i , t∗i ), i ∈ Z} given X∗0 = 0, respectively. Hence {(ûi, t̂i), i ∈ Z} and
{(ũ∗i , t̃∗i ), i ∈ Z} are stationary sequences, where ûi := X̂i+1 − X̂i and
ũ∗i := X̃∗i+1 − X̃∗i , i ∈ Z. From now on, to study stochastic properties of
the process of seeds we start from {(X̂i, t̂i), i ∈ Z} and from the stationary
sequence {(ûi, t̂i), i ∈ Z}, but for simplicity we drop the hats over Xi, ti
and ui.

To study the properties of the process of seeds we first investigate heredity
of mixing properties (α-mixing, β-mixing and ρ-mixing) from the stationary
sequence {(ui, ti), i ∈ Z} to the sequences {(u∗i , t∗i ), i ∈ Z} and {(ũ∗i , t̃∗i ),
i ∈ Z}, where

u∗i = X∗i+1 −X∗i and ũ∗i = X̃∗i+1 − X̃∗i , i ∈ Z
(Theorems 2.1–2.5). Next we use the mixing conditions to give several ver-
sions of the functional central limit theorem (FCLT) for {u∗i }, {ũ∗i } and also
for the process of seeds (Theorems 3.1–3.6).

The problem of heredity of α-mixing was also considered in Q-S and
FCLT for {ũ∗i } was obtained in Theorem 6.1 there by using Theorem 1.7 of
Peligrad (1986, p. 202) for stationary α-mixing sequences of random vari-
ables. Here, we use the method from Q-S with some modifications, giving a
better rate of convergence to zero of the α-mixing function (compare The-
orem 2.1 here with Theorem 5.1 of Q-S). That in turn allows us to get a
stronger version of Theorem 6.1 of Q-S (FCLT for {ũ∗i } in the α-mixing
case), which we formulate in Theorem 3.4.
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FCLT for {ũ∗i , i ≥ 1} in the ρ-mixing case is obtained here in Theorem
3.6. It is based on our conditions for ρ-mixing of {ũ∗i } (Theorems 2.3–2.5)
and on Herrndorf’s (1984) version of FCLT for ρ-mixing sequences.

From now on, doubly infinite sequences, for example {ai,−∞ < i <∞},
where the ai have an arbitrary nature, are written just as {ai}. Therefore
we write {(Xi, ti)} instead of {(Xi, ti), i ∈ Z}.

2. Heredity of mixing conditions

2.1. General notation for mixing. In this subsection we recall defini-
tions and notation for α-mixing, β-mixing and ρ-mixing. All the definitions
can be found in Bradley (1986).

Let (Ω,F , P ) be a probability space and A and B be some subsigma fields
of F . The dependencies α, β and ρ between σ-fields A and B are defined as
follows:

α(A,B) = sup
A,B
|P (AB)− P (A)P (B)|,

β(A,B) = sup
Ai,Bj ,1≤i≤I,1≤j≤J

1

2

I∑
i=1

J∑
j=1

|P (AiBj)− P (Ai)P (Bj)|,

ρ(A,B) = sup
A,B

|P (AB)− P (A)P (B)|
P 1/2(A)P 1/2(B)

,

where the supremum is taken over all A ∈ A, B ∈ B for the α- and ρ-
dependencies, and over all partitions {A1, . . . , AI} and {B1, . . . , BJ} of Ω,
where Ai ∈ A and Bj ∈ B, for the β-dependency. Here P 1/2(D) = (P (D))1/2

for any event D.
The above measures of dependency allow us to define the corresponding

measures of dependency between random variables in a sequence. Namely,
let {Zi, i ∈ Z} ≡ {Zi} be a sequence of r.v.’s on (Ω,F , P ) and Fmk the σ-field
generated by the random variables Zi with k ≤ i ≤ m, −∞ ≤ k ≤ m ≤ ∞,
written Fmk = σ{Zi, k ≤ i ≤ m}. Furthermore let

α(n) := sup
k∈Z

α(Fk−∞, F∞k+n), β(n) := sup
k∈Z

β(Fk−∞,F∞k+n),

ρ(n) := sup
k∈Z

ρ(Fk−∞,F∞k+n).

If {Zi, i ∈ Z} is a stationary sequence of r.v.’s then

α(n) = α(F0
−∞,F∞n ) = α(F−n−∞,F∞0 ),

and similar relations hold for β- and ρ-mixing. The sequence {Zi} is called
α-mixing, β-mixing or ρ-mixing if α(n)→ 0, β(n)→ 0 or ρ(n)→ 0, respec-
tively.
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2.2. Mixing properties for a point process. There are at least two
approaches to defining a mixing property for a stationary point process on
R × R+. Consider a stationary point process on R. Let {ηi, i ∈ Z} ≡ {ηi}
be a sequence of points in the intervals [i, i + 1), i ∈ Z, respectively, of the
point process, and {ui, i ∈ Z} ≡ {ui} the lengths of the intervals between
the ith and (i + 1)th points of the point process. Then the point process is
said to be α-mixing in the first sense if the sequence {ηi} is α-mixing, and
α-mixing in the second sense if {ui} is α-mixing. In a similar way we can
define two approaches to β-mixing and ρ-mixing of a point process on R, but
we omit it here. It is obvious that if the random variables ηi are pairwise
independent, then the ui need not be, and vice versa. However, below we show
that if the sequence {ui} is α-mixing, then so is {ηi} (with a different mixing
function). This enables a comparison between the approaches to FCLT for
the process of seeds presented in Chiu & Quine (1999), and in Q-S and
here.

Lemma 2.1. If the stationary sequence {ui} is α-mixing with mixing
function αu = {αu(n)} then the stationary sequence {ηi} is α-mixing with
mixing function αη = {αη(n)}, where

αη(n) ≤ αu(kn) + 4P (Ccn),

with Cn = {
∑kn

j=1 uj < n} and n/kn → 2Eu1.

Proof. Bydefinitionwe haveαη(n) = supA,B |P (AB)−P (A)P (B)|,where
the supremum is taken over all A ∈ σ({ηi, i ≤ 0}) and B ∈ σ({ηi, i > n}).
Notice that

|P (AB)− P (A)P (B)| ≤ |P (ABCn)− P (A)P (BCn)|+ 2P (Ccn).

But for any n there exists a Borel set B̃n in σ(R∞) such that

B ∩ Cn = {{uj , j ≥ kn} ∈ B̃n} ∩ Cn = B̂n ∩ Cn,

where B̂n = {{uj , j ≥ kn} ∈ B̃n}. Furthermore, any A ∈ σ(ηi, i ≤ 0) belongs
to σ(ui, i ≤ 0). Hence

|P (ABCn)− P (A)P (BCn)| = |P (AB̂nCn)− P (A)P (B̂nCn)|
= |P (AB̂n)− P (AB̂nC

c
n)− P (A)P (B̂n) + P (A)P (B̂nC

c
n)|

≤ |P (AB̂n)− P (A)P (B̂n)|+ 2P (Ccn) ≤ αu(kn) + 2P (Ccn).

This finishes the proof.

