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ESTIMATION OF THE GENERALIZED VARIANCE
IN A BIVARIATE NORMAL DISTRIBUTION

FROM AN INCOMPLETE SAMPLE

Abstract. The aim of the paper is estimation of the generalized variance
of a bivariate normal distribution in the case of a sample with missing ob-
servations. The estimator based on all available observations is compared
with the estimator based only on complete pairs of observations.

1. Introduction. Let a random variable (y, z) have normal distribution

with mean µ = [µ1, µ2]′ and variance-covariance matrix Σ =
[
σ2
y σyz
σyz σ2

z

]
:

(1) (y, z) ∼ N2

([
µ1

µ2

]
,Σ
)
.

Let [y, z] be a simple random sample of size k from the distribution (1).
We are interested in estimation of the generalized variance, i.e. the deter-
minant |Σ|. The generalized variance is used in various statistical analyses
concerning the covariance structure of the model.

The sample generalized variance

(2) |S| =

∣∣∣∣∣∣∣∣∣∣∣
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(yi − y)2 1
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k∑
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1

k − 1
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(zi − z)2
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,

where y = k−1∑k
i=1 yi, z = k−1∑k

i=1 zi, is very well investigated ([1], [7],
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[5], [3], [4]). It is known for example that

|(k − 1)S|
|Σ| = χ2

k−1 · χ2
k−2,

where χ2
k−1 and χ2

k−2 are independently χ2 distributed with k−1 and k−2
degrees of freedom, respectively. Thus

(3)
k − 1
k − 2

|S| = 1
(k − 1)(k − 2)

∣∣∣∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣∣∣∣

is an unbiased estimator of |Σ| and

(4) Var
(
k − 1
k − 2

|S|
)

=
2|Σ|2(2k − 1)
(k − 1)(k − 2)

.

2. Estimation of |Σ| in the case of missing observations. Let us
consider an incomplete sample

[
y1 . . . yk yk+1 . . . yk+p ∗ . . . ∗
z1 . . . zk ∗ . . . ∗ zk+p+1 . . . zk+p+s

]′
,

where ∗ denotes an observation missing completely at random ([2], [6]). So,
we have k complete pairs of observations, p additional observations of the y
variable and s additional observations of the z variable. To simplify let us
write the sample in the following form:

(5)
y0 z0

y1 ∗
∗ z2

where y0 = [y1, . . . ,yk]′, z0 = [z1, . . . , zk]′, y1 = [yk+1, . . . ,yk+p]′, z2 =
[zk+p+1, . . . , zk+p+s]′. Let us set

y =
[

y0

y1

]
, z =

[
z0

z2

]
.

The question is: how should we estimate |Σ| using the additional infor-
mation contained in the vectors y1 and z2 and is it worth doing? Perhaps
the estimator based on complete pairs [y0, z0] (complete-case estimator) is
better?

As an alternative to the complete-case estimator we consider the avai-
lable-case estimator which uses all the available values to estimate parame-
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ters in model (1). To estimate |Σ| we use the following sums:

(6)
k+p∑

i=1

(yi − y)2,
k∑

i=1

(zi − z)2 +
k+p+s∑

i=k+p+1

(zi − z)2,
k∑

i=1

(yi − y)(zi − z)

where y and z are the arithmetic means of elements of y and z, respectively.
Each of these sums, multiplied by a suitable constant, is a better unbiased
estimator of σ2

y , σ2
z , σyz than the complete-case estimators

1
k − 1

k∑

i=1

(yi − y0)2,
1

k − 1

k∑

i=1

(zi − z0)2,
1

k − 1

k∑

i=1

(yi − y0)(zi − z0),

where y0 and z0 are the means of y0 and z0.
Let us consider the following estimate of |Σ|:

E = a ·
k+p∑

i=1

(yi − y)2 ·
[ k∑

i=1

(zi − z)2 +
k+p+s∑

i=k+p+1

(zi − z)2
]

(7)

