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CONFIDENCE REGIONS OF MINIMAL AREA
FOR THE SCALE-LOCATION PARAMETER

AND THEIR APPLICATIONS

Abstract. The area of a confidence region is suggested as a quality expo-
nent of parameter estimation. It is shown that under very mild restrictions
imposed on the underlying scale-location family there exists an optimal con-
fidence region. Explicit formulae as well as numerical results concerning the
normal, exponential and uniform families are presented. The question how
to estimate the quantile function is also discussed.

1. Introduction. Let x1, . . . , xn be independent copies of a random
variable ξ. Suppose that the distribution function of ξ is known up to a
parametric family F = {F : F = Fθ, θ ∈ Θ}, where Θ ⊆ Rk. The unknown
parameter θ is to be estimated on the basis of the sample x = (x1, . . . , xn).

Let (Rn,Bn, Pθ) be the probability space induced by x = (x1, . . . , xn)
and Fθ. By Bn we denote the σ-algebra of Borel subsets of Rn.

There are two approaches to parameter estimation, the point estima-
tion and confidence region estimation. A point estimator is a mapping θ∗ :
Rn → Rk. Its quality is usually characterized by the risk function

R(θ∗, θ) = Eθl(θ∗, θ) =
�
l(θ∗, θ)Pθ(dx),

which is, in its turn, determined by a loss function l(u, v).
There exists a perfect asymptotic theory of optimal point estimation (see

e.g. Ibragimov and Khas’minskii (1981)). The case of moderate size samples,
which is of much greater interest, is less studied. Nevertheless, for the most
popular parametric families that admit sufficient statistics the optimal point
estimators are known (see e.g. Zacks (1971), Lehmann (1997)).
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A confidence region estimator or simply a confidence region, in contrast
to a point estimator, is defined as a mapping B : Rn → Bk such that for all
θ ∈ Θ,

Pθ(θ ∈ B(x)) ≥ α ∈ (0, 1).

Here α is the confidence level. We omit the details related to the measura-
bility of B(x).

A confidence region is called strong if for all θ ∈ Θ,

Pθ(θ ∈ B(x)) = α.

The quality of a confidence region may be characterized by the expectation

R(θ,B) = Eθλk(B(x))

where λk is the Lebesgue measure on Bk.
It should be noted that the asymptotic aspects of the confidence region

theory are of small interest. In the non-asymptotic context the theory re-
mains rather poor. There are not too many cases where the family F admits
confidence regions. In a few of them the family admits an optimal, in a sense,
confidence region.

The basic goal of the paper is to suggest a reasonable approach to the
optimal confidence region problem based on the algebraic properties of the
family parameterization. In the focus of our attention are the so-called scale-
location families though the method can be applied to more general situa-
tions.

The paper is organized as follows. In Section 2 the notion of confidence
region optimality is introduced. Here we also give general formulae for the
boundary of the optimal confidence region for the scale-location vector pa-
rameter. Given the region one can easily build a confidence region for the
unknown quantile function that appears as the solution of a problem of
mathematical programming. The properties of the confidence regions so de-
fined are discussed in Section 3. Sections 4–6 are devoted to the normal,
exponential and uniform families, that is, to those admitting sufficient statis-
tics with the required properties. Concluding remarks are given in Section 7.

2. General case of a scale-location family. Suppose that Fθ(u) is
absolutely continuous and its density with respect to λ1 is of the form

(1) pθ(u) =
1
θ1
p(1,0)

(
u− θ2

θ1

)
, θ = (θ1, θ2), θ ∈ Θ = R1

+ × R1.

The density p(1,0)(u) = p(u) is called standard while the parameters θ1 and
θ2 are called, respectively, scale and location.
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Set

t2(x) = x =
1
n

n∑

i=1

xi,

t1(x) = s, where s2 =
1
n

n∑

j=1

(xj − x)2.

Obviously,

Pθ

((
θ1

t1(x)
,
t2(x)− θ2

t1(x)

)
∈ A

)
= P(1,0)

((
1

t1(x)
,
t2(x)
t1(x)

)
∈ A

)
, A ∈ B2.

If one chooses A in such a way that

(2) P(1,0)

((
1

t1(x)
,
t2(x)
t1(x)

)
∈ A

)
= α

then the random region of the form

(3) BA(x) = (0, t2(x)) + t1(x)A−

with
A− = {(u, v) : (u,−v) ∈ A}

is a strong confidence region of level α. Furthermore, its risk has the form

R(θ,BA) = λ2(A)Eθt21(x) = θ2
1λ2(A)E(1,0)t

2
1(x).

Note that λ2(A−) = λ2(A).
We say that the confidence region BA(x) is λ-optimal if

A ∈ arg min
A∈Aα

λ2(A)

where Aα is the class of sets satisfying (2). It is clear that arg minA∈Aα λ2(A)
depends on the choice of the statistics t1(x) and t2(x).

Thus, the problem is reduced to an extremal problem. Suppose that in
the standard case there exists a joint density q(u, v) of the statistics

(4) T1(x) =
1

t1(x)
, T2(x) =

t2(x)
t1(x)

.

Proposition 1. Let

Az = {(u, v) : q(u, v) ≥ z}
and assume that for all z > 0,

�

{(u,v):q(u,v)=z}
q(u, v) du dv = 0.