In the next section we will understand that the stationary point process
Ξ on R×R+ is α-mixing, β-mixing or ρ-mixing if the marked point process
Ψ = {(Xi, ti), i ∈ Z} is α-mixing, β-mixing or ρ-mixing in the second sense,
i.e. the sequence {(ui, ti)} is mixing in the appropriate sense, where {ui =
Xi+1 −Xi} is stationary.
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2.3. Heredity of mixing conditions from {(ui, ti)} to {(ui, ti, si)}

2.3.1. General notation. In this subsection we introduce general notation
which will be used to prove heredity of the mixing conditions from the input
process {(ui, ti)} to the output process {(ui, ti, si)}, where si = 1 if the ith
point (Xi, ti) is the seed, and si = 0 otherwise. First we recall from Q-S
the algorithm of getting the seeds. It can be decomposed into two steps. In
the first step we remove all points which are covered by left branches, i.e.
with each point (Xi, ti) is associated li = 0 if (Xi, ti) is covered by a left
branch, and li = 1 otherwise. After that operation the first output process
{(ui, ti, li)} is obtained, where

li = I
(
Xi + ti < min

j>i
(Xj + tj)

)
for i ∈ Z,

and I(A) denotes the indicator of the event A, i.e. I(A)(ω) = 1 if ω ∈ A and
= 0 otherwise. In the second step all points covered by a right branch are
removed, which transforms the sequence {(ui, ti, li)} into the second output
process {(ui, ti, li, ri)} with

ri = I
(
Xi − ti > max

j<i
(Xj − tj)

)
.

Finally let si = rili, i ∈ Z.
Now we introduce notation for some σ-fields:

B(−∞, n) = σ((ui, ti), i ≤ n), B(n,∞) = σ((ui, ti), i > n),

Bl(−∞, n) = σ((ui, ti, li), i ≤ n), Bl(n,∞) = σ((ui, ti, li), i > n),

Br(−∞, n) = σ((ui, ti, li, ri), i ≤ n), Br(n,∞) = σ((ui, ti, li, ri), i > n).

Notice that Bl(n,∞) = B(n,∞) and Br(−∞,−n) = Bl(−∞,−n).

Furthermore Bl(−∞, 0) is generated by the events A ∩ H where A ∈
B(−∞, 0) and

H := {lkp = 1, lkp−1 = 1, . . . , lk0 = 1, lmq = 0, . . . , lm1 = 0}

with kp < kp−1 < · · · < k0 ≤ 0 and mq < mq−1 < · · · < m1 ≤ 0.

Similarly, Br(0,∞) is generated by the sets AHr where A ∈ Bl(0,∞)
and

Hr := {rk0 = 1, rk1 = 1, . . . , rkp = 1, rm1 = 0, . . . , rmq = 0}

with 0 < k0 < k1 < · · · < kp−1 < kp and 0 < m1 < m2 < · · · < mq.

Denoting Yi = Xi + ti, Y r
i = Xi − ti and using the definitions of li and

ri we get

H =

p⋂
i=0

{
Yki < inf

j>ki
Yj

}
∩

q⋂
i=1

{
Ymi ≥ inf

j>mi

Yj

}
,(2.1)
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Hr =

p⋂
i=0

{
Y r
ki
> sup

j<ki

Y r
j

}
∩

q⋂
i=1

{
Y r
mi
≤ sup

j<mi

Y r
j

}
.(2.2)

For 0 < c < 1 and integer n we define events Hn and Hr
n by

Hn :=

p⋂
i=0

{
Yki < inf

ki<j≤nc
Yj

}
∩

q⋂
i=1

{
Ymi ≥ inf

mi<j≤nc
Yj

}
,

Hr
n :=

p⋂
i=0

{
Y r
ki
> sup
−nc≤j<ki

Y r
j

}
∩

q⋂
i=1

{
Y r
mi
≤ sup
−nc≤j<mi

Y r
j

}
.

Furthermore let

Gn :=
{

inf
0<j<∞

Yj = inf
0<j≤nc

Yj

}
,

Gn,r :=
{

sup
−∞<j<0

Y r
j = sup

−nc≤j<0
Y r
j

}
.

Then

HGn = HnGn,(2.3)
HrGn,r = Hr

nGn,r.(2.4)

Of course Hn ∈ B(−∞, nc) and Hr
n ∈ Bl(−nc,∞).

Let Ḡn and Ḡn,r denote the complements of Gn and Gn,r, respectively.

Lemma 2.2. If {(ui, ti)} is stationary and ergodic then

(2.5) P (Ḡn) ≤ P
( nc∑
j=1

uj ≤ t1
)
, P (Ḡn,r) ≤ P

( nc∑
j=1

u−j ≤ t0
)
,

which gives

(2.6) P (Ḡn), P (Ḡn,r)→ 0 as n→∞.
Proof. Notice that

Ḡn =
{

inf
0<j<∞

Yj < inf
0<j≤nc

Yj

}
=
{

inf
j≥nc

Yj < inf
0<j≤nc

Yj

}
⊂ {Xnc < Y1} =

{ nc∑
j=1

uj < t1

}
,

which by stationarity of {(ui, ti)} gives the first inequality in (2.5). Similarly,

Ḡn,r =
{

sup
−∞<j<0

Y r
j > sup

−nc≤j<0
Y r
j

}
=
{

sup
j<−nc

Y r
j > sup

−nc≤j<0
Y r
j

}
⊂ {X−nc−1 > Y r

−1},
which by stationarity of {(ui, ti)} gives the second inequality of (2.5).

The second assertion of the lemma follows immediately from (2.5) and
ergodicity of {(ui, ti)}.
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2.3.2. Heredity of α-mixing and β-mixing from {(ui, ti)} to {(ui, ti, li, ri)}
Theorem 2.1.

(i) If {(ui, ti)} is α-mixing with mixing function α = {α(n)}, then
{(ui, ti, li)} is α-mixing with mixing function αl = {αl(n)} such that

αl(n) ≤ α(n(1− c)) + 4P (Ḡn).

(ii) If {(ui, ti, li)} is α-mixing with mixing function αl = {αl(n)}, then
{(ui, ti, li, ri)} is α-mixing with mixing function αr = {αr(n)} such
that

αr(n) ≤ αl(n(1− c)) + 4P (Ḡn,r).

Proof. Notice that
αl(n) = sup

A,H,B
|P (AHB)− P (AH)P (B)|,

where the supremum is taken over all A ∈ B(−∞, 0), B ∈ Bl(n,∞) =
B(n,∞) and all H of the form (2.1). But

|P (AHB)− P (AH)P (B)|
≤ |P (AHGnB)− P (AHGn)P (B)|+ |P (AHḠnB)− P (AHḠn)P (B)|
≤ |P (AHnGnB)− P (AHnGn)P (B)|+ 2P (Ḡn)

≤ |P (AHnB)− P (AHn)P (B)|
+ |P (AHnḠnB)− P (AHnḠn)P (B)|+ 2P (Ḡn)

≤ α(n(1− c)) + 4P (Ḡn).

