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ON ORTHOGONAL SERIES ESTIMATION OF BOUNDED
REGRESSION FUNCTIONS

Abstract. The problem of nonparametric estimation of a bounded re-
gression function f ∈ L2([a, b]d), [a, b] ⊂ R, d ≥ 1, using an orthonormal
system of functions ek, k = 1, 2, . . . , is considered in the case when the
observations follow the model Yi = f(Xi) + ηi, i = 1, . . . , n, where Xi and
ηi are i.i.d. copies of independent random variables X and η, respectively,
the distribution of X has density %, and η has mean zero and finite variance.
The estimators are constructed by proper truncation of the function f̂n(x) =∑N(n)
k=1 ĉkek(x), where the coefficients ĉ1, . . . , ĉN(n) are determined by min-

imizing the empirical risk n−1∑n
i=1(Yi −

∑N(n)
k=1 ckek(Xi))2. Sufficient con-

ditions for convergence rates of the generalization error EX |f(X)− f̂n(X)|2
are obtained.

1. Introduction. Let observations Yi, i = 1, . . . , n, follow the model
Yi = f(Xi) + ηi, where f ∈ L2([a, b]d), [a, b] ⊂ R, d ≥ 1, is an unknown
regression function, the errors ηi, i = 1, . . . , n, are i.i.d. copies of a random
variable with zero mean value and finite variance σ2

η, and Xi, i = 1, . . . , n,
form a sample from the distribution of a random variable X ranging over a
compact subset [a, b]d of some euclidean space Rd, d ≥ 1. We further assume
that the distribution of X is absolutely continuous with density % and that
the vector random variables Xn

1 = (X1, . . . ,Xn) and ηn1 = (η1, . . . , ηn) are
independent.

Let functions fk, k = 1, 2, . . . , be analytic in (a, b) and constitute a com-
plete orthonormal system in L2[a, b]. Then the functions ek1...kd(x1, . . . , xd)
= fk1(x1) . . . fkd(xd), where xl ∈ [a, b], l = 1, . . . , d, k1, . . . , kd = 1, 2, . . . ,
are a complete orthonormal system in L2([a, b]d). We assume that ek, k =
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1, 2, . . . , is a complete orthonormal system in L2([a, b]d) constructed in this
way. The well known system of trigonometric functions in L2([0, 2π]d) is
an example of an orthonormal system satisfying the above requirements,
and another one can be constructed in L2([−1, 1]d) using tensor products of
Legendre polynomials.

In this work we assume that the regression function f is bounded (i.e.
|f | ≤ L <∞) and examine asymptotic properties of the generalization error

EX(f(X)− fn(X))2 =
�

[a,b]d

(f(x)− fn(x))2%(x) dx

for estimators fn which are defined in the following two steps:
In the first step we determine, for a fixed N , the vector of coefficients

ĉN = (ĉ1, . . . , ĉN )T by minimizing the empirical risk:

ĉN = arg min
c∈RN

1
n

n∑

i=1

(Yi − 〈c, eN (Xi)〉)2,

where eN (x) = (e1(x), . . . , eN (x))T .
If the functions ek, k = 1, 2, . . . , are constructed as tensor products of

functions fl, l = 1, 2, . . . , orthogonal in L2[a, b] and analytic in (a, b), as
assumed, then for N ≤ n the vector ĉN can be uniquely determined with
probability one as the solution of the normal equations

(1) ĉN = G−1
n gn,

where

Gn =
1
n

n∑

i=1

eN (Xi)eN (Xi)T , gn =
1
n

n∑

i=1

Yie
N (Xi).

This follows from Lemma 2.2 of [11] which assures that the matrices Gn
are almost surely positive definite for N ≤ n when Xi, i = 1, . . . , n, form a
random sample from a distribution with density % ∈ L1([a, b]d).

In the second step we construct the estimator fn by truncating the
function f̂n(x) =

∑N
k=1 ĉkek(x) at Bn and −Bn, i.e.

