Wiktor Oktaba and Joanna Tarasińska (Lublin)

ESTIMATION OF THE GENERALIZED VARIANCE IN A BIVARIATE NORMAL DISTRIBUTION FROM AN INCOMPLETE SAMPLE

Abstract. The aim of the paper is estimation of the generalized variance of a bivariate normal distribution in the case of a sample with missing observations. The estimator based on all available observations is compared with the estimator based only on complete pairs of observations.

1. Introduction. Let a random variable (y, z) have normal distribution with mean $\boldsymbol{\mu}=\left[\mu_{1}, \mu_{2}\right]^{\prime}$ and variance-covariance matrix $\boldsymbol{\Sigma}=\left[\begin{array}{cc}\sigma_{y}^{2} & \sigma_{y z} \\ \sigma_{y z} & \sigma_{z}^{2}\end{array}\right]$:

$$
(y, z) \sim N_{2}\left(\left[\begin{array}{l}
\mu_{1} \tag{1}\\
\mu_{2}
\end{array}\right], \boldsymbol{\Sigma}\right)
$$

Let $[\mathbf{y}, \mathbf{z}]$ be a simple random sample of size k from the distribution (1). We are interested in estimation of the generalized variance, i.e. the determinant $|\boldsymbol{\Sigma}|$. The generalized variance is used in various statistical analyses concerning the covariance structure of the model.

The sample generalized variance

$$
|\mathbf{S}|=\left|\begin{array}{ll}
\frac{1}{k-1} \sum_{i=1}^{k}\left(y_{i}-\bar{y}\right)^{2} & \frac{1}{k-1} \sum_{i=1}^{k}\left(y_{i}-\bar{y}\right)\left(z_{i}-\bar{z}\right) \tag{2}\\
\frac{1}{k-1} \sum_{i=1}^{k}\left(y_{i}-\bar{y}\right)\left(z_{i}-\bar{z}\right) & \frac{1}{k-1} \sum_{i=1}^{k}\left(z_{i}-\bar{z}\right)^{2}
\end{array}\right|,
$$

where $\bar{y}=k^{-1} \sum_{i=1}^{k} y_{i}, \bar{z}=k^{-1} \sum_{i=1}^{k} z_{i}$, is very well investigated ([1], [7],

[^0][5], [3], [4]). It is known for example that
$$
\frac{|(k-1) \mathbf{S}|}{|\boldsymbol{\Sigma}|}=\chi_{k-1}^{2} \cdot \chi_{k-2}^{2},
$$
where χ_{k-1}^{2} and χ_{k-2}^{2} are independently χ^{2} distributed with $k-1$ and $k-2$ degrees of freedom, respectively. Thus
\[

\frac{k-1}{k-2}|\mathbf{S}|=\frac{1}{(k-1)(k-2)}\left|$$
\begin{array}{ll}
\sum_{i=1}^{k}\left(y_{i}-\bar{y}\right)^{2} & \sum_{i=1}^{k}\left(y_{i}-\bar{y}\right)\left(z_{i}-\bar{z}\right) \tag{3}\\
\sum_{i=1}^{k}\left(y_{i}-\bar{y}\right)\left(z_{i}-\bar{z}\right) & \sum_{i=1}^{k}\left(z_{i}-\bar{z}\right)^{2}
\end{array}
$$\right|
\]

is an unbiased estimator of $|\boldsymbol{\Sigma}|$ and

$$
\begin{equation*}
\operatorname{Var}\left(\frac{k-1}{k-2}|\mathbf{S}|\right)=\frac{2|\boldsymbol{\Sigma}|^{2}(2 k-1)}{(k-1)(k-2)} \tag{4}
\end{equation*}
$$

2. Estimation of $|\Sigma|$ in the case of missing observations. Let us consider an incomplete sample

$$
\left[\begin{array}{ccccccccc}
y_{1} & \ldots & y_{k} & y_{k+1} & \ldots & y_{k+p} & * & \ldots & * \\
z_{1} & \ldots & z_{k} & * & \ldots & * & z_{k+p+1} & \ldots & z_{k+p+s}
\end{array}\right]^{\prime}
$$

where $*$ denotes an observation missing completely at random ([2], [6]). So, we have k complete pairs of observations, p additional observations of the y variable and s additional observations of the z variable. To simplify let us write the sample in the following form:

\mathbf{y}_{0}	\mathbf{z}_{0}
\mathbf{y}_{1}	$*$
$*$	\mathbf{z}_{2}

where $\mathbf{y}_{0}=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{k}\right]^{\prime}, \mathbf{z}_{0}=\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{k}\right]^{\prime}, \mathbf{y}_{1}=\left[\mathbf{y}_{k+1}, \ldots, \mathbf{y}_{k+p}\right]^{\prime}, \mathbf{z}_{2}=$ $\left[\mathbf{z}_{k+p+1}, \ldots, \mathbf{z}_{k+p+s}\right]^{\prime}$. Let us set

$$
\mathbf{y}=\left[\begin{array}{l}
\mathbf{y}_{0} \\
\mathbf{y}_{1}
\end{array}\right], \quad \mathbf{z}=\left[\begin{array}{l}
\mathbf{z}_{0} \\
\mathbf{z}_{2}
\end{array}\right] .
$$

The question is: how should we estimate $|\boldsymbol{\Sigma}|$ using the additional information contained in the vectors \mathbf{y}_{1} and \mathbf{z}_{2} and is it worth doing? Perhaps the estimator based on complete pairs $\left[\mathbf{y}_{0}, \mathbf{z}_{0}\right]$ (complete-case estimator) is better?

As an alternative to the complete-case estimator we consider the avai-lable-case estimator which uses all the available values to estimate parame-
ters in model (1). To estimate $|\boldsymbol{\Sigma}|$ we use the following sums:

$$
\begin{equation*}
\sum_{i=1}^{k+p}\left(y_{i}-\bar{y}\right)^{2}, \quad \sum_{i=1}^{k}\left(z_{i}-\bar{z}\right)^{2}+\sum_{i=k+p+1}^{k+p+s}\left(z_{i}-\bar{z}\right)^{2}, \quad \sum_{i=1}^{k}\left(y_{i}-\bar{y}\right)\left(z_{i}-\bar{z}\right) \tag{6}
\end{equation*}
$$

where \bar{y} and \bar{z} are the arithmetic means of elements of \mathbf{y} and \mathbf{z}, respectively. Each of these sums, multiplied by a suitable constant, is a better unbiased estimator of $\sigma_{y}^{2}, \sigma_{z}^{2}, \sigma_{y z}$ than the complete-case estimators

$$
\frac{1}{k-1} \sum_{i=1}^{k}\left(y_{i}-\bar{y}_{0}\right)^{2}, \quad \frac{1}{k-1} \sum_{i=1}^{k}\left(z_{i}-\bar{z}_{0}\right)^{2}, \quad \frac{1}{k-1} \sum_{i=1}^{k}\left(y_{i}-\bar{y}_{0}\right)\left(z_{i}-\bar{z}_{0}\right)
$$

where \bar{y}_{0} and \bar{z}_{0} are the means of \mathbf{y}_{0} and \mathbf{z}_{0}.
Let us consider the following estimate of $|\boldsymbol{\Sigma}|$:

$$
\begin{align*}
E= & a \cdot \sum_{i=1}^{k+p}\left(y_{i}-\bar{y}\right)^{2} \cdot\left[\sum_{i=1}^{k}\left(z_{i}-\bar{z}\right)^{2}+\sum_{i=k+p+1}^{k+p+s}\left(z_{i}-\bar{z}\right)^{2}\right] \tag{7}\\
& -b \cdot\left(\sum_{i=1}^{k}\left(y_{i}-\bar{y}\right)\left(z_{i}-\bar{z}\right)\right)^{2}
\end{align*}
$$

where a and b are constants (depending on k, p, s) giving unbiasedness of E. To determine a and b and then to calculate the variance of E we use the results of Wilks [8]. He considered the following random variables for the incomplete sample (5):

$$
\begin{gathered}
\xi_{0}=\frac{1}{k+p} \sum_{i=1}^{k+p}\left(y_{i}-\bar{y}\right)^{2}, \quad \eta_{0}=\frac{1}{k+s}\left(\sum_{i=1}^{k}\left(z_{i}-\bar{z}\right)^{2}+\sum_{i=k+p+1}^{k+p+s}\left(z_{i}-\bar{z}\right)^{2}\right) \\
\zeta_{0}=\frac{1}{k} \sum_{i=1}^{k}\left(y_{i}-\bar{y}\right)\left(z_{i}-\bar{z}\right)
\end{gathered}
$$

and found the moment generating function

$$
\varphi(\gamma, \delta, \varepsilon)=E\left(e^{\gamma \xi_{0}+\delta \eta_{0}+\varepsilon \zeta_{0}}\right)
$$

which can be used for finding joint moments of $\left(\xi_{0}, \eta_{0}, \zeta_{0}\right)$:

$$
E\left(\xi_{0}^{h} \eta_{0}^{k} \zeta_{0}^{l}\right)=M(h, k, l)=\left.\frac{\partial^{h} \partial^{k} \partial^{l}}{\partial \gamma^{h} \partial \delta^{k} \partial \varepsilon^{l}} \varphi(\gamma, \delta, \varepsilon)\right|_{\gamma=\delta=\varepsilon=0}
$$