− b ·
( k∑

i=1

(yi − y)(zi − z)
)2

where a and b are constants (depending on k, p, s) giving unbiasedness of E.
To determine a and b and then to calculate the variance of E we use the
results of Wilks [8]. He considered the following random variables for the
incomplete sample (5):

ξ0 =
1

k + p

k+p∑

i=1

(yi − y)2, η0 =
1

k + s

( k∑

i=1

(zi − z
)2

+
k+p+s∑

i=k+p+1

(zi − z)2
)
,

ζ0 =
1
k

k∑

i=1

(yi − y)(zi − z),

and found the moment generating function

ϕ(γ, δ, ε) = E(eγξ0+δη0+εζ0),

which can be used for finding joint moments of (ξ0, η0, ζ0):

E(ξh0 η
k
0 ζ
l
0) = M(h, k, l) =

∂h∂k∂l

∂γh∂δk∂εl
ϕ(γ, δ, ε)

∣∣∣∣
γ=δ=ε=0

.

We have used ϕ(γ, δ, ε) to obtain the required moments of sums (6). All
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computations were done by using Maple V. The values of a and b are

a =
2(k − 1) + c+ c2 + (k − 1 + c)2

(k + p− 1)(k + s− 1)[k − 1 + c2 + (k − 1 + c)2]− 2(k − 1 + c)2 ,

b =
(k + p− 1)(k + s− 1) + 2(k − 1 + c)

(k + p− 1)(k + s− 1)[ k − 1 + c2 + (k − 1 + c)2]− 2(k − 1 + c)2 ,

where c = ps
(k+p)(k+s) . When s = 0, a and b have a simpler form:

a =
k + 1

(k − 1)(k2 − k + pk − 2)
, b =

k + p+ 1
(k − 1)(k2 − k + pk − 2)

.

For a complete sample (p = s = 0) we have the known values

a = b =
1

(k − 1)(k − 2)

(see (3)). The variance of E is

Var(E) = a2(k + p)2(k + s)2[M(2, 2, 0)−M(1, 1, 0)2]

+ b2k4[M(0, 0, 4)−M(0, 0, 2)2]

− 2abk2(k + p)(k + s)[M(1, 1, 2)−M(1, 1, 0) ·M(0, 0, 2)].

We do not give here the expressions for the moments M(h, k, l) because they
are long and complicated (especially M(2, 2, 0), M(0, 0, 4), M(1, 1, 2)). We
are interested in comparing the estimator E given by (7) and the estimator
E0 based on complete pairs of observations:

E0 =
1

(k − 1)(k − 2)

[ k∑

i=1

(yi−y0)2 ·
k∑

i=1

(zi−z0)2−
( k∑

i=1

(yi−y0)(zi−z0)
)2]

.

When s = 0 we get a simple equation

(8) Var(E)−Var(E0) =
−2pσ4

yσ
4
z(k + 1)[A%4 +B%2 + C]

(k − 2)(k − 1)(k2 + pk − k − 2)2 ,

where A = 4(k + 1)(k − 2) + 2pk, B = −2(k2 − 4)(k + p + 1) − 4pk, C =
(k − 2)(k2 − 1) + p(k2 − k + 2) and % is the correlation coefficient between
y and z.

Superiority of one estimator over the other depends on %2, k, p, namely
E is better when %2 < f(k, p) and E0 is better when %2 > f(k, p), where
f(k, p) is the smaller root of the quadratic equation Ax2 + Bx + C = 0.
Analysing f(k, p) we can state the following simple corollary:

Corollary 1. If %2 ≤ 0.3 than E is better than E0 for each k > 3 and
for each p > 0. If %2 ≥ 0.5 then E0 is better than E for each k ≥ 3 and for
each p > 0.
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The case s = 0 can be applied to the situation when getting an obser-
vation of one variable (for example z) is much more difficult or expensive
than for the other (y). Suppose we have k complete pairs of observations.
The question is: how large is p0, the number of additional observations of
y that cause at least the same decrease of variance of E as one additional
complete pair? Using Maple V we get the following answer:

Corollary 2. • If |%| ≤ 0.3 and k ≥ 10 then p0 = 3.
• If |%| ≤ 0.5 and k ≥ 10 then p0 = 5.
• If |%| ≤ 0.5 and k ≥ 20 then p0 = 3.