In the third inequality we have used (2.3). This finishes the proof of (i).
The proof of (ii) is similar, with H,Hn, Gn replaced by Hr, Hr

n, Gn,r,
respectively and A ∈ Bl(0,∞). Namely, we have

αr(n) = sup
A,Hr,B

|P (AHB)− P (AHr)P (B)|,

where the supremum is taken over all A ∈ Bl(0,∞), B ∈ Br(−∞,−n) =
Bl(−∞,−n) and all Hr of the form (2.2).

Here we can see that {αl(n)} and {αr(n)} tend to zero faster than {αl(n)}
and {αr(n)}, respectively, defined in Q-S.

Theorem 2.2.

(i) If {(ui, ti)} is β-mixing with mixing function β = {β(n)}, then
{(ui, ti, li)} is β-mixing with mixing function βl = {βl(n)} such that

βl(n) ≤ β(n(1− c)) + 4P (Ḡn).

(ii) If {(ui, ti, li)} is β-mixing with mixing function βl = {βl(n)}, then
{(ui, ti, li, ri)} is β-mixing with mixing function βr = {βr(n)} such
that

βr(n) ≤ βl(n(1− c)) + 4P (Ḡn,r).
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Proof. By definition of β-mixing we have

βl(n) = sup
Ai,H,Bj

I∑
i=1

J∑
j=1

|P (AiHBj)− P (AiH)P (Bj)|

where the supremum is taken over all partitions {Ai, 1 ≤ i ≤ I} and {Bj , 1 ≤
j ≤ J} of Ω, where Ai ∈ B(−∞, 0), Bj ∈ B(n,∞) and H has the form (2.1).
Notice that

I∑
i=1

J∑
j=1

|P (AiHBj)− P (AiH)P (Bj)|

≤
I∑
i=1

J∑
j=1

|P (AiHGnBj)− P (AiHGn)P (Bj)|

+
I∑
i=1

J∑
j=1

|P (AiHḠnBj)− P (AiHḠn)P (Bj)|

≤
I∑
i=1

J∑
j=1

|P (AiHnGnBj)− P (AiHnGn)P (Bj)|+ 2P (Ḡn)

≤
I∑
i=1

J∑
j=1

|P (AiHnBj)− P (AiHn)P (Bj)|

+

I∑
i=1

J∑
j=1

|P (AiHnḠnBj)− P (AiHnḠn)P (Bj)|+ 2P (Ḡn)

≤ β(n(1− c)) + 4P (Ḡn).

This finishes the proof of (i).
The proof of (ii) is similar with H,Hn, Gn replaced by Hr, Hr

n, Gn,r,
respectively. Namely, we have

βr(n) = sup
Ai,Hr,Bj

I∑
i=1

J∑
j=1

|P (AiH
rBj)− P (AiH

r)P (Bj)|,

where the supremum is taken over all partitions {Ai, 1 ≤ i ≤ I} and {Bj , 1 ≤
j ≤ J} of Ω, where Ai ∈ Bl(0,∞), Bj ∈ Br(−∞,−n) = Bl(−∞,−n) and
all Hr are of the form (2.2).

2.3.3. Heredity of ρ-mixing from {(ui, ti)} to {(ui, ti, li, ri)}
Theorem 2.3.

(i) Let {(ui, ti)} be ρ-mixing with mixing function ρ = {ρ(n)}. Further-
more suppose that

sup
n

sup
A,Hn

P (AHn)

P (AHnGn)
≡ κ2 <∞, where A ∈ B(−∞, 0),
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and
ess supP (Cn | B(n,∞))→ 0 as n→∞,

where Cn = {Xnc+1 < inf0<j≤nc Yj}. Then {(ui, ti, li)} is ρ-mixing
with mixing function ρl = {ρl(n)} where

ρl(n) ≤ ρ(n(1− c))κ+ (κ+ 1) ess supP 1/2(Cn | B(n,∞))

+ (κ+ 1)P 1/2(Ḡn).

(ii) Let {(ui, ti, li)} be ρ-mixing with mixing function ρl = {ρl(n)}. Fur-
thermore suppose that

sup
n

sup
A,Hr

n

P (AHr
n)

P (AHr
nGn,r)

≡ κ2 <∞, where A ∈ Bl(0,∞),

and
ess supP (Cn,r | Bl(−∞,−n))→ 0 as n→∞,

where Cn,r = {X−nc−1 < inf−nc≤j<0 Y
r
j }. Then {(ui, ti, li, ri)} is

ρ-mixing with mixing function ρr = {ρr(n)} where
ρr(n) ≤ ρl(n(1− c))κ+ (κ+ 1) ess supP 1/2(Cn,r | Bl(−∞,−n))

+ (κ+ 1)P 1/2(Ḡn,r).

Proof. Notice that

ρl(n) = sup
A,H,B

|P (AHB)− P (AH)P (B)|
P 1/2(AH)P 1/2(B)

,

where the supremum is taken over all A ∈ B(−∞, 0), B ∈ B(n,∞) and H of
the form (2.1). This is because the family of sets AH generates the σ-field
Bl(−∞, 0). But

(2.7)
|P (AHB)− P (AH)P (B)|

P 1/2(AH)P 1/2(B)

≤ |P (AHGnB)− P (AHGn)P (B)|
P 1/2(AH)P 1/2(B)

+
|P (AHBḠn)− P (AHḠn)P (B)|

P 1/2(AH)P 1/2(B)

≤ |P (AHnB)− P (AHn)P (B)|
P 1/2(AH)P 1/2(B)

+
|P (AHnḠnB)− P (AHnḠn)P (B)|

P 1/2(AH)P 1/2(B)

+
|P (AHḠnB)− P (AHḠn)P (B)|

P 1/2(AH)P 1/2(B)
.

For the first expression on the right hand side of (2.7) we have
|P (AHnB)− P (AHn)P (B)|

P 1/2(AH)P 1/2(B)
≤ |P (AHnB)− P (AHn)P (B)|

P 1/2(AHGn)P 1/2(B)

≤ |P (AHnB)− P (AHn)P (B)|
P 1/2(AHn)P 1/2(B)

P 1/2(AHn)

P 1/2(AHGn)
≤ ρ(n(1− c))κ.



10 A. Dziwisz and W. Szczotka

For the second expression on the right hand side of (2.7),

|P (AHnḠnB)− P (AHnḠn)P (B)|
P 1/2(AH)P 1/2(B)

≤ P (AHnḠnB)

P 1/2(AH)P 1/2(B)
+

P (AHnḠn)P (B)

P 1/2(AH)P 1/2(B)

≤ P 1/2(AHn)P 1/2(ḠnB)

P 1/2(AH)P 1/2(B)
+
P 1/2(AHn)P 1/2(Ḡn)P (B)

P 1/2(AH)P 1/2(B)

≤ P 1/2(Ḡn | B(n,∞))

(
P (AHn)

P (AH)

)1/2

+ P 1/2(Ḡn)

(
P (AHn)

P (AH)

)1/2

≤
(
P 1/2(Cn | B(n,∞)) + P 1/2(Ḡn)

)(P (AHn)

P (AH)

)1/2

≤
(
P 1/2(Cn | B(n,∞)) + P 1/2(Ḡn)

)( P (AHn)

P (AHnGn)

)1/2

≤
(
P 1/2(Cn | B(n,∞)) + P 1/2(Ḡn)

)
κ.