Then Azα determined by the equation
�

Azα

q(u, v) du dv = α
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belongs to arg minA∈Aα λ2(A). Moreover , if A ∈ arg minA∈Aα λ2(A) then

λ2(A4Azα) = 0.

This is a version of the well known Neyman–Pearson Lemma (see e.g.
Proposition 2.1 in Einmahl and Mason (1992)).

If Azα is connected we obtain a strong confidence region B(x) determined
by the equation (see (3))

(5) B(x) = (0, t2(x)) + t1(x)A−zα .

Obviously, it is sufficient to assume only that
�

{(u,v):q(u,v)=zα}
q(u, v) du dv = 0.

But if Azα is not connected the region (5) is not convenient from the
practical point of view. In such a situation one can take instead the convex
hull Cα of Azα . So, we come to the confidence region of the form

B∗(x) = (0, t2(x)) + t1(x)C−α
for which

Pθ(θ ∈ B∗(x)) ≥ α,
that is, B∗(x) is not strong.

Note that the way in which the confidence region was built is based on
the so-called invariance and equivariance of the sample variance and mean.
More precisely,

t1(θ1x+ θ21) = θ1t1(x),(6)

t2(θ1x+ θ21) = θ1t2(x) + θ2,(7)

where 1 = (1, . . . , 1) ∈ Rn.
It is clear that instead of s and x we could take any statistics that

satisfy (6) and (7). If the family is normal then the choice t1(x) =
√
n s,

t2(x) = x is also justified by the sufficiency of (s, x). From this viewpoint,
dealing with, say, the exponential or uniform family we should take, respec-
tively, (t1(x), t2(x)) = (2n(x − x(1)), x(1)) and (t1(x), t2(x)) = (x(n) − x(1),
x(n) + x(1)) where

(8) x(1) = min
1≤j≤n

xj , x(n) = max
1≤j≤n

xj .

Such a choice is realized in Sections 4–6.

3. Confidence regions for the quantile function. Let the distribu-
tion function F correspond to the standard density p(u) = p(1,0)(u) in (1).
The standard quantile function is defined as

u(p) = inf{u : F (u) ≥ p}, 0 < p < 1.
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In the case of non-standard density (1) the quantile function has the form

(9) x(p) = θ1u(p) + θ2.

Consider the following functions defined on (0, 1):

(10) x+(p) = max
θ∈B(x)

(θ1u(p) + θ2), x−(p) = min
θ∈B(x)

(θ1u(p) + θ2).

Naturally, the region

(11) B̂ = {x(p) : x−(p) ≤ x(p) ≤ x+(p), 0 < p < 1}
can serve as a confidence region for the unknown quantile function (9).

Note that in order to construct a confidence region for the quantile func-
tion x(p) at a given point p one has to solve the extremal problems (10) that
are typical problems of mathematical programming.

Let

(12)





θ+(p) = (θ+
1 (p), θ+

2 (p)) = arg max
θ∈A−zα

(θ1u(p) + θ2),

θ−(p) = (θ−1 (p), θ−2 (p)) = arg min
θ∈A−zα

(θ1u(p) + θ2),

and

(13) y+(p) = θ+
1 (p)u(p) + θ+

2 (p), y−(p) = θ−1 (p)u(p) + θ−2 (p).

It is easily seen that

arg max
θ∈B(x)

(θ1u(p) + θ2) = t1(x)θ+(p) + (0, t2(x)),

arg min
θ∈B(x)

(θ1u(p) + θ2) = t1(x)θ−(p) + (0, t2(x)).

Then (9), (10), (12) and (13) lead to

(14) x±(p) = y±(p)t1(x) + t2(x).

So, it suffices to solve the extremal problems only within A−zα .
The question arises: what is the level of confidence provided by (11)?

Assume that

{u : p(u) > 0} = (u−, u+) and
u+�

u−

p(u) du = 1.

Then u(p) is strictly increasing and continuous. First, suppose that u− =
u(0) = −∞ and u+ = u(1) =∞.

Denote by E = {e ∈ R2 : |e| = 1} the unit circle in R2. Consider the
unit vectors

e(p) =
(

u(p)√
u2(p) + 1

,
1√

u2(p) + 1

)
, 0 < p < 1.
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It is evident that, as p runs through (0, 1), e(p) describes the upper part of
the unit circle, that is, the set

E+ = {e = (e1, e2) : |e| = 1, e2 > 0}.
Obviously, the convex A−zα is uniquely determined by its support function

s(e) = sup
x∈A−zα

〈e, x〉, e ∈ E.

Note that

y−(p) = s(−e(p))
√
u2(p) + 1, y+(p) = s(e(p))

√
u2(p) + 1, p ∈ (0, 1).

Since u(p) is continuous and strictly increasing, A−zα is uniquely determined
also by the vector-valued function (y−(p), y+(p)). This implies that the
events

(15) x−(p) ≤ x(p) ≤ x+(p), 0 < p < 1,

and

(16)
(

θ1

t1(x)
,
θ2 − t2(x)
t1(x)

)
∈ A−zα

are equivalent. That is,
Pθ(B̂) = α.