We have used $\varphi(\gamma, \delta, \varepsilon)$ to obtain the required moments of sums (6). All
computations were done by using Maple V. The values of a and b are

$$
\begin{aligned}
& a=\frac{2(k-1)+c+c^{2}+(k-1+c)^{2}}{(k+p-1)(k+s-1)\left[k-1+c^{2}+(k-1+c)^{2}\right]-2(k-1+c)^{2}}, \\
& b=\frac{(k+p-1)(k+s-1)+2(k-1+c)}{(k+p-1)(k+s-1)\left[k-1+c^{2}+(k-1+c)^{2}\right]-2(k-1+c)^{2}},
\end{aligned}
$$

where $c=\frac{p s}{(k+p)(k+s)}$. When $s=0, a$ and b have a simpler form:

$$
a=\frac{k+1}{(k-1)\left(k^{2}-k+p k-2\right)}, \quad b=\frac{k+p+1}{(k-1)\left(k^{2}-k+p k-2\right)} .
$$

For a complete sample ($p=s=0$) we have the known values

$$
a=b=\frac{1}{(k-1)(k-2)}
$$

(see (3)). The variance of E is

$$
\begin{aligned}
\operatorname{Var}(E)= & a^{2}(k+p)^{2}(k+s)^{2}\left[M(2,2,0)-M(1,1,0)^{2}\right] \\
& +b^{2} k^{4}\left[M(0,0,4)-M(0,0,2)^{2}\right] \\
& -2 a b k^{2}(k+p)(k+s)[M(1,1,2)-M(1,1,0) \cdot M(0,0,2)] .
\end{aligned}
$$

We do not give here the expressions for the moments $M(h, k, l)$ because they are long and complicated (especially $M(2,2,0), M(0,0,4), M(1,1,2))$. We are interested in comparing the estimator E given by (7) and the estimator E_{0} based on complete pairs of observations:

$$
E_{0}=\frac{1}{(k-1)(k-2)}\left[\sum_{i=1}^{k}\left(y_{i}-\bar{y}_{0}\right)^{2} \cdot \sum_{i=1}^{k}\left(z_{i}-\bar{z}_{0}\right)^{2}-\left(\sum_{i=1}^{k}\left(y_{i}-\bar{y}_{0}\right)\left(z_{i}-\bar{z}_{0}\right)\right)^{2}\right] .
$$

When $s=0$ we get a simple equation

$$
\begin{equation*}
\operatorname{Var}(E)-\operatorname{Var}\left(E_{0}\right)=\frac{-2 p \sigma_{y}^{4} \sigma_{z}^{4}(k+1)\left[A \varrho^{4}+B \varrho^{2}+C\right]}{(k-2)(k-1)\left(k^{2}+p k-k-2\right)^{2}}, \tag{8}
\end{equation*}
$$

where $A=4(k+1)(k-2)+2 p k, B=-2\left(k^{2}-4\right)(k+p+1)-4 p k, C=$ $(k-2)\left(k^{2}-1\right)+p\left(k^{2}-k+2\right)$ and ϱ is the correlation coefficient between y and z.

Superiority of one estimator over the other depends on ϱ^{2}, k, p, namely E is better when $\varrho^{2}<f(k, p)$ and E_{0} is better when $\varrho^{2}>f(k, p)$, where $f(k, p)$ is the smaller root of the quadratic equation $A x^{2}+B x+C=0$. Analysing $f(k, p)$ we can state the following simple corollary:

Corollary 1. If $\varrho^{2} \leq 0.3$ than E is better than E_{0} for each $k>3$ and for each $p>0$. If $\varrho^{2} \geq 0.5$ then E_{0} is better than E for each $k \geq 3$ and for each $p>0$.

The case $s=0$ can be applied to the situation when getting an observation of one variable (for example z) is much more difficult or expensive than for the other (y). Suppose we have k complete pairs of observations. The question is: how large is p_{0}, the number of additional observations of y that cause at least the same decrease of variance of E as one additional complete pair? Using Maple V we get the following answer:

Corollary 2. - If $|\varrho| \leq 0.3$ and $k \geq 10$ then $p_{0}=3$.

- If $|\varrho| \leq 0.5$ and $k \geq 10$ then $p_{0}=5$.
- If $|\varrho| \leq 0.5$ and $k \geq 20$ then $p_{0}=3$.

When $s>0$ then the difference $\operatorname{Var}(E)-\operatorname{Var}\left(E_{0}\right)$ is not so simple as in (8) and we do not give here the long expression for that. Let us only state that $\operatorname{Var}(E)$ is symmetric in p and s, that is,

$$
\operatorname{Var}(E)_{(k, p, s)}=\operatorname{Var}(E)_{(k, s, p)}
$$

In Tables $1,2,3$ and 4 we give the values of $\operatorname{Var}(E) / \operatorname{Var}\left(E_{0}\right)$ for various k, p, s and ϱ. The upper value in the tables is for $|\varrho|=0.3$, the middle one for $|\varrho|=0.5$ and the lower one for $|\varrho|=0.8$.

