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ON THE WEIGHTED EUCLIDEAN
MATCHING PROBLEM IN Rd

Abstract. A partitioning algorithm for the Euclidean matching problem
in Rd is introduced and analyzed in a probabilistic model. The algorithm
uses elements from the fixed dissection algorithm of Karp and Steele (1985)
and the Zig-Zag algorithm of Halton and Terada (1982) for the traveling
salesman problem. The algorithm runs in expected time n(logn)p−1 and
approximates the optimal matching in the probabilistic sense.

1. Introduction. Consider for x1, . . . , xn ∈ Rd, d ≥ 1, the weighted
Euclidean matching functional

(1.1) L(x1, . . . , xn) = min
σ∈Sn

m∑

i=1

|xσ(2i−1) − xσ(2i)|

where Sn is the set of all permutations of {1, . . . , n}, m = [n/2], and ‖ ‖ is
the Euclidean norm. L is a quasiadditive functional, i.e. L is subadditive,
continuous, and there exists an approximating superadditive functional L̂
with L̂ ≤ L+1 on [0, 1]d. L̂ is defined by the corresponding boundary match-
ing functional, which allows matching to boundary points (cf. Redmond and
Yukich (1994)). Therefore, the general version of the Beardwood, Halton,
and Hammersly (BHH) Theorem of Redmond and Yukich (1994) implies for
any iid sequence (Xi) on [0, 1]d with PXi = µ that

(1.2) lim
n→∞

L(X1, . . . ,Xn)
n(d−1)/d

= β(L)
�
f(x)(d−1)/d λ\d(dx)

in the sense of complete convergence, where f is the density of the Lebesgue
continuous part of µ.
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In this paper we introduce a partitioning algorithm for the Euclidean
matching problem; we prove that it approximates the optimal solution in
a probabilistic model and operates in expected running time n(logn)p−1.
For the construction of the algorithm we combine elements of the fixed
dissection algorithm of Karp (1977), Karp and Steele (1985) and of the
Zig-Zag algorithm of Halton and Terada (1982) as designed for the traveling
salesman problem (TSP). In the two-dimensional case p = 2 an alternative
partitioning algorithm analogue to Karp’s (1977) bisection algorithm for the
TSP, where cells are constructed with a deterministic number of points, has
been introduced and analyzed in Rüschendorf and Sachs (1998) for general
distributions. Dyer and Frieze (1984) considered a related fixed partitioning
scheme for the uniform matching problem in d = 2. In his recent book on Eu-
clidean optimization problems, Yukich (1998) describes a general approach
to an approximation result of subadditive Euclidean functionals (satisfying
some conditions) by a partitioning heuristic as in Karp’s TSP-heuristic (see
Theorem 5.8). An essential implicit assumption in this approach (relation
(5.15)) which describes the approximation of the heuristic by the indepen-
dent sum of the values of the functional at the subcubes is not, however,
discussed in this book. To establish a related estimate is the main work in
this and also in the previous papers on this subject.

In contrast to the TSP which is an NP-problem the Euclidean matching
can be formulated as a linear programming problem and, therefore, has a
polynomial running time exact solution of order n3. (The fastest known
exact solution for d = 2 is of order O(n2.5(logn)4); see Vaidya (1989).)
But the improvement of the order of the running time to n(logn)d−1 is
considerable and of practical interest also for this combinatorial optimization
problem. We analyze the partitioning algorithm in the random model where
{Xi}1≤i≤n are independent random vectors uniformly distributed on the
unit cube Q = [0, 1]d. In the final remark we extend this analysis to general
distributions on [0, 1]d.

2. Introduction of the partitioning algorithm. For n points x1, . . .
. . . , xn ∈ [0, 1]d let Tn denote an optimal Euclidean matching with value
|Tn| = L(x1, . . . , xn). The construction of the partitioning algorithm In uses
the following steps:

(a) Subdivision of the cube. Q = [0, 1]d is divided into M := md congru-
ent cubes of side length 1/m. Here

(2.1) m = 2
([

1
2

(
2n

log σ(n)

)1/d]
+ 1
)

with an increasing function σ satisfying σ(n)→∞ as n→∞. Then
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(2.2) M = md ∼ 2n
log σ(n)

.

Any side of Q is partitioned into md−1 congruent (d− 1)-dimensional cubes
and generates a cubic lattice with M d-dimensional cubes Cj , 1 ≤ j ≤M .

(b) Ordering of the Cj . The M cubes Cj are ordered by the Zig-Zag
algorithm of Halton and Terada (1982)—in a time of order M resulting in
a sequence C1 . . . CM (after relabeling of the cells). This ordering is estab-
lished as follows: For each lattice vector a = (a1, . . . , ad) with ai ∈ L :=
{0, 1, . . . ,m− 1} define the cell

(2.3) C(a) :=
{
x ∈ [0, 1]d :

ai
m
≤ xi <

ai + 1
m

, 1 ≤ i ≤ d
}
.

This defines a bijection of the M lattice vectors a to the cells Ci, 1 ≤ i ≤M .
So an ordering of the lattice vectors a induces an ordering of the cells Ci.
Define

ri = ri(a) = (−1)1+a1+...+ai−1 , 2 ≤ i ≤ d.
For each lattice vector a there exists at most one t such that

(2.4) ai + ri 6∈ L for i = t+ 1, . . . , d, at + rt ∈ L and t ≥ 3.

If a t with (2.4) exists, then define the successor of a as a′ = a + rtet where
a′i = ai, i 6= t, and a′t = at+rt and et is the unit vector in the tth coordinate
direction.

If no t with (2.4) exists then define the successor a′ of a by:

(2.5) a′=





a− e1 if (a1 = 1, a2 = 0) or (a1 > 1, a2 even),
a + e1 if (a1 = 0, a2 = m− 1) or (0 < a1 < m− 1, a2 odd),
a− e2 if (a1 = 1, a2 6= 0 even) or (a1 = m− 1, a2 odd),
a + e2 if (a1 = 0, a2 < m− 1).

Halton and Terada (1982) prove that this definition generates a tour through
the set of lattice vectors a in Ld.

Fig. 1. Zig-Zag tour in d = 2, m = 4
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(c) Optimal matching within Cj . In the first step an optimal matching is
constructed in C1. If the number of points in C1 is odd then the nonmatched
point is matched with any point in C2. Then the remaining points in C2 are
optimally matched. The next cell is C3 and the ordering of the cells by the
Zig-Zag algorithm is followed also when no points in a cell Ci are present
until finally an optimal matching is generated in CM .

Let In denote the matching generated by this partitioning algorithm and
let `(In) denote the value of this matching which consists of the sum of the
lengths of the optimal matchings within Ci and additionally the sum of the
lengths of connections of possibly unmatched points between neighbouring
cells.

Fig. 2. ×—× and ×- - -× describe Tn; ×—× and ×-·-·-× describe In

Note that two neighbouring blocks have d − 1 edges of length 1/m and
one edge of length 2/m. The diameter is

(2.6)
1
m

((d− 1) + 22)1/2 =
1
m

√
d+ 3.

Therefore, these connections contribute at most M(1/m)
√
d+ 3 to the value

of the matching In. If a cell is empty then the diagonal length is contained
in the bound above.

3. Running time of the partitioning algorithm. The running time
of the partitioning algorithm is determined by two components. Firstly, the
running time of the Zig-Zag algorithm to produce the sequential order of
the cubes Cj . By Halton and Terada (1982) this is of order

(3.1) O(M) = O

(
n

log σ(n)

)
.

In each cell Ci an optimal matching is produced. We assume that we
can solve a Euclidean matching problem with k points in time f(k) :=
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Dkp with constants p, D. This is fulfilled for p = 3 by Papadimitriou and
Steiglitz (1982, Theorem 11.3, Problem 14). Improvements of this order to
O(n2.5(logn)4) are given in Vaidya (1989) to some more general class of
geometric algorithms in dimension two. By the assumption that X1, . . . ,Xn

are independent, uniformly distributed on [0, 1]d, the numbers ni of points
in Ci are binomially distributed random variables:

P (ni = k) =
(
n

k

)(
1
md

)k(
1− 1

md

)n−k
.

With the bound f(k) = Dkp for the optimal matching of k points we obtain

(3.2) Ef(ki) ∼ Dnp
(

1
md

)p
.

The optimal matching of the M = md cubes therefore needs the expected
running time

md∑

i=1

Ef(ki) ∼ Dn
(
n

md

)p−1

.

Choosing σ(n) = exp(2 logn) we obtain

(3.3)
∑

Ef(ki) = O(n(logn)p−1).

The variance of f(ki) is of order

(3.4) Var f(ki) ∼ D2n2p
(

1
md

)2p

,

which implies by McDiarmid’s inequality

Var
( md∑

i=1

f(ki)
)
≤
∑

Var f(ki) ∼ D2n2p
(

1
md

)2p−1

= O(n(logn)2p−1)

for the choice of σ(n) as above. Since the Zig-Zag algorithm has a determin-
istic upper bound O(n/logn), we obtain

Theorem 3.1. In the random uniform model the partitioning algo-
rithm with the choice σ(n) = exp(2 log n) operates in expected running time
O(n(logn)p−1). The variance of the running time is O(n(logn)2p−1).

In comparison to the bisection algorithm as considered in Rüschendorf
and Sachs (1998) for d = 2 we have for the fixed dissection algorithm in
this paper only a random running time behaviour with expectation of or-
der O(n(logn)p−1). Under a stronger condition on σ(n) Halton and Ter-
ada (1982) derive an a.s. running time behaviour of the corresponding algo-
rithm in the TSP which could also be given in this context.
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4. Approximation of the optimal matching. In the first part of this
section we compare the value of the partitioning algorithm with the value
of the optimal matching and establish an upper estimate for `(In) − |Tn|,
where Tn denotes the optimal matching for {X1, . . . ,Xn}. For each face Fij ,
1 ≤ j ≤ 2d, of the cube Ci we consider the set of marks Mij where an
edge of Tn which connects a point of Ci ∩ {X1, . . . ,Xn} to some point in a
different cube intersects Fij .

According to the construction of our partitioning algorithm an optimal
matching is constructed in cell Ci and a possibly unmatched point in Ci is
connected to an arbitrary point in the next nonempty cell according to the
Zig-Zag tour through the cells. It is not obvious how to bound `(In) from
above by the length of the optimal matching Tn plus some correction term.
To that purpose we introduce a matching T̂n(i) of the points in cell Ci which
is induced by the matchings Tij of the marks Mij in the faces of Ci by the
following steps:

Firstly, we match those points in Ci where the corresponding marks
generated by the optimal matching Tn in the faces are connected in the
optimal matching Tij of Mij . Then the points in neighbouring faces, which
remained unmatched in the first step, are matched.

Finally, we use the part of the matching of points inside Ci by the optimal
matching Tn.

Fig. 3. ×—× describes Tn, ×- - -× describes new parts of T̂n(i), · · · describes Tij

Obviously, the value of this matching T̂n(i) is an upper bound for the
value of the optimal matching in cell Ci used in our partitioning algorithm
In. We will next prove that the length of the induced total matching T̂n =∑
T̂n(i) can be estimated from above by the value of the optimal matching

Tn plus some terms of lower order.
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By construction we obtain from the triangle inequality (see also Figure 3)

`(In) ≤ |T̂n|+M

√
d+ 3
m

(4.1)

≤ |Tn|+ 2
∑

i

∑

j

|Tij |+M

√
d+ 3
m

+
md∑

i=1

K2(2d)(d−1)/d 1
m

where the term M
√
d+ 3/m is from the matching of the remaining points in

the cells Ci connected to the neighbour cells and where the last term comes
from the matching of the points which remain unmatched in the faces in
the first step with a universal constant K2 and with the scaling 1/m for the
side length (see Figure 3).

Here we use the fact that by a simple induction argument (see Karp
and Steele (1985)) the length of an optimal matching of n points in the
d-dimensional unit cube is bounded above by

(4.2) K2n
(d−1)/d for some K2 > 0.

Since the marks Mij are matched in the (d − 1)-dimensional faces of side
length 1/m, we obtain

`(In) ≤ |Tn|+ 2
md∑

i=1

2d∑

j=1

K2|Mij |(d−2)/(d−1) 1
m

(4.3)

+ M

√
d+ 3
m

+
md∑

i=1

K2(2d)(d−1)/d 1
m
.

Since
∑md

i=1

∑2d
j=1 |Mij | ≤ 2n and x 7→ x(d−2)/(d−1) is concave we obtain

`(In)− |Tn| −M
√
d+ 3
m

≤ 2
md∑

i=1

2d∑

j=1

K2

(
2n
dmd

)(d−2)/(d−1) 1
m

+K2m
d(2d)(d−1)/d 1

m

= K1(2n)(d−2)/(d−1)m1/(d−1) +K2m
d−1

∼ K1(2n)(d−2)/(d−1)
(

2n
log σ(n)

)1/(d−1)

+K2

(
2n

log σ(n)

)(d−1)/d

= O(n(d−1)/d(log σ(n))−1/(d(d−1))).

With M = md ∼ 2n/log σ(n) we obtain

`(In) ≤ |Tn|+O(n(d−1)/d(log σ(n))−(d−1)/d)

+ O(n(d−1)/d(log σ(n))−1/(d(d−1))).
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Thus the value of the partitioning algorithm In is bounded from above by
the value of the optimal matching plus some deterministic bound of lower
order.

Theorem 4.1. The length of the partitioning algorithm for Euclidean
matching of n points X1, . . . ,Xn in [0, 1]d is estimated from above by

(4.4) `(In) ≤ |Tn|+O(n(d−1)/d(log σ(n))−1/(d(d−1))).

To estimate the relative error compared to the optimal matching Tn we
use the following lemma.

Lemma 4.2. There exist constants A, C > 0, 0 < % < 1 such that in the
random data model X1, . . . ,Xn,

(4.5) P (|Tn| < An(d−1)/d) ≤ C%n for all n.

Proof. As |Tn| is a quasiadditive functional one obtains from Rhee (1993)

P (|Tn − ETn| ≥ t) ≤ C exp
(
− 1
Cn

(
t

K1

))2d/(d−1)

for some constants C,K1 > 0. Further, for {Xi} independent and uniformly
distributed on [0, 1]d one obtains

Emin{|Xi −Xj | : i, j ≤ n, i 6= j} ≥ cn−1/d

for some c > 0. This implies the lower bound

ETn ≥
n

2
cn−1/d =

c

2
n(d−1)/d.

Therefore,

P (Tn < An(d−1)/d) = P (Tn − ETn < An(d−1)/d − ETn)

≤ P (ETn − Tn > (c/2− A)n(d−1)/d)

≤ P (|ETn − Tn| > Bn(d−1)/d)

≤ C exp
(
− 1
Cn

(
Bn(d−1)/d

K1

)2d/(d−1))

= C exp(−Dn) = C%n with % = e−D

(all constants are > 0).

As a result we obtain complete convergence of `(In)/Tn to 1.

Theorem 4.3. In the random data model the relative length of the
matching of the partitioning algorithm to the optimal length converges com-
pletely to one:

`(In)/|Tn| c→ 1,

i.e. for all ε > 0 we have
∑∞
n=1 P (`(In)/|Tn| ≥ 1 + ε) <∞.
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Proof. Using the estimates in Theorem 4.1 and Lemma 4.2 we obtain

P (`(In)/|Tn| ≥ 1 + ε) ≤ P (|Tn| < An(d−1)/d)

+ P (`(In)− |Tn| ≥ εAn(d−1)/d)

≤ C%n + P (`(In)− |Tn| ≥ εAn(d−1)/d).

Therefore,
∞∑

n=1

P (`(In)/|Tn| ≥ 1 + ε)

≤ C
∞∑

n=1

%n +
∞∑

n=1

P (`(In)− |Tn| ≥ εAn(d−1)/d) <∞

since the last sum has only finitely many nonzero summands.

Remark (General distributions). The normalized minimum matching
functional converges also for general distributions (see (1.2)). The estimate
in Theorem 4.1 is valid for any set of deterministic points in [0, 1]d. There-
fore, by (1.2) the normalized partitioning algorithm converges completely to
the same constant β(L) � f(x)(d−1)/d λ\d(dx) as well. This implies complete
convergence of the quotient `(In)/|Tn| → 1 (see also Yukich (1998), proof of
Theorem 5.8). Therefore, we obtain an approximation of the matching func-
tional by the partitioning algorithm in the probabilistic sense for general
distributions on [0, 1]d with nontrivial Lebesgue continuous part.

As a result of the analysis we deduce that the partitioning algorithm
yields an approximative optimal matching and uses expected running time
O(n(logn)p−1). This improves considerably on the running time of exact
deterministic algorithms.
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