If A−zα is not convex then the equivalence of (15) and (16) fails. More
precisely, (16) implies (15) but not vice versa, that is,

Pθ(θ ∈ B∗(x)) = Pθ(B̂) ≥ α.
If A−zα is convex but at least one of the values u− = u(0) and u+ = u(1)

is finite then the calculation of P (B̂) is quite different. The problem is that
the extreme points θ±(p), 0 < p < 1, defined in (12) do not cover all the
boundary ∂A−zα . Hence, there exists a class of convex sets whose boundaries
contain the segments θ±(p), 0 < p < 1. Denote by Ĉα the maximal convex
set with this property. In accordance with (5) we define

(17) B∗∗(x) = (0, t2(x)) + t1(x)Ĉα.

Obviously,
Pθ(θ ∈ B∗∗(x)) = Pθ(B̂) ≥ α.

Below we consider the exponential and uniform scale-location families that
serve as good examples of such a situation.

4. The case of the normal family. In (1), set

p(u) =
1√
2π

exp
(
−u

2

2

)
.
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Table 1. Normal distribution. The values of zα,
u− and u+ for α= 0.95, n= 3(1)10(2)40

n zα u− u+

3 0.00347029 0.20780859 3.72270733
4 0.01854300 0.20998484 1.97710183
5 0.05035515 0.20744904 1.37653237
6 0.10172153 0.20339481 1.07484882
7 0.17398975 0.19885234 0.89322195
8 0.26594273 0.19416318 0.77214691
9 0.38145268 0.18968929 0.68412936

10 0.51601506 0.18534340 0.61792495
12 0.85716513 0.17745370 0.52293996
14 1.27972174 0.17037336 0.45839003
16 1.80384765 0.16415186 0.41075334
18 2.39749101 0.15850641 0.37449811
20 3.09927806 0.15349170 0.34539063
22 3.89135104 0.14894527 0.32160354
24 4.76667625 0.14479252 0.30177053
26 5.71558242 0.14097412 0.28495566
28 6.80983245 0.13751304 0.27028749
30 7.92727463 0.13425943 0.25764570
32 9.14289587 0.13125223 0.24646207
34 10.45933434 0.12845788 0.23648618
36 11.87922648 0.12585401 0.22752092
38 13.40521111 0.12341931 0.21941186
40 15.03992493 0.12113377 0.21203708

We recall that the statistic (t1(x), t2(x)) = (
√
n s, x) is sufficient (see

e.g. Ex. 2.7 in Zacks (1971)). Furthermore, the densities of
√
n s and x are,

respectively (see e.g. Ch. 18 in Cramér (1946)),

q1(u) =
2−(n−3)/2

Γ
(
n−1

2

) un−2 exp
(
−u

2

2

)
and q2(u) =

√
n p(
√
nu).

Since x and s are independent (see ibid., Ch. 29) the density of (T1, T2),
defined as in (4), has the form

q(u, v) = cn exp
(
−1 + nv2

2u2 − (n+ 1) lnu
)
, u > 0,

where
cn =

√
n

2n/2−1Γ
(
n−1

2

)√
π
.

Obviously, q(u,−v) = q(u, v), that is, A−zα = Azα .
Furthermore, q(u, v) is unimodal with the mode at ((n+ 1)−1/2, 0). The

modal value is

q0 = max
u,v

q(u, v) = cn exp
(
n+ 1

2
(ln(n+ 1)− 1)

)
.



132 A. Czarnowska and A. V. Nagaev

Table 2. Normal distribution. The values of zα,
u− and u+ for α = 0.99, n = 3(1)10(2)40

n zα u− u+

3 0.00013698 0.18031714 8.41263897
4 0.00124809 0.18452681 3.45047277
5 0.00439144 0.18392899 2.12036077
6 0.01043298 0.18163529 1.53579396
7 0.01993633 0.17863524 1.21385993
8 0.03364336 0.17545397 1.00989565
9 0.04921970 0.17184580 0.87521811

10 0.07152684 0.16871818 0.77181700
12 0.12671137 0.16250443 0.63355461
14 0.19451771 0.15669140 0.54425587
16 0.28269254 0.15156788 0.47993231
18 0.39387352 0.14699809 0.43130819
20 0.50947037 0.14267427 0.39429174
22 0.67003395 0.13896152 0.36333049
24 0.83032425 0.13539621 0.33856314
26 1.01288802 0.13213499 0.31765227
28 1.17700808 0.12898606 0.30032377
30 1.40177417 0.12621852 0.28471191
32 1.65233058 0.12364511 0.27102711
34 1.86773827 0.12112560 0.25934277
36 2.16621189 0.11888472 0.24850481
38 2.49399276 0.11678123 0.23877117
40 2.76596320 0.11469730 0.23029683

The curve of level z, 0 < z < q0, is determined by the equation

1 + nv2

2u2 + (n+ 1) lnu = ln(cn/z)

or
v = ±n−1/2

√
2u2(ln(cn/z)− (n+ 1) lnu)− 1 = ±v(u, z).

Let u−(z) and u+(z) be the roots of the equation

2u2(ln(cn/z)− (n+ 1) lnu) = 1.

Then v(u, z), u−(z) < u < u+(z), is the upper part of the boundary of
Az while the lower one is symmetric with respect to the axis v = 0 and,
therefore, is of the form −v(u, z), u−(z) < u < u+(z).

In order to get the proper level z one has to solve the equation
u+(z)�

u−(z)

v(u,z)�

0

q(u, v) dv du =
α

2
.