Finally for the third expression we have

|P (AHḠnB)− P (AHḠn)P (B)|
P 1/2(AH)P 1/2(B)

≤ P (AHḠnB)

P 1/2(AH)P 1/2(B)
+

P (AHḠn)P (B)

P 1/2(AH)P 1/2(B)

≤ P 1/2(AH)P 1/2(ḠnB)

P 1/2(AH)P 1/2(B)
+
P 1/2(AH)P 1/2(Ḡn)P (B)

P 1/2(AH)P 1/2(B)

≤ P 1/2(Ḡn | B(n,∞)) + P 1/2(Ḡn) ≤ P 1/2(Cn | B(n,∞)) + P 1/2(Ḡn).

Combining the above inequalities we get (i); and (ii) can be proved in a
similar way.

2.4. Heredity of mixing conditions from {(ui, ti)} to {ũ∗i }. Let τi
be the label of the ith seed, νi = τi+1 − τi, X∗i the position of the ith seed,
i.e. X∗i = Xτi , and u∗i = X∗i+1−X∗i , i ∈ Z, the distance between the ith and
(i+ 1)th seeds. Then

u∗i = X∗i+1 −X∗i = Xτi+1 −Xτi =

τi+1−1∑
j=τi

uj .

Let {(ũi, t̃i, l̃i, r̃i, s̃i)} be the Palm version of {(ui, ti, li, ri, si)}, i.e. the distri-
bution of {(ũi, t̃i, l̃i, r̃i, s̃i)} is the conditional distribution of {(ui, ti, li, ri, si)}
given s0 = 1. Then the sequence {(ũ∗i , ν̃∗i )} is stationary, where

ũ∗i = X̃∗i+1 − X̃∗i .
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Below we formulate a theorem on heredity of mixing properties from
{(ui, ti, li, ri, si)} to {(ũi, t̃i, l̃i, r̃i)}. Case (i) of the theorem is similar to The-
orem 5.2 of Q-S, but {α̃r(n)} here has a better rate of convergence to zero
than its analog in Q-S. Furthermore the proof below is much simpler than
that in Q-S.

Theorem 2.4.

(i) If {(ui, ti, li, ri)} is α-mixing with mixing function αr = {αr(n)},
then {(ũi, t̃i, l̃i, r̃i)} is α-mixing with mixing function α̃r = {α̃r(n)}
such that α̃r(n) = 2αr(n/2)/P (s0 = 1).

(ii) If {(ui, ti, li, ri)} is β-mixing with mixing function βr = {βr(n)},
then {(ũi, t̃i, l̃i, r̃i)} is β-mixing with mixing function β̃r = {β̃r(n)}
such that β̃r(n) = 2βr(n/2)/P (s0 = 1).

(iii) If {(ui, ti, li, ri)} is ρ-mixing with mixing function ρr = {βr(n)} and

sup
B∈D(n/2)

1

P (s0 = 1 |B)
<∞, sup

A∈D−n/2

1

P (s0 = 1 |A)
<∞,

where Dk and D(k) are the σ-fields defined in the proof, then
{(ũi, t̃i, l̃i, r̃i)} is ρ-mixing with mixing function ρ̃ = {ρ̃(n)}, where

ρ̃(n) =

2 max

(
sup

B∈D(n/2)

1

P 1/2(s0 = 1 |B)
, sup
A∈D−n/2

1

P 1/2(s0 = 1 |A)

)
.

Proof. The proof of (i) is similar to the proof of Theorem 5.2 of Q-S, and
the proof of (ii) is similar to that of (i).

(iii) Let Dk denote the σ-field generated by {(ũi, t̃i, l̃i, r̃i), i ∈ Z, i ≤ k},
and D(k) the σ-field generated by {(ũi, t̃i, l̃i, r̃i), i ∈ Z, i > k}. Notice that

ρ̃(n) = sup
k

sup
A,B

|P̃ (AB)− P̃ (A)P̃ (B)|
P̃ 1/2(A)P̃ 1/2(B)

= max

(
sup

k<−n/2
sup
A,B

|P̃ (AB)− P̃ (A)P̃ (B)|
P̃ 1/2(A)P̃ 1/2(B)

,

sup
k≥−n/2

sup
A,B

|P̃ (AB)− P̃ (A)P̃ (B)|
P̃ 1/2(A)P̃ 1/2(B)

)
,

where the suprema are taken over all A ∈ Dk and B ∈ D(n+ k).
In the case k ≥ −n/2 we have

|P̃ (AB)− P̃ (A)P̃ (B)|
P̃ 1/2(A)P̃ 1/2(B)

=
|P (AB | s0 = 1)− P (A | s0 = 1)P (B | s0 = 1)|

P 1/2(A | s0 = 1)P 1/2(B | s0 = 1)

= P (s0 = 1)
|P (AB | s0 = 1)− P (A | s0 = 1)P (B | s0 = 1)|

P 1/2(A, s0 = 1)P 1/2(B, s0 = 1)
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=
|P (AB, s0 = 1)− P (A, s0 = 1)P (B)|
P 1/2(A, s0 = 1)P 1/2(B, s0 = 1)

+
P (A | s0 = 1)|P (B, s0 = 1)− P (B)P (s0 = 1)|

P 1/2(A, s0 = 1)P 1/2(B, s0 = 1)

=
|P (AB, s0 = 1)− P (A, s0 = 1)P (B)|

P 1/2(A, s0 = 1)P 1/2(B)

P 1/2(B)

P 1/2(B, s0 = 1)

+
P (A | s0 = 1)|P (B, s0 = 1)− P (B)P (s0 = 1)|

P 1/2(B)P 1/2(s0 = 1)

× P 1/2(B)P 1/2(s0 = 1)

P 1/2(B, s0 = 1)P 1/2(A, s0 = 1)

≤ ρ(n/2)
1

P 1/2(s0 = 1 |B)
+ ρ(n/2)P (A | s0 = 1)

× 1

P 1/2(s0 = 1 |B)

1

P 1/2(A | s0 = 1)

≤ ρ(n/2)
1

P 1/2(s0 = 1 |B)
+ ρ(n/2)P 1/2(A | s0 = 1)

1

P 1/2(s0 = 1 |B)

≤ 2ρ(n/2)
1

P 1/2(s0 = 1 |B)

≤ 2ρ(n/2) sup
B∈D(n+k)

1

P 1/2(s0 = 1 |B)
.

In a similar way, in the case k < −n/2 we get

|P̃ (AB)− P̃ (A)P̃ (B)|
P̃ 1/2(A)P̃ 1/2(B)

≤ 2ρ(n/2) sup
A∈Dk

1

P 1/2(s0 = 1 |A)
.

Combining the two inequalities we get the assertion of the theorem.

Now we formulate a theorem on heredity of mixing properties from
{(ũi, t̃i, l̃i, r̃i)} to {ũ∗i }.

Theorem 2.5.

(i) If {(ũi, t̃i, l̃i, r̃i, s̃i)} is α-mixing with mixing function α̃ = {α̃(n)},
then {(ũ∗i , t̃∗i )} is α-mixing with the same mixing function.