So the estimator E can be either much better or much worse than E_{0}. E is not recommended when $|\varrho|$ is greater than 0.5 . Unfortunately E has one disadvantage: theoretically it can have a negative value. We tried to estimate how often it can happen using Maple V simulation. We generated 1000 samples from a bivariate normal distribution with $\mu_{1}=\mu_{2}=0, \sigma_{y}^{2}=\sigma_{z}^{2}=1$, $\varrho=0.5$ for different k, p, s. The results of this simulation in Table 5 show that the probability of getting negative values of E is small.

Table 1. $k=10$

p	2	5	10	15
s				
0	0.910	0.824	0.740	0.690
	0.937	0.875	0.814	0.778
	1.392	1.770	2.135	2.348
2	0.827	0.745	0.666	0.620
	0.887	0.837	0.787	0.757
	1.898	2.377	2.830	3.091
5		0.669	0.595	0.552
		0.798	0.759	0.735
				0.948
			3.488	3.798
15			0.731	0.713
				0.447
				0.700

Table 2. $k=20$

p s	5	10	15	20
0		0.897	0.830	0.782
	0.917	0.863	0.825	0.797
	1.331	1.552	1.710	1.829
5	0.800	0.738	0.693	0.660
	0.853	0.811	0.781	0.759
	1.852	2.193	2.434	2.613
10		0.677	0.634	0.602
		0.777	0.752	0.734
		2.612	2.906	3.125
15			0.593	0.562
			0.732	0.717
				0.532
				0.704
				3.753

Table 3. $k=50$

p	10	20	30	40	50
s					
0	0.916	0.857	0.812	0.778	0.750
	0.928	0.877	0.838	0.801	0.758
	1.216	1.372	1.489	1.580	1.653
10	0.836	0.779	0.737	0.704	0.677
	0.868	0.826	0.795	0.770	0.751
	1.570	1.821	2.010	2.156	2.273
20		0.724	0.683	0.651	0.625
		0.790	0.764	0.743	0.726
		2.141	2.380	2.565	2.713
30			0.643	0.611	0.587
			0.740	0.722	0.708
				0.581	0.556
				0.706	0.694
				3.107	3.296
50					0.532
					0.682
3					

Table 4. $k=100$

p	20	40	60	80	100
s					
0	0.917	0.858	0.813	0.779	0.751
	0.927	0.875	0.836	0.806	0.781
	1.198	1.340	1.446	1.530	1.596
20	0.837	0.780	0.738	0.705	0.678
	0.866	0.823	0.791	0.766	0.746
	1.533	1.772	1.951	2.091	2.202
40		0.725	0.684	0.652	0.626
		0.786	0.759	0.737	0.720
			0.080	2.311	2.491

Table 5. The number of negative values of E (per 1000 samples)

$k=10$				$k=20$		$k=50$	$k=100$	
$p=5$	$p=5$	$p=10$	$p=10$	$p=10$	$p=10$	$p=20$	$p=50$	$p=100$
$s=0$	$s=5$	$s=0$	$s=5$	$s=10$	$s=10$	$s=20$	$s=50$	$s=100$
3	18	10	21	40	0	6	0	0

References

[1] T. W. Anderson, An Introduction to Multivariate Statistical Analysis, Wiley, New York, 1958.
[2] R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data, Wiley, New York, 1987.
[3] W. Oktaba, Densities of determinant ratios, their moments and some simultaneous confidence intervals in the multivariate Gauss-Markoff model, Appl. Math. 40 (1995), 47-54.
[4] —, Asymptotically normal confidence intervals for a determinant in a generalized multivariate Gauss-Markoff model, ibid., 55-59.
[5] C. R. Rao, Linear Statistical Inference and Its Applications, Wiley, New York, 1973.
[6] D. B. Rubin, Inference and missing data, Biometrika 63 (1976), 581-592.
[7] M. S. Srivastava and C. G. Khatri, An Introduction to Multivariate Statistics, NorthHolland, New York, 1979.
[8] S. S. Wilks, Moments and distributions of estimates of population parameters from fragmentary samples, Ann. Math. Statist. 3 (1932), 163-195.

Department of Mathematical Statistics
Institute of Applied Mathematics
Academy of Agriculture
Akademicka 13
20-934 Lublin, Poland
E-mail: johata@ursus.ar.lublin.pl

Received on 28.10.1999;
revised version on 27.9.2000

[^0]: 2000 Mathematics Subject Classification: 62F10, 62H12.
 Key words and phrases: bivariate normal distribution, missing data, generalized variance, complete-case estimator, available-case estimator.