Denote by zα the root of this equation which is obviously unique.
Set u± = u±(zα). Then

Azα = {(u, v) : u− ≤ u ≤ u+, |v| ≤ v(u, zα)}
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Table 3. Normal distribution. The values of y±(p),
p = 0.500(0.025)0.900(0.005)0.995 for the sample size n = 10, 20, 30

and the confidence level α = 0.95

p
n = 10 n = 20 n = 30

y− y+ y− y+ y− y+

0.500 −0.3099 0.3099 −0.1367 0.1367 −0.0877 0.0877
0.525 −0.2837 0.3367 −0.1208 0.1529 −0.0753 0.1003
0.550 −0.2580 0.3641 −0.1051 0.1693 −0.0621 0.1131
0.575 −0.2326 0.3922 −0.0895 0.1862 −0.0508 0.1261
0.600 −0.2076 0.4212 −0.0740 0.2035 −0.0386 0.1395
0.625 −0.1827 0.4513 −0.0586 0.2214 −0.0264 0.1533
0.650 −0.1580 0.4825 −0.0431 0.2399 −0.0141 0.1675
0.675 −0.1333 0.5151 −0.0274 0.2591 −0.0017 0.1823
0.700 −0.1085 0.5492 −0.0117 0.2792 0.0109 0.1977
0.725 −0.0836 0.5853 0.0044 0.3003 0.0238 0.2138
0.750 −0.0582 0.6235 0.0209 0.3227 0.0371 0.2309
0.775 −0.0324 0.6644 0.0379 0.3466 0.0509 0.2491
0.800 −0.0057 0.7087 0.0557 0.3723 0.0653 0.2687
0.825 0.0220 0.7571 0.0744 0.4003 0.0806 0.2901
0.850 0.0513 0.8109 0.0945 0.4314 0.0971 0.3137
0.875 0.0828 0.8719 0.1164 0.4666 0.1152 0.3403
0.900 0.1177 0.9431 0.1411 0.5075 0.1357 0.3713
0.905 0.1252 0.9590 0.1467 0.5167 0.1402 0.3782
0.910 0.1330 0.9756 0.1520 0.5262 0.1448 0.3854
0.915 0.1410 0.9929 0.1578 0.5361 0.1497 0.3929
0.920 0.1493 1.0110 0.1638 0.5465 0.1547 0.4008
0.925 0.1579 1.0301 0.1701 0.5574 0.1599 0.4090
0.930 0.1669 1.0503 0.1766 0.5690 0.1654 0.4177
0.935 0.1763 1.0716 0.1835 0.5813 0.1712 0.4269
0.940 0.1862 1.0944 0.1908 0.5942 0.1774 0.4367
0.945 0.1967 1.1187 0.1985 0.6081 0.1839 0.4472
0.950 0.2078 1.1450 0.2068 0.6230 0.1908 0.4585
0.955 0.2197 1.1735 0.2157 0.6391 0.1984 0.4708
0.960 0.2327 1.2048 0.2254 0.6572 0.2066 0.4843
0.965 0.2468 1.2397 0.2360 0.6770 0.2156 0.4992
0.970 0.2626 1.2790 0.2479 0.6994 0.2257 0.5160
0.975 0.2804 1.3244 0.2615 0.7252 0.2372 0.5354
0.980 0.3013 1.3784 0.2775 0.7559 0.2509 0.5585
0.985 0.3269 1.4457 0.2971 0.7941 0.2676 0.5872
0.990 0.3606 1.5366 0.3233 0.8456 0.2900 0.6259
0.995 0.4134 1.6828 0.3646 0.9284 0.3255 0.6880

and, therefore, (5) takes the form

B(x) =
{

(θ1, θ2) :
(

θ1

s
√
n
,
θ2 − x
s
√
n

)
∈ Azα

}

or

B(x) =
{

(θ1, θ2) : u− <
θ1

s
√
n
< u+,

∣∣∣∣
θ2 − x
s
√
n

∣∣∣∣ < v

(
θ1

s
√
n
, zα

)}
.
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Table 4. Normal distribution. The values of y±(p),
p = 0.500(0.025)0.900(0.005)0.995 for the sample size
n = 10, 20, 30 and the confidence level α = 0.99