(ii) If {(ũi, t̃i, l̃i, r̃i, s̃i)} is β-mixing with mixing function β̃ = {β̃(n)},
then {(ũ∗i , t̃∗i )} is β-mixing with the same mixing function.

(iii) If {(ũi, t̃i, l̃i, r̃i, s̃i)} is ρ-mixing with mixing function ρ̃ = {ρ̃(n)},
then {(ũ∗i , t̃∗i )} is ρ-mixing with the same mixing function.

Proof. The proof in all cases is similar to the proof of Theorem 5.3 in
Q-S.

Immediately from the above theorem we get the following corollary.
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Corollary 2.1.

(i) Let {(ui, ti)} be stationary and α-mixing with mixing function α =
{α(n)}. Then {(ũ∗i , t̃∗i )} is stationary and α-mixing with mixing func-
tion α∗ = {α∗(n)}, where

α∗(n) = 2αr(n/2)/P (s0 = 1).

(ii) Let {(ui, ti)} be stationary and β-mixing with mixing function β =
{β(n)}. Then {(ũ∗i , t̃∗i )} is stationary and β-mixing with mixing func-
tion β∗ = {β∗(n)}, where

β∗(n) = 2βr(n/2)/P (s0 = 1).

(iii) Let {(ui, ti)} be stationary and ρ-mixing with mixing function ρ =
{ρ(n)}. Then {(ũ∗i , t̃∗i )} is stationary and ρ-mixing with mixing func-
tion ρ∗ = {ρ∗(n)}, where

ρ∗(n)=2 max

(
sup

B∈D(n/2)

1

P 1/2(s0 = 1 |B)
, sup
A∈D−n/2

1

P 1/2(s0 = 1 |A)

)
.

3. FCLT for the number of seeds

3.1. Notation and relations. Let us define the following processes:

N(t) = #
{
i ≥ 1 :

i−1∑
j=0

uj ≤ t
}
, N∗(t) = #

{
i ≥ 1 :

i−1∑
j=0

u∗j +X∗0 ≤ t
}
,

Ñ∗(t) = #
{
i ≥ 1 :

i−1∑
j=0

ũ∗j ≤ t
}
, M(t) =

[t]∑
j=0

sj , t ≥ 0.

Here N(t) is the number of points in (0, t] of the marked point process
{(X̂i, t̂i)}, while N∗(t) and Ñ∗(t) are the numbers of seeds in (0, t] of the
processes {(X∗i , t∗i )} and {(X̂∗i , t̂∗i )}, respectively. M(n) is the number of
seeds among the points (X1, t1), . . . , (Xn, tn).

Furthermore let us define the processes

Un(t) =
1√
n

[nt]∑
j=1

(uj − a), U∗n(t) =
1√
n

[nt]∑
j=1

(u∗j − a1),

Ũ∗n(t) =
1√
n

[nt]∑
j=1

(ũ∗j − a1), M̂n(t) =
1√
n

[nt]∑
j=1

(sj − Es0), t ≥ 0,

and

Nn(t) = (N(nt)− nt/a)/
√
n/a3, N∗n(t) = (N∗(nt)− nt/a1)/

√
n/a31,

Ñ∗n(t) = (Ñ∗(nt)− nt/a1)/
√
n/a31, Mn(t) = (M(nt)− ntEs0)/

√
n, t ≥ 0,

where a = Eu1 and a1 = Eũ∗1 = a/Es0.
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The aim of this section is to give FCLT for the number of seeds, i.e. to
give conditions for the following convergences:

1

σ
Ũ∗n

D→W,
1

σ
U∗n

D→W,
1

σ
Ñ∗n

D→W,
1

σ
N∗n

D→W,(3.8)

1

σ
Mn

D→W,
1

σ
M̃n

D→W,(3.9)

where W is a standard Wiener process, σ2 is some finite positive number
and D→ means weak convergence in the function space D[0,∞) with the
Skorokhod J1 topology. We will show FCLT for Ũ∗n, and to get the other
convergences in (3.8) we will use relations between convergences of Ũ∗n and
Ñ∗n and of Ũ∗n and U∗n. These relations are formulated in the following lemma.

Lemma 3.1.

(i) The following equivalence holds:

(3.10)

[
1

σ
Ũ∗n

D→W
]
≡
[

1

σ
Ñ∗n

D→W
]
.

(ii) If {u∗i , i ∈ Z} is α-mixing then

(3.11)

[
1

σ
Ũ∗n

D→W
]
≡
[

1

σ
U∗n

D→W
]
≡
[

1

σ
N∗n

D→W
]
.

(iii) We have

(3.12)

[
1

σ
M̂n

D→W
]
≡
[

1

σ
Mn

D→W
]
.

The equivalence (3.10) was given in Szczotka (1986, Proposition 2.11)
and also in (6.1) of Q-S. The implication[

1

σ
Ũ∗n

D→ W
]
⇒
[

1

σ
U∗n

D→W
]
,

under α-mixing of {u∗i }, was given in Theorem 6.2 of Q-S, and the proof of
the reverse implication is similar to the proof of Theorem 6.2 of Q-S, so it is
omitted here. The second equivalence in (3.11) is an obvious consequence of
the first and of (3.10). The equivalence (3.12) is obvious.

3.2. Main results on FCLT. In this subsection we give five versions of
FCLT for the procesess of the number of seeds. Namely, we give five different
sets of conditions under which the convergences in (3.8) hold. The first set of
conditions appears in Theorem 3.1 below. It is based on the thinning of the
process {(Xi, ti)} by a process {si}, where a stationary sequence {(ui, si)}
satisfies two-dimensional FCLT. Here, the thinning process {si} is general,
the si assume values 0 or 1, and they are not necessarily related to the si
defined in Section 2. The second set of conditions appears in Theorem 3.2,
which gives conditions for (3.14) to hold in case (ii) of Theorem 3.1. The
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third and fourth sets of conditions occur in Theorems 3.3 and 3.4, which use
some rates of convergences to zero of the α-mixing function of the sequence
{(ui, ti)}. The fifth set of conditions concerns the case when {ui} is ρ-mixing
(Theorem 3.6).

A pair (W1,W2) of processes is said to be a two-dimensional Wiener
process if W1 and W2 are standard Wiener processes with covariance

cov(W1(t1),W2(t2)) = σ1,2 min(t1, t2).

Convergence to that process is called here two-dimensional FCLT in the
product space D[0,∞)×D[0,∞) with the product Skorokhod J1 topology.

Theorem 3.1 (FCLT under thinning). Let {(ui, si)} be stationary.

(i) If (Un, U
∗
n)
D→ (σ1W1, σ2W2), then

(3.13) Mn
D→ a−11 (σ1W1 − σ2W2 ◦ γ1),

where γ1(t) = tEs0, 0 < σ1, σ2 < ∞ and (W1,W2) is a two-
dimensional Wiener process.

(ii) If (Un,Mn)
D→ (σ1W3, σ4W4), then

(3.14) U∗n
D→ σ1W3 ◦ γ2 − a1σ4W4 ◦ γ2,

where γ2(t) = t/Es0, t ≥ 0, 0 < σ1, σ3 < ∞ and (W3,W4) is a
two-dimensional Wiener process.