When s > 0 then the difference Var(E)−Var(E0) is not so simple as in
(8) and we do not give here the long expression for that. Let us only state
that Var(E) is symmetric in p and s, that is,

Var(E)(k,p,s) = Var(E)(k,s,p).

In Tables 1, 2, 3 and 4 we give the values of Var(E)/Var(E0) for various
k, p, s and %. The upper value in the tables is for |%| = 0.3, the middle one
for |%| = 0.5 and the lower one for |%| = 0.8.

So the estimator E can be either much better or much worse than E0.
E is not recommended when |%| is greater than 0.5. Unfortunately E has one
disadvantage: theoretically it can have a negative value. We tried to estimate
how often it can happen using Maple V simulation. We generated 1000
samples from a bivariate normal distribution with µ1 = µ2 = 0, σ2

y = σ2
z = 1,

% = 0.5 for different k, p, s. The results of this simulation in Table 5 show
that the probability of getting negative values of E is small.

Table 1. k = 10

p 2 5 10 15
s

0.910 0.824 0.740 0.690
0 0.937 0.875 0.814 0.778

1.392 1.770 2.135 2.348
0.827 0.745 0.666 0.620

2 0.887 0.837 0.787 0.757
1.898 2.377 2.830 3.091

0.669 0.595 0.552
5 0.798 0.759 0.735

2.948 3.488 3.798
0.526 0.486

10 0.731 0.713
4.112 4.472

0.447
15 0.700

4.861

Table 2. k = 20

p 5 10 15 20
s

0.897 0.830 0.782 0.747
0 0.917 0.863 0.825 0.796

1.331 1.552 1.710 1.829
0.800 0.738 0.693 0.660

5 0.853 0.811 0.781 0.759
1.852 2.193 2.434 2.613

0.677 0.634 0.602
10 0.777 0.752 0.734

2.612 2.906 3.125
0.593 0.562

15 0.732 0.717
3.239 3.486

0.532
20 0.704

3.753
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Table 3. k = 50

p 10 20 30 40 50
s

0.916 0.857 0.812 0.778 0.750
0 0.928 0.877 0.838 0.801 0.758

1.216 1.372 1.489 1.580 1.653
0.836 0.779 0.737 0.704 0.677

10 0.868 0.826 0.795 0.770 0.751
1.570 1.821 2.010 2.156 2.273

0.724 0.683 0.651 0.625
20 0.790 0.764 0.743 0.726

2.141 2.380 2.565 2.713
0.643 0.611 0.587

30 0.740 0.722 0.708
2.656 2.870 3.041

0.581 0.556
40 0.706 0.694

3.107 3.296
0.532

50 0.682
3.499

Table 4. k = 100

p 20 40 60 80 100
s

0.917 0.858 0.813 0.779 0.751
0 0.927 0.875 0.836 0.806 0.781

1.198 1.340 1.446 1.530 1.596
0.837 0.780 0.738 0.705 0.678

20 0.866 0.823 0.791 0.766 0.746
1.533 1.772 1.951 2.091 2.202

0.725 0.684 0.652 0.626
40 0.786 0.759 0.737 0.720

2.080 2.311 2.491 2.634
0.643 0.612 0.587

60 0.735 0.716 0.701
2.581 2.790 2.957

0.581 2.557
80 0.700 0.687

3.022 3.208
0.532

100 0.675
3.408

Table 5. The number of negative values of E (per 1000 samples)

k = 10 k = 20 k = 50 k = 100

p = 5 p = 5 p = 10 p = 10 p = 10 p = 10 p = 20 p = 50 p = 100
s = 0 s = 5 s = 0 s = 5 s = 10 s = 10 s = 20 s = 50 s = 100

3 18 10 21 40 0 6 0 0
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