p
n = 10 n = 20 n = 30
y− y+ y− y+ y− y+

0.500 −0.4252 0.4252 −0.1777 0.1777 −0.1120 0.1120
0.525 −0.3939 0.4573 −0.1604 0.1953 −0.0989 0.1253
0.550 −0.3633 0.4902 −0.1433 0.2134 −0.0859 0.1389
0.575 −0.3332 0.5241 −0.1265 0.2319 −0.0731 0.1528
0.600 −0.3036 0.5592 −0.1098 0.2509 −0.0604 0.1671
0.625 −0.2744 0.5956 −0.0933 0.2706 −0.0476 0.1818
0.650 −0.2454 0.6334 −0.0767 0.2911 −0.0349 0.1970
0.675 −0.2167 0.6730 −0.0601 0.3123 −0.0220 0.2129
0.700 −0.1880 0.7146 −0.0434 0.3347 −0.0091 0.2294
0.725 −0.1593 0.7586 −0.0265 0.3581 0.0042 0.2469
0.750 −0.1305 0.8053 −0.0093 0.3831 0.0177 0.2653
0.775 −0.1013 0.8554 0.0083 0.4097 0.0317 0.2850
0.800 −0.0715 0.9096 0.0266 0.4385 0.0463 0.3062
0.825 −0.0408 0.9690 0.0458 0.4699 0.0617 0.3294
0.850 −0.0089 1.0351 0.0662 0.5047 0.0782 0.3550
0.875 0.0250 1.1102 0.0883 0.5442 0.0961 0.3840
0.900 0.0619 1.1980 0.1130 0.5903 0.1165 0.4178
0.905 0.0698 1.2176 0.1184 0.6006 0.1209 0.4253
0.910 0.0779 1.2380 0.1239 0.6113 0.1255 0.4331
0.915 0.0862 1.2594 0.1296 0.6225 0.1302 0.4413
0.920 0.0948 1.2818 0.1355 0.6342 0.1351 0.4499
0.925 0.1037 1.3054 0.1417 0.6465 0.1403 0.4589
0.930 0.1130 1.3303 0.1482 0.6595 0.1457 0.4684
0.935 0.1226 1.3566 0.1550 0.6733 0.1513 0.4785
0.940 0.1327 1.3848 0.1621 0.6880 0.1573 0.4892
0.945 0.1433 1.4149 0.1697 0.7037 0.1637 0.5007
0.950 0.1546 1.4473 0.1778 0.7206 0.1704 0.5131
0.955 0.1666 1.4827 0.1864 0.7390 0.1778 0.5265
0.960 0.1795 1.5214 0.1959 0.7592 0.1857 0.5412
0.965 0.1936 1.5645 0.2062 0.7816 0.1944 0.5576
0.970 0.2092 1.6132 0.2177 0.8069 0.2042 0.5760
0.975 0.2268 1.6695 0.2309 0.8361 0.2154 0.5973
0.980 0.2473 1.7364 0.2463 0.8709 0.2285 0.6226
0.985 0.2721 1.8199 0.2652 0.9141 0.2447 0.6541
0.990 0.3048 1.9328 0.2902 0.9726 0.2662 0.6966
0.995 0.3553 2.1144 0.3296 1.0665 0.3001 0.7649

Numerical results related to the calculation of zα and u± are given in
Tables 1 and 2.

It should be noted that similar computations were first implemented
in Chmielecka (1996). However, the results presented therein proved to be
erroneous.
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For any p ∈ (0, 1) the point θ+(p) of maximum of the linear function
θ1u(p) + θ2 lies on the upper part of the boundary of Azα while that of
minimum, θ−(p), is on the lower part. Furthermore, ∂Azα contains no other
points.

Let u = a±(p) be the values determined by the equations

∂v(u, z)
∂u

= ∓u(p) = Φ−1(p)

where Φ(u) is the distribution function of the standard normal law. Then
in (12),

θ±2 (p) = v(a±(p), zα), θ±1 (p) = a±(p),

and from (12) and (13) it follows that

(18) y±(p) = a±(p)u(p) + v(a±(p), zα).

In accordance with (14) and (11) we obtain the upper and lower functions
that determine B̂,
(19) x±(p) = y±(p)

√
n s+ x.

The numerical values of y±(p) for n = 10, 20, 30 are given in Tables 3 and 4.
Since u(p) strictly increases and u− = u(0) = −∞, u+ = u(1) = ∞

the events (15) and (16) are equivalent. Thus, in the case of the normal
scale-location family (11), (18) and (19) determine the strong confidence
region of level α. Its boundary can be evaluated with any given accuracy.

5. The case of the exponential family. Assume that the standard
density in (1) is of the form

p(u) = e−u, u > 0.

As noted in Section 2, we choose

t1(x) = 2n(x− x(1)) and t2(x) = x(1)

where x(1) is as in (8). It is well known that the statistic (t1(x), t2(x)) is
sufficient (see e.g. Ex. 2.3 in Zacks (1971)). Obviously, both (6) and (7) are
satisfied. So, we may apply the formulae derived in Section 2.

From the cited Ex. 2.3 in Zacks (1971) it follows that t1(x) has the
χ2-distribution with 2(n− 1) degrees of freedom while nt2(x) has the stan-
dard exponential distribution, that is, the densities of t1(x) and t2(x) are,
respectively,

q1(u) =
1

2n−1Γ (n− 1)
un−2e−u/2, u > 0, and q2(v) = ne−nv, v ≥ 0.

Hence, the joint density of the statistic (T1(x), T2(x)) given by (4) has the
form

q(u, v) = cn exp
(
−1 + 2nv

2u
− (n+ 1) lnu

)
, u > 0, v ≥ 0,
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Table 5. Exponential distribution. The values
of zα, u− and u+ for α= 0.95, n= 3(1)10(2)40

n zα u− u+

3 0.03520 0.02905 2.01952
4 0.31101 0.02844 0.85116
5 1.24702 0.02705 0.49832
6 3.41478 0.02551 0.34006
7 7.57448 0.02404 0.25272
8 14.52606 0.02268 0.19868
9 25.13685 0.02143 0.16242

10 40.68355 0.02031 0.13644
12 90.09095 0.01837 0.10237
14 173.00608 0.01678 0.08113
16 300.76911 0.01544 0.06677
18 484.26108 0.01431 0.05650
20 736.55739 0.01334 0.04881
22 1069.08859 0.01249 0.04288
24 1504.66121 0.01176 0.03814
26 2046.39568 0.01110 0.03431
28 2723.42942 0.01052 0.03114
30 3543.05390 0.01000 0.02847
32 4517.64660 0.00953 0.02621
34 5679.65144 0.00911 0.02426
36 7025.01376 0.00872 0.02258
38 8625.91237 0.00836 0.02109
40 10408.27405 0.00804 0.01979

where
cn =

n

2n−1Γ (n− 1)
.