Notice that the process ξ(t) := σ1W3(t/Es0) − a1σ4W4(t/Es0), t ≥ 0,
has independent increments and Eξ2(t) = tσ2, where

σ2 = (σ21 − 2σ1σ4a1σ12 + a21σ
2
4)/Es0.

So, if σ2 > 0 and if {u∗i } is strongly mixing, then by (3.11) and (3.10) we
get the convergences (3.8) with this σ.

The following theorem gives conditions for the assumption (Un,Mn)
D→

(σ1W3, σ4W4) of Theorem 3.1(ii) to hold with si = liri.

Theorem 3.2 (FCLT for (Un,Mn)). Let {(ui, ti), i ∈ Z} be strongly
mixing with mixing function α = {α(n)} and suppose that for some 0 <
δ <∞ the following inequalities and convergences hold as n→∞:

Eu2+δ1 <∞,(3.15)

nα(n)δ/(2+δ) → 0,(3.16)

n
(
P
( n∑
j=1

uj ≤ t1
))δ/(2+δ)

→ 0, n
(
P
( n∑
j=1

u−j ≤ t0
))δ/(2+δ)

→ 0,(3.17)

1

n
E
( n∑
j=1

ūj

)2
→ σ21,

1

n
E
( n∑
j=1

s̄j

)2
→ σ22,(3.18)
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1

n
E
( n∑
j=1

ūj

)( n∑
j=1

s̄j

)
→ σ1σ2σ12,(3.19)

where 0 < σ21, σ
2
2 <∞ and the matrix

( σ2
1 σ12

σ12 σ2
2

)
is positive definite. Then

(3.20) (Un, M̂n)
D→ (σ1W1, σ2W2) and (Un,Mn)

D→ (σ1W1, σ2W2).

The above theorem also gives conditions for M̂n,Mn
D→ σW to hold, but

these conditions are stronger than those in the following theorem.

Theorem 3.3 (FCLT for the number of seeds). Let {(ui, ti)} be strongly
mixing with mixing function α = {α(n)} and suppose that

nα(n)→ 0,(3.21)

nP
( n∑
j=1

uj ≤ t1
)
→ 0, nP

( n∑
j=1

u−j ≤ t0
)
→ 0,(3.22)

1

n
E
( n∑
j=1

(sj − Es0)
)2
→ σ2, 0 < σ2 <∞.(3.23)

Then

(3.24) M̂n,Mn
D→ σW.

Theorem 3.4 (Third set of conditions for FCLT). Let {(ui, ti)} be strong-
ly mixing with mixing function α = {α(n)} and suppose that for some ε > 2
and δ > 0 such that ε > 2(1 + 2/δ) the following conditions hold:

Euε1, Et
ε
1 <∞,(3.25)

∞∑
n=1

(α(n))δ/(2+δ) <∞.(3.26)

Then σ2 ≡ var(ũ∗1) + 2
∑∞

k=2 cov(ũ∗1, ũ
∗
k) < ∞. If σ2 > 0 then the conver-

gences in (3.8) hold with this σ.

The difference between this theorem and Theorem 6.1 of Q-S is that here
ε > 2 + 4/δ, while the latter theorem assumes that ε > 4 + 4/δ.

The following theorem gives a weaker condition on the rates of conver-
gence to zero of the mixing function than Theorem 3.4, but it additionally
assumes a condition on the process {N̄(t), t ≥ 0}, where N̄(t) = #{k ≥ 1 :∑k

j=1 uj ≤ t}.

Theorem 3.5 (Fourth set of conditions for FCLT). Let {(ui, ti)} be
strongly mixing with mixing function α = {α(n)} and suppose that for some
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1/2 < λ < 1,

(3.27) lim sup
k

E

(
1

k
N̄(k)

)2/λ

<∞.

Furthermore suppose that for δ such that λ = δ/(2 + δ) the following condi-
tions hold:

∞∑
n=1

(α(n))δ/(2+δ) <∞,(3.28)

Eu2+δ1 , Et2+δ1 <∞.(3.29)

Then the convergences in (3.8) hold with σ2 ≡ var(ũ∗1) + 2
∑∞

k=2 cov(ũ∗1, ũ
∗
k),

if it is positive.

Theorem 3.6 (FCLT for ρ-mixing). Let the assumptions of Theorem
2.3 be satisfied. Furthermore, assume that condition (3.29) holds and σ2n ≡
Var(Ũ∗n(1))→ σ2, 0 < σ2 <∞. Then (3.8) holds.

3.3. Auxiliary lemmas. To prove the main results we will use the
following lemmas.

Lemma 3.2. If {bn, n ≥ 0} is a nonincreasing sequence of nonnegative
numbers with b0 = 1, then for any 0 < c < 1,

(3.30)
∞∑
n=1

b[nc] ≤
(

1 +
1

c

) ∞∑
n=1

bn.

Lemma 3.3. If for some 0 < λ < 1 the following conditions hold:
∞∑
n=1

(α(n))λ <∞,(3.31)

∞∑
n=1

(
P
( n∑
j=1

uj ≤ t1
))λ

<∞,
∞∑
n=1

(
P
( n∑
j=1

u−j ≤ t0
))λ

<∞,(3.32)

then

(3.33)
∞∑
n=1

(αr(n))λ <∞.

Lemma 3.4. If for some κ > 2,

(3.34) Euκ1 , Et
κ
1 <∞,

then for any 0 < λ < 1,

(3.35)
(
P
( n∑
j=1

uj < t1

))λ
≤ K1n

−λκ/2,
(
P
( n∑
j=1

u−j < t0

))λ
≤ K2n

−λκ/2,

where K1 and K2 are some constants not depending on n.
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Lemma 3.5. If {(ui, ti), i ∈ Z} is strongly mixing with mixing function
α = {α(n)} and for some δ > 2 the following conditions hold:

Eu2+δ1 , Et2+δ1 <∞,(3.36)
∞∑
n=1

(α(n))δ/(2+δ) <∞,(3.37)

then

(3.38)
∞∑
n=1

(αr(n))δ/(2+δ) <∞.

Lemma 3.6. If for some 1/2 < λ < 1, we have Et2/(1−λ)1 <∞ and

(3.39) sup
n
E

(
1

n
EN̄(n)

)2/λ

<∞,

then for that λ the conditions in (3.32) hold.

Some sufficient conditions for the convergence

lim
n→∞

1

n
E
( n∑
j=1

yj

)2
= σ2, 0 < σ2 <∞,

where {yj} is a centered stationary strongly mixing sequence of random
variables, are given by Doukhan–Massart–Rio’s Theorem (see for example
the first assertion of Theorem 1.2 in Merlevède & Peligrad (2000)). We do
not recall it here.

3.4. Proofs of the main results on FCLT

Proof of Theorem 3.1. Define the processes

θn,1(t) =
1√
n

( [nt]∑
j=1

uj −
M(nt)∑
j=1

u∗j

)
, t ≥ 0,

θn,2(t) =
nt− [nt]√

n
a1Es0, t ≥ 0.