(2) fn(x) = (f̂n(x) ∨ (−Bn)) ∧Bn for x ∈ [a, b]d,

where we use the notation a∨b := max{a, b}, a∧b := min{a, b} for a, b ∈ R,
with constant Bn ∈ R+ depending only on n, Bn →∞ as n→∞.

In author’s earlier works, consistency in the sense of the generalization
error [12], [13] and its convergence rates [14] for orthogonal series estimators
were investigated only in the case when the density % satisfies the condition
0 < c ≤ %. Similarly, Huang [6] obtained convergence rates for such estima-
tors only for 0 < c ≤ % ≤ D < ∞. In the present work we prove that the
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truncated orthogonal series estimators are consistent in the sense of the gen-
eralization error and give their convergence rates for the observation model
with bounded density % ≤ D < ∞ and bounded regression functions. In
order to obtain the convergence rates for an arbitrary density % we have to
assume that the regression function can be approximated in the supremum
norm by linear combinations of the functions ek, k = 1, 2, . . .

Results concerning weak and strong universal consistency of series type
regression estimators were obtained by Lugosi and Zeger [8] for a more
general observation model, where i.i.d. realizations of a pair of random vari-
ables (X,Y ) are given, even without the assumption of absolute continuity
of the predictor variable distribution. However, they consider estimators of
the form ĝn(x) =

∑N
k=1 âkek(x), where the coefficients â1, . . . , âN are de-

termined by minimizing the empirical risk n−1∑n
i=1(Yi −

∑N
k=1 akek(Xi))2

under the constraint
∑N
k=1 |ak| ≤ βn, βn →∞.

As remarked by Györfi and Walk [4], obtaining the empirically optimal
estimator ĝn is difficult if the minimum is not unique. The same remark
holds for radial basis function estimators investigated in Niyogi and Girosi
[9], obtained by similar constrained empirical risk minimization, for which
convergence rates of the generalization error were given.

Our estimators are almost surely uniquely determined and can be con-
structed by solving a system of linear equations, which may also reduce
computation time in comparison to constrained empirical risk minimization.
Thus, the approach applied in this work, similarly to [4], aims at solving the
numerical difficulties which appear in obtaining the estimators using con-
strained empirical risk minimization.

Results obtained for other approaches to nonparametric regression func-
tion estimation giving weakly and universally consistent estimators are dis-
cussed in [4], [7].

In Section 2 we give an overview of results of the Vapnik–Chervonenkis
theory which are necessary to prove the results of the present work. Our re-
sults are formulated and proved in Sections 3 and 4 concerning, respectively,
the weak and strong consistency of the relevant estimators in the sense of
the generalization error.

2. Some results of the Vapnik–Chervonenkis theory. In this sec-
tion we list the definitions and basic results of the Vapnik–Chervonenkis
theory which we use in the following sections to prove our results.

Let us start with the definition of covering numbers of function classes.

Definition 2.1. Let F be a class of functions f : Rd → R. The covering
number ℵ(ε, F, zn1 ) is defined for any ε > 0 and zn1 = (z1, . . . , zn) ∈ Rdn as
the smallest integer k such that there exist functions g1, . . . , gk : Rd → R
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with

min
1≤j≤k

1
n

n∑

i=1

|f(zi)− gj(zi)| ≤ ε

for each f ∈ F .

If Zn1 = (Z1, . . . , Zn) is a sequence of Rd-valued random variables, then
ℵ(ε, F, Zn1 ) is a random variable with expected value Eℵ(ε, F, Zn1 ). The next
result due to Pollard is the main tool in the proof of our results.

Lemma 2.1 (Pollard [10], Section II.5, Theorem 24). Let F be a class
of functions f : Rd → [0, B], and let Zn1 = (Z1, . . . , Zn) be Rd-valued i.i.d.
random variables. Then for any ε > 0,

P

{
sup
f∈F

∣∣∣∣
1
n

n∑

i=1

f(Zi)− Ef(Z1)
∣∣∣∣ > ε

}

≤ 8E
(
ℵ
(
ε

8
, F, Zn1

))
exp
(
− nε2

128B2

)
.