Furthermore, the function q(u, v) takes the maximum value

q0 = cn exp((n+ 1)(ln(2n+ 2)− 1))

at the point (1/(2(n+ 1)), 0). For z > 0, u− ≤ u ≤ u+ consider

v(u, z) =
1

2n
(2u(ln(cn/z)− (n+ 1) lnu)− 1)

where u± = u±(z) are the roots of the equation q(u, 0) = z.
It is easily seen that ∂A−z = Γ1 ∪ Γ2 where

Γ1 = {(u, v) : u− ≤ u ≤ u+, v = 0},
Γ2 = {(u, v) : u− ≤ u ≤ u+, v = −v(u, z)}.

Solving the equation
u+(z)�

u−(z)

v(u,z)�

0

q(u, v) dv du = α

with respect to z = zα leads, in view of (5), to the confidence region
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Table 6. Exponential distribution. The values
of zα, u− and u+ for α= 0.99, n= 3(1)10(2)40

n zα u− u+

3 0.001287 0.02337 4.78584
4 0.018634 0.02339 1.57759
5 0.097056 0.02261 0.81371
6 0.309391 0.02158 0.51460
7 0.741417 0.02049 0.36454
8 1.556363 0.01950 0.27525
9 2.869955 0.01856 0.21833

10 4.760841 0.01767 0.17966
12 11.330457 0.01615 0.13007
14 22.940032 0.01486 0.10047
16 40.665211 0.01376 0.08124
18 67.517169 0.01282 0.06769
20 104.739811 0.01200 0.05777
22 156.105856 0.01130 0.05019
24 218.625988 0.01066 0.04433
26 306.959352 0.01011 0.03952
28 409.621498 0.00960 0.03565
30 536.398599 0.00915 0.03242
32 690.934186 0.00874 0.02969
34 877.166245 0.00837 0.02735
36 1099.334214 0.00804 0.02533
38 1329.557921 0.00772 0.02361
40 1631.147426 0.00743 0.02206

B(x) =
{

(θ1, θ2) : u−(zα) ≤ θ1

2n(x− x(1))
≤ u+(zα),

0 ≤ x(1) − θ2

2n(x− x(1))
≤ v
(

θ1

2n(x− x(1))
, zα

)}
.

The numerical values of zα, u± = u±(zα) are given in Tables 5 and 6.
It is easily seen that Az is convex. Since u(p) = − ln(1− p), 0 < p < 1,

we have u− = u(0) = 0, u+ = u(1) = ∞, that is, the events (15) and (16)
are not equivalent. This means that the confidence region built on the basis
of (14) is not strong. Since both the components of the vector (− ln(1−p), 1)
are positive the maximal value of θ1u(p) + θ2 over A−zα is

y+(p) = u+(zα)(− ln(1− p))
for all p ∈ (0, 1). The minimal value, as in the case of the normal family, is

y−(p) = a−(p)(− ln(1− p))− v(a−(p), zα)

where a−(p) is the root of the equation
∂v(u, zα)

∂u
= − ln(1− p).



138 A. Czarnowska and A. V. Nagaev

Table 7. Exponential distribution. The values of y±(p),
p = 0.0(0.025)0.975 for the sample size n = 10, 20, 30 and the confidence

level α = 0.95

p
n = 10 n = 20 n = 30

y− y+ y− y+ y− y+

0.000 −0.02704 0.00000 −0.00571 0.00000 −0.00241 0.00000
0.025 −0.00253 0.00345 −0.00498 0.00124 −0.00194 0.00072
0.050 −0.02353 0.00700 −0.00425 0.00250 −0.00148 0.00146
0.075 −0.02177 0.01064 −0.00351 0.00381 −0.00102 0.00222
0.100 −0.02000 0.01438 −0.00278 0.00514 −0.00056 0.00300
0.125 −0.01823 0.01822 −0.00204 0.00652 −0.00009 0.00380
0.150 −0.01646 0.02217 −0.00131 0.00793 0.00037 0.00463
0.175 −0.01468 0.02625 −0.00057 0.00939 0.00083 0.00548
0.200 −0.01289 0.03045 0.00017 0.01089 0.00130 0.00635
0.225 −0.01111 0.03478 0.00091 0.01244 0.00176 0.00726
0.250 −0.00931 0.03925 0.00165 0.01404 0.00223 0.00819
0.275 −0.00751 0.04388 0.00239 0.01570 0.00270 0.00916
0.300 −0.00570 0.04866 0.00314 0.01741 0.00316 0.01016
0.325 −0.00389 0.05363 0.00388 0.01919 0.00363 0.01119
0.350 −0.00208 0.05877 0.00463 0.02103 0.00410 0.01227
0.375 −0.00025 0.06412 0.00537 0.02294 0.00456 0.01338
0.400 0.00158 0.06970 0.00612 0.02494 0.00503 0.01454
0.425 0.00342 0.07550 0.00687 0.02701 0.00550 0.01576
0.450 0.00526 0.08157 0.00762 0.02918 0.00597 0.01702
0.475 0.00711 0.08791 0.00838 0.03145 0.00644 0.01835
0.500 0.00897 0.09457 0.00913 0.03384 0.00693 0.01974
0.525 0.01084 0.10157 0.00989 0.03634 0.00745 0.02120
0.550 0.01272 0.10895 0.01065 0.03898 0.00799 0.02274
0.575 0.01461 0.11674 0.01141 0.04177 0.00856 0.02436
0.600 0.01651 0.12502 0.01222 0.04473 0.00916 0.02609
0.625 0.01842 0.13382 0.01308 0.04788 0.00981 0.02793
0.650 0.02034 0.14323 0.01400 0.05125 0.01050 0.02989
0.675 0.02227 0.15334 0.01499 0.05486 0.01124 0.03200
0.700 0.02422 0.16427 0.01606 0.05877 0.01204 0.03428
0.725 0.02618 0.17614 0.01722 0.06302 0.01291 0.03676
0.750 0.02816 0.18914 0.01849 0.06767 0.01387 0.03947
0.775 0.03030 0.20352 0.01989 0.07281 0.01492 0.04247
0.800 0.03269 0.21959 0.02147 0.07856 0.01608 0.04583
0.825 0.03540 0.23780 0.02325 0.08508 0.01743 0.04963
0.850 0.03853 0.25884 0.02530 0.09261 0.01897 0.05402
0.875 0.04224 0.28371 0.02773 0.10151 0.02080 0.05921
0.900 0.04677 0.31416 0.03071 0.11240 0.02303 0.06556
0.925 0.05261 0.35341 0.03455 0.12644 0.02591 0.07375
0.950 0.06085 0.40873 0.03995 0.14623 0.02996 0.08530
0.975 0.07493 0.50330 0.04920 0.18007 0.03689 0.10503