Then

Un(t) =
1√
n

M(nt)∑
j=1

(u∗j − a1)(3.40)

+
1√
n

(M(nt)− ntEs0)a1 + θn,1(t) + θn,2(t).

Denote γn,3(t) = M(nt)/n and γn,4 = γn,3(t) + 1/n, t ≥ 0. Then

(3.41) Mn(t) = a−11 (Un(t)− U∗n(γn,3(t)))− a−11 (θn,1(t) + θn,2(t)).

Furthermore for any b ≥ 0 we have
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sup
0≤t≤b

θn,1(t) ≤ sup
0≤t≤b

1√
n
u∗M(nt)+1

≤ sup
0≤t≤b

(U∗n(γn,4(t))− U∗n(γn,4(t)−)) +
1√
n
a1,

sup
0≤t≤b

θn,2(t) ≤
1√
n
a1Es0.

Hence from U∗n
D→ σ2W2 and the continuous mapping theorem (see Theorem

5.1 of Billingsley (1968)), we get θn,1
p→ 0e and θn,2

p→ 0e, where e(t) = t,
t ≥ 0.

In view of 1
nM(nt) = 1

n

∑[nt]
j=1 sj and the law of large numbers we have

γn,3
p→ eEs0 and γn,4

p→ eEs0, as n → ∞. This together with the conver-
gences of θn,1 and θn,2, the representation (3.40) and the continuous mapping
theorem gives (3.13).

To prove (3.14) notice that
[nt]∑
j=1

(u∗j − a1) =

τ[nt]∑
j=1

(uj − a)− a

Es0

τ[nt]∑
j=1

(sj − Es0), t ≥ 0,

where τn is the label of the nth seed and
∑τn

j=1 sj = n.

Denoting γn,5(t) = τ[nt]/n and γ5(t) = 1
Es0

e, t ≥ 0, we get

U∗n(t) = Un(γn,5(t))− a1Mn(γn,5(t)), t ≥ 0.

This together with supt |Mn(t)− M̂n(t)| ≤ 1/
√
n and γn,5

D→ γ5 in D[0,∞)
and the assumed conditions gives (3.14), finishing the proof of Theorem 3.1.

Proof of Theorem 3.2. To prove (Un,Mn)
D→ (σ1W1, σ2W2) we first show

(Un, M̂n)
D→ (σ1W1, σ2W2), which by Lemma 3.1(iii) gives (Un,Mn)

D→
(σ1W1, σ2W2), where (W1,W2) is a two-dimensional Wiener process with
covariance E(W1(t)W2(s)) = min(t, s)σ1,2 for any t, s ≥ 0. But to prove
(Un, M̂n)

D→ (σ1W1, σ2W2) it is enough to show b1Un + b2M̂n
D→ b1σ1W1 +

b2σ2W2 for any constants b1 and b2. To do so we use three times Corollary 1.1,
Remark 1.1 and Theorem 1.4 of Merlevède & Peligrad (2000): first we apply
them to the sequence {ūi}, then to {s̄i} and finally to {yi = b1ūi + b2s̄i}.

Since {ūi} is strongly mixing with mixing function {α(n)} satisfying
(3.16), and since conditions (3.15) and 1

nE(
∑n

j=1 ūj)
2 → σ21, 0 < σ21 < ∞,

are satisfied, by case (i) of Corollary 1.1, Remark 1.1 and Theorem 1.4 of
Merlevède & Peligrad (2000) we get Un

D→ σ1W1, which also implies that
{Un} is tight in D[0,∞) with the Skorokhod J1 topology.

Now notice that by Theorem 2.1 the sequence {s̄i} is strongly mixing
with mixing function ᾱr = {ᾱr(n)}, where ᾱr(n) = αr(n)/Esi = αr(n)/p.
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But by Lemma 2.2 we have

(3.42) αr(n) ≤ α(n(1− c)2) + 4P
([nc(1−c)]∑

j=1

uj ≤ t1
)

+ 4P
( [nc]∑
j=1

u−j ≤ t0
)

with 0 < c < 1. Hence by (3.16)–(3.19) we get

nαr(n)→ 0 and
1

n
E
( n∑
j=1

s̄j

)2
→ σ22, 0 < σ2 <∞.

Hence by case (ii) of Corollary 1.1, Remark 1.1 and Theorem 1.4 in Merlevède
& Peligrad (2000) we get M̂n

D→ σ2W2. This implies that the sequences {M̂n}
and {Mn} are tight in D[0,∞) with the Skorokhod J1 topology.

By tightness of {Un} and {Mn} we get tightness of {(Un,Mn)}. There-
fore it is enough to prove the weak convergence of the finite-dimensional
distributions of (Un,Mn) to (σ1W1, σ2W2). Since {(ui, si)} is stationary and
strongly mixing with mixing function {αr(n)}, the sequence of processes
(Un,Mn) has asymptotically independent increments (see Billingsley (1968,
p. 157)). Hence it is enough to show that for any numbers b1, b2 we have
b1Un(t) + b2Mn(t)

D→ σ1b1W1(t) + σ2b2W2(t). But

b1Un(t) + b2Mn(t) =
1√
n

[nt]∑
j=1

(b1ūj + b2s̄j),

so the sequence {yi ≡ b1ūj + b2s̄j} is α-mixing with mixing function ᾱr =
{ᾱr(n)}. Now (3.42) for λ = δ/(2 + δ) implies

n(αr(n))λ ≤ n3λ(α(n(1− c)2))λ + n3λ4λ
(
P
([nc(1−c)]∑

j=1

uj ≤ t1
))λ

(3.43)

+ n3λ4λ
(
P
( [nc]∑
j=1

u−j ≤ t0
))λ

.

By (3.16) and (3.17) we get

(3.44) n(αr(n))δ/(2+δ) → 0 as n→∞.
Since

1

n
E
( n∑
j=1

yj

)2
=

1

n
E
(
b1

n∑
j=1

ūj + b2

n∑
j=1

s̄j

)2
= b21

1

n
E
( n∑
j=1

ūj

)2
+ 2b1b2

1

n
E
( n∑
j=1

ūj

)( n∑
j=1

s̄j

)
+ b22

1

n
E
( n∑
j=1

s̄j

)2
,
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by (3.18) and (3.19) we have

1

n
E
( n∑
j=1

yj

)2
→ b21σ

2
1 + 2b1b2σ1σ2σ12 + b22σ

2
2 ≡ σ2

and 0 < σ2 < ∞. Hence for the processes Yn(t) = 1
σ
√
n

∑[nt]
j=1 yj , n ≥ 1, we

have Yn
D→W, which implies

1√
n

[nt]∑
j=1

yj
D→ b1σ1W1(t) + b2σ2W2(t) for all t ≥ 0.

Since the sequence of processes 1√
n

∑[nt]
j=1 yj has asymptotically independent

increments we get (Un, M̂n)
D→ (σ1W, σ2W2), which by Lemma 3.1 gives

(Un,Mn)
D→ (σ1W, σ2W2). This finishes the proof.