In order to bound covering numbers we need the notion of the VC-
dimension which is defined as follows.

Definition 2.2. Let Λ be a class of subsets of Rd and let S ⊆ Rd. One
says that Λ shatters S if each subset of S has the form λ∩S for some λ ∈ Λ.
The VC-dimension VΛ of Λ is defined as the largest integer k for which there
exists a set of cardinality k shattered by Λ.

A connection between covering numbers and the VC-dimension is given
by the following lemma, which uses the notation VF+ for the VC-dimension
of the set class

F+ := {{(x, t) ∈ Rd × R : t ≤ f(x)} : f ∈ F}.
Lemma 2.2 (Haussler [5], Theorem 6). Let F be a class of functions

f : Rd → [−B,B]. Then for any zn1 = (z1, . . . , zn) ∈ Rdn and any ε > 0,

ℵ(ε, F, zn1 ) ≤ 2
(

4eB
ε

ln
(

4eB
ε

))VF+

.

For B > 0 define TB : R→ R by the formula

TB(t) =

{
B if t > B,
t if |t| ≤ B,
−B if t < −B,

and let TBF = {TB ◦ f : f ∈ F} be the set of truncated functions from
F . The following lemma gives a bound on the VC-dimension of a class of
truncated functions.

Lemma 2.3. Let F be a class of functions f : Rd → R and B > 0. Then
for the class of functions TBF = {TB ◦ f : f ∈ F} we have VTBF+ ≤ VF+ .
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Proof. It is enough to show that every set shattered by TBF
+ is also

shattered by F+. Suppose there exists a sequence ((x1, t1), . . . , (xm, tm))
which is shattered by TBF+. By definition, this means that for every boolean
vector b ∈ {0, 1}m there is some function gb = TB ◦ fb (fb ∈ F ) satisfying
gb(xi) ≥ ti if and only if bi = 1 for i = 1, . . . ,m. We now show that the set
((x1, t1), . . . , (xm, tm)) is shattered by F+. Set

ai = min
b
{gb(xi) = TB(fb(xi)) | bi = 1},

Ai = max
b
{gb(xi) = TB(fb(xi)) | bi = 0},

for i = 1, . . . ,m. Since TBF+ shatters ((x1, t1), . . . , (xm, tm)), we have−B ≤
Ai < ti ≤ ai ≤ B. Now, by construction of TB ,

fb(xi) ≥ ti ≡ TB(fb(xi)) ≥ ti ≡ bi = 1 for i = 1, . . . ,m.

Since each fb ∈ F , we see that ((x1, t1), . . . , (xm, tm)) is shattered by F+.

The following result is often useful for bounding the VC-dimension.

Lemma 2.4 (Dudley [2]). Let F be a k-dimensional vector space of func-
tions f : Rd → R. Then the class of sets of the form {x ∈ Rd : f(x) ≥ 0},
where f ∈ F , has the VC-dimension less than or equal to k.

For simplicity of notation let TnF denote the class of truncated func-
tions TBnF . Assume now that we are given a random sample (X1, Y1), . . . ,
(Xn, Yn) from the distribution of (X,Y ), where X is the predictor variable
from the observation model and Y is a real-valued bounded random variable.

Lemma 2.5. Let |Y | ≤ L < ∞ and FN = span{e1, . . . , eN}. Then for
ε > 0 and sufficiently large n,

P

{
sup

g∈TnFN

∣∣∣∣
1
n

n∑

i=1

(Yi − g(Xi))2 − E(Y − g(X))2

∣∣∣∣ > ε

}

≤ 24
(

27eB2
n

ε
ln
(

27eB2
n

ε

))N+1

exp
(
− nε2

211B4
n

)
.

Proof. Consider the class of functions Hn = {h(x, y) = (y − g(x))2 :
[a, b]d × R → R | g ∈ TnFN}. Since Bn → ∞ we have |Y | ≤ Bn for
sufficiently large n. Consequently, (y − g(x))2 ≤ 4B2

n for g ∈ TnFN and x ∈
[a, b]d. Applying Lemma 2.1 to the function class Hn and random variables
Zi = (Xi, Yi), i = 1, . . . , n, we obtain the bound

P

{
sup

g∈TnFN

∣∣∣∣
1
n

n∑

i=1

(Yi − g(Xi))2 − E(Y − g(X))2

∣∣∣∣ > ε

}

≤ 8E
(
ℵ
(
ε

8
,Hn, Z

n
1

))
exp
(
− nε2

2048B4
n

)
.
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Now, we will bound the covering number in the above inequality. Observe
first that if hj(x, y) = (y − gj(x))2, gj ∈ TnFN for j = 1, 2, then

1
n

n∑

i=1

|h1(Xi, Yi)− h2(Xi, Yi)|

=
1
n

n∑

i=1

|2Yi − g1(Xi)− g2(Xi)| · |g1(Xi)− g2(Xi)|

≤ 4Bn
1
n

n∑

i=1

|g1(Xi)− g2(Xi)|.

In consequence,

ℵ
(
ε

8
,Hn, Z

n
1

)
≤ ℵ

(
ε

32Bn
, TnFN ,X

n
1

)
,

so using the notion of the VC-dimension and Lemmas 2.2 and 2.3 we further
obtain

ℵ
(

ε

32Bn
, TnFN ,X

n
1

)
≤ 2
(

128eB2
n

ε
ln
(

128eB2
n

ε

))V
TnF

+
N

≤ 2
(

128eB2
n

ε
ln
(

128eB2
n

ε

))V
F

+
N
.

Since FN is a linear function space of dimension N we also have (see Lemma
2.4) VF+

N
≤ N + 1, which completes the proof.

Remark 2.1. To ensure measurability of the supremum in the above
lemma it is necessary to impose regularity conditions on uncountable collec-
tions of functions F . For the finite-dimensional spaces FN =span{e1, . . . , eN}
one can use the fact that every linear combination of functions e1, e2, . . . is a
pointwise limit of linear combinations with rational coefficients (see Pollard
[10], p. 38).

3. Weak convergence of the generalization error. In this section
we examine convergence rates in probability of the generalization error for
the truncated orthogonal series estimators fn defined by (1) and (2) for
N ≤ n. It follows from the construction that fn ∈ TnFN , where FN =
span{e1, . . . , eN}. We start by proving the following lemma.

Lemma 3.1. Assume that the regression function f is bounded , N ≤ n,
and ε>0. Then for hN (x)=〈cN , eN (x)〉, cN ∈RN , and sufficiently large n,

P

{
EηEX(f(X)− fn(X))2 >

1
n

n∑

i=1

(f(Xi)− hN (Xi))2 + σ2
η

N

n
+ ε

}

≤ 24
(

27eB2
n

ε
ln
(

27eB2
n

ε

))N+1

exp
(
− nε2

211B4
n

)
.
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Proof. Putting

Dn = 24
(

27eB2
n

ε
ln
(

27eB2
n

ε

))N+1

exp
(
− nε2

211B4
n

)

and applying Lemma 2.5 to the random variables (Xi, f(Xi)), i = 1, . . . , n,
we see that for ε > 0 and sufficiently large n,

P

{
sup

g∈TnFN

∣∣∣∣
1
n

n∑

i=1

(f(Xi)− g(Xi))2 − EX(f(X)− g(X))2

∣∣∣∣ > ε

}
≤ Dn.

Since fn(x) = TBn(f̂n(x)), where f̂n(x) =
∑N
k=1 ĉkek(x), by the inequality

∣∣∣∣
1
n

n∑

i=1

Eη(f(Xi)− fn(Xi))2 − EηEX(f(X)− fn(X