The numerical values of y±(p) are given in Tables 7 and 8.
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Table 8. Exponential distribution. The values of y±(p),
p = 0.0(0.025)0.975 for the sample size n = 10, 20, 30 and the confidence

level α = 0.99

p
n = 10 n = 20 n = 30

y− y+ y− y+ y− y+

0.000 −.04363 0.00000 −.00867 0.00000 −0.00360 0.00000
0.025 −.04150 0.00455 −.00790 0.00146 −0.00311 0.00082
0.050 −.03937 0.00922 −.00709 0.00296 −0.00262 0.00166
0.075 −.03722 0.01401 −.00629 0.00450 −0.00213 0.00253
0.100 −.03508 0.01893 −.00548 0.00609 −0.00164 0.00342
0.125 −.03293 0.02399 −.00467 0.00771 −0.00115 0.00433
0.150 −.03077 0.02920 −.00387 0.00939 −0.00065 0.00527
0.175 −.02861 0.03456 −.00306 0.01111 −0.00016 0.00624
0.200 −.02644 0.04009 −.00225 0.01289 0.00033 0.00724
0.225 −.02427 0.04579 −.00144 0.01473 0.00083 0.00826
0.250 −.02208 0.05168 −.00062 0.01662 0.00132 0.00933
0.275 −.01990 0.05777 .00019 0.01858 0.00182 0.01043
0.300 −.01770 0.06408 .00101 0.02061 0.00231 0.01156
0.325 −.01550 0.07061 .00182 0.02271 0.00281 0.01274
0.350 −.01329 0.07739 .00264 0.02489 0.00331 0.01397
0.375 −.01107 0.08444 .00346 0.02715 0.00380 0.01524
0.400 −.00885 0.09177 .00428 0.02951 0.00430 0.01656
0.425 −.00662 0.09942 .00511 0.03197 0.00480 0.01794
0.450 −.00437 0.10740 .00593 0.03454 0.00530 0.01938
0.475 −.00212 0.11576 .00676 0.03728 0.00580 0.02089
0.500 .00014 0.12453 .00759 0.04005 0.00630 0.02247
0.525 .00241 0.13374 .00842 0.04301 0.00680 0.02414
0.550 .00469 0.14346 .00925 0.04613 0.00731 0.02589
0.575 .00699 0.15372 .01008 0.04944 0.00783 0.02774
0.600 .00929 0.16462 .01092 0.05294 0.00839 0.02971
0.625 .01161 0.17621 .01176 0.05667 0.00898 0.03180
0.650 .01395 0.18861 .01260 0.06065 0.00961 0.03404
0.675 .01630 0.20192 .01349 0.06494 0.01029 0.03644
0.700 .01866 0.21630 .01445 0.06956 0.01102 0.03904
0.725 .02105 0.23193 .01550 0.07459 0.01182 0.04186
0.750 .02345 0.24905 .01664 0.08009 0.01269 0.04495
0.775 .02587 0.26798 .01791 0.08618 0.01365 0.04836
0.800 .02783 0.28914 .01932 0.09299 0.01473 0.05218
0.825 .03080 0.31313 .02092 0.10070 0.01595 0.05651
0.850 .03353 0.34083 .02277 0.10961 0.01736 0.06151
0.875 .03675 0.37358 .02496 0.12014 0.01903 0.06743
0.900 .04069 0.41367 .02764 0.13303 0.02107 0.07466
0.925 .04578 0.46535 .03110 0.14965 0.02371 0.08398
0.950 .05294 0.53820 .03596 0.17308 0.02742 0.09713
0.975 .06519 0.66273 .04428 0.21312 0.03376 0.11960

It remains to find in (17) the shape of Ĉα and, therefore, that of B∗∗(x).
Let

u0 = u0(z) = arg max
u−(z)≤u≤u+(z)

v(u, z)
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and v0 = v0(z) = v(u0(z), z). It is readily seen that

∂Ĉα = Γ1 ∪ Γ ′2 ∪ Γ3 ∪ Γ4

where
Γ1 = {(u, v) : u− ≤ u ≤ u+, v = 0},
Γ ′2 = {(u, v) : u− ≤ u ≤ u0, v = −v(u, z)},
Γ3 = {(u, v) : u0 ≤ u ≤ u+, v = −v0},
Γ4 = {(u, v) : u = u+, −v0 ≤ v ≤ 0}.