Proof of Theorem 3.3. Since si = `isi, Theorem 2.1 implies that {si− p,
i ∈ Z} is α-mixing with mixing function αr = {αr(n)}. By Theorem 2.1 we
get

(3.45) αr(n) ≤ α(n(1− c)2) + 4P
([nc(1−c)]∑

j=1

uj ≤ t1
)

+ 4P
( [nc]∑
j=1

u−j ≤ t0
)
.

Hence by the assumption nα(n) → 0 and (3.22) we get nαr(n) → 0. Now
using Theorem 1.4 of Merlevède & Peligrad (2000), together with Remark
1.1 there, and next applying (3.23) and (3.30), we get the assertion of the
theorem.

Proof of Theorem 3.4. By the assumption and Corollary 2.1 the sequence
{ũ∗i − a1} is stationary and strongly mixing with mixing function {α̃(n)}
where α̃(n) = αr(n)/P (s0 = 1). To prove the assertion of the theorem it
is enough to show that the assumptions of Theorem 1.7 of Peligrad (1986,
p. 202) are fulfilled, i.e. E(ũ∗1)

2+δ <∞ and
∑∞

n=1(αr(n))δ/(2+δ) <∞. Then
σ2 ≡ var(ũ∗1) + 2

∑∞
k=2 cov(ũ∗1, ũ

∗
k) and if σ2 > 0, then 1

σ Ũ
∗
n
D→W. This and

Lemma 3.1 give the other convergences in (3.8).
Now, by (3.25) and Lemma 5.4 of Q-S we get E(ũ∗1)

2+δ <∞. Finiteness
of
∑∞

n=1(αr(n))δ/(2+δ) follows from the assumption and Lemma 3.5.

Proof of Theorem 3.5. The proof runs much as the proof of Theorem 3.4
with the difference that to get (3.32) we use Lemma 3.6.

Proof of Theorem 3.6. Using Theorem 2.3, then Lemma 5.4 of Q-S, The-
orem A of Herrndorf (1984) and the equivalences in Lemma 3.1 we get the
assertion of the theorem.
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3.5. Proofs of auxiliary lemmas

Proof of Lemma 3.2. The lemma follows immediately from
∞∑
n=1

b[nc] ≤
∞�

0

b[cx] dx ≤
1

c

∞�

0

b[x] dx ≤
(

1 +
1

c

) ∞∑
n=1

bn.

Proof of Lemma 3.3. By Lemma 2.1 in Section 2.3.2,

(3.46) αr(n) ≤ α(n(1− c)2) + 4P
([nc(1−c)]∑

j=1

uj ≤ t1
)

+ 4P
( [nc]∑
j=1

u−j ≤ t0
)

for some 0 < c < 1. But for any 0 < λ < 1 and any c1, c2, c3 > 0 we have

(3.47) (c1 + c2 + c3)
λ ≤ 3λ max{cλ1 , cλ2 , cλ3} ≤ 3λ(cλ1 + cλ2 + cλ3).

This and (3.46) give

(αr(n))λ ≤ 3λ(α(n(1− c)2))λ + 3λ4λ
(
P
([nc(1−c)]∑

j=1

uj ≤ t1
))λ

+ 3λ4λ
(
P
( [nc]∑
j=1

u−j ≤ t0
))λ

.

Now using Lemma 3.2 and the other assumptions of Lemma 3.3 we get the
assertion.

Below, for brevity we write P λ(A) = (P (A))λ for any event A and 0 <
λ < 1.

Proof of Lemma 3.4. Notice that

P
( n∑
j=1

uj ≤ t1
)
≤ P (t1 > na/2) + P

( n∑
j=1

uj ≤ t1, t1 ≤ na/2
)
.

Denoting bn := P λ(
∑n

j=1 uj ≤ t1) and using inequality (3.47) with two
components we get

bn = P λ
( n∑
j=1

uj ≤ t1
)
≤ 2λP λ(t1 > na/2) + 2λP λ

( n∑
j=1

uj ≤ t1, t1 ≤ na/2
)

≤ 2λP λ(t1 > na/2) + 2λP λ
( n∑
j=1

(uj − a) ≤ −na/2
)
.

Now Chebyshev’s inequality yields

bn ≤ 2λ(2/a)κλn−κλ
(

(Etκ1)λ +
(
E
∣∣∣ n∑
j=1

(uj − a)
∣∣∣κ)λ).
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Applying Theorem 1 of Yokoyama (1980) to the second term in the brackets
we get

bn ≤ (2/a)κλn−κλ
(
(Etκ1)λ +K0n

κλ/2(E|u1 − a|κ)λ
)
≤ K1n

−λκ/2,

where K1 is a constant independent of n.
The second inequality in (3.35) follows from

P λ
( n∑
j=1

u−j ≤ t0
)
≤ 2λP λ(t0 > na/2) + 2λP λ

( n∑
j=1

(u−j − a) ≤ −na/2
)

= 2λP λ(t1 > na/2) + 2λP λ
( n∑
j=1

(uj − a) ≤ −na/2
)

and from the proof of the first inequality in (3.35).

Proof of Lemma 3.5. Let λ = δ
2+δ . Then from the assumption of the

lemma we have λκ/2 = δ
2+δ (1 + δ/2) = δ/2 > 1. Hence by Lemma 3.4 we

get convergence of the series in (3.32), and by (3.37) we get convergence in
(3.31), which implies convergence (3.33), which is (3.38) for the chosen λ.

Proof of Lemma 3.6. Recall that N̄(t) = #{i ≥ 1 :
∑i

j=1 uj ≤ t}, so
P (
∑n

j=1 uj ≤ t1) = P (N̄(t1) ≥ n). Hence writing

L :=
∞∑
n=1

P λ
( n∑
j=1

uj ≤ t1
)

=
∞∑
n=1

(
nP (N̄(t1) ≥ n)

)λ
n−λ

and using Hölder’s inequality with p = 1/λ, q = 1/(1− λ) we get

L ≤
( ∞∑
n=1

(
nP (N̄(t1) ≥ n)

)λp)1/p · ( ∞∑
n=1

n−λq
)1/q

=
( ∞∑
n=1

nP (N̄(t1) ≥ n)
)λ
·
( ∞∑
n=1

n−λ/(1−λ)
)1−λ

.

The last series is finite because 1/2 < λ < 1. Now notice that

E(N̄(t1))
2 =

∞∑
n=1

EN̄2(t1)I(n− 1 < t1 ≤ n)

≤
∞∑
n=1

EN̄2(n)I(n− 1 < t1 ≤ n)

=

∞∑
n=1

E

(
1

n
N̄(n)

)2

(n2I(n− 1 < t1 ≤ n)).
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Using Hölder’s inequality with p = 1/λ, q = 1/(1− λ) we get

E(N̄(t1))
2 ≤

∞∑
n=1

(
E

(
1

n
N̄(n)

)2p)1/p( ∞∑
n=1

n2qP (n− 1 < t1 ≤ n)
)1/q

≤ sup
n

(
E

(
1

n
N̄(n)

)2/λ)λ( ∞∑
n=1

n2/(1−λ)P (n− 1 < t1 ≤ n)
)1−λ

≤ sup
n

(
E

(
1

n
N̄(n)

)2/λ)λ
(Et

2/(1−λ)
1 )1−λ.

Hence L is finite, which finishes the proof.
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