Obviously
Pθ(B̂) =

�

Ĉα

q(u, v) du dv.

For n = 10, 20, 30 the numerical values of Pθ(B̂) are respectively 0.9645 . . . ,
0.9652 . . . , 0.9641 . . .

6. The case of the uniform family. Consider the uniform scale-
location family where the standard density is chosen as

p(u) =
{

1 if |u| ≤ 1/2,
0 otherwise.

As noted in Section 2 here we choose

t1(x) = x(n) − x(1), t2(x) = x(n) + x(1)

where x(1) and x(n) are as in (8).
It is well known that the statistic (t1(x), t2(x)) is sufficient (see e.g.

Ex. 2.5 in Zacks (1971)). Obviously, both (6) and (7) are satisfied and,
therefore, we may apply the formulae derived in Section 2.

It is well known that the joint density of (x(1), x(n)) is

r(x, y) = n(n− 1)(y − x)n−2, −1/2 < x < y < 1/2.

Therefore, that of (t1(x), t2(x)) is

r̂(t1, t2) = 1
2n(n− 1)tn−2

1 , t1 > 0, t1 + |t2| < 1.

It is easily seen that the joint density of (T1(x), T2(x)) given by (4) is

q(u, v) = 1
2n(n− 1)u−n−1, u > 1, |v| < u− 1.

Notice that here Az = A−z is the triangle (cf. Podraza (1996))

1 < u < u(z) =
(
n(n− 1)

2z

)1/(n+1)

, |v| < u− 1.

In order to calculate the required level zα one should solve the equation

n(n− 1)
u(z)�

1

u−n−1(u− 1) du = α
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or
1− nu(z)−n+1 + (n− 1)u(z)−n = α.

Of course, the root uα of this equation can be easily computed.
Although the quantile function is not of great interest we give some

remarks on it just for completeness.
Obviously, u(p) = p − 1/2, u− = u(0) = −1/2, u+ = u(1) = 1/2.

Therefore, the confidence region (14) for the quantile function is not strong.
In accordance with (13) we obtain

y+(p) = (p+ 1/2)uα − 1, y−(p) = (p− 3/2)uα + 1.

In order to build the upper and lower functions in (11) it remains to take
advantage of (14). The Ĉα in (17) takes the form

Ĉα = Azα ∪
{

(u, v) : uα < u < 3uα − 2, |v| < − 1
2u+ 3

2uα − 1
}
.

Obviously, P (Ĉα) > α. All the computations here are also feasible.

7. Concluding remarks. As noted in Section 2, λ2-optimality is closely
related to specific properties of the statistics t1(x) and t2(x) such as invari-
ance and equivariance. Since the class of vector statistics (t1(x), t2(x)) which
satisfy (6) and (7) is rather rich the question arises how to choose them.

In the examples of the normal, exponential or uniform family there ex-
ist sufficient statistics with the required properties (6) and (7). Moreover,
explicit formulae for the joint density of t1(x) and t2(x) are known and,
therefore, the boundary of the optimal region Azα can be evaluated with
any given accuracy. Intuitively, we expect that the sufficiency leads to the
best possible confidence regions.

According to (1) a scale-location family is determined by a standard
density p(u). Consider the class T of vector statistics t(x) = (t1(x), t2(x))
satisfying (6) and (7). Assume also that t(x) satisfies the conditions of
Proposition 1. Since the optimal region depends on t(x) we denote it by
Azα(t).

It is natural to call a statistic t∗(x) optimal for the scale-location fam-
ily (1) if

t∗ ∈ T ∗ = arg min
t∈T

λ2(Azα(t)).

Our conjecture is that, say, in the case of the normal family,

(
√
n s, x) ∈ T ∗.

So far it is not quite clear how to verify this conjecture.
Another problem of great interest is the stability of statistical inference

about the scale-location parameter with respect to possible uncertainty of
the model choice. Assume that a sample x is consistent with the class of



142 A. Czarnowska and A. V. Nagaev

scale-location families determined by a class P of standard densities. Assume
also that T and P are such that the conditions of Proposition 1 are satisfied
for any pair (t, p) ∈ T × P. Denote by Azα(t, p) the λ2-optimal region that
corresponds to (t, p).

Following the minimax principle we should try to find a statistic that
belongs to arg mint∈T maxp∈P λ2(Azα(t, p)). The theoretical solution of this
problem seems to be extremely difficult. However, the Monte Carlo method
can be applied at least in the case where T and P contain not too many
elements. Furthermore, one should remember that as a rule the joint density
of t1(x) and t2(x) is unknown. So, the boundary of Azα(t, p) has to be
estimated by the sample. In principle, this can be realized by means of the
procedures suggested, say, in Tsybakov (1997) or Polonik (1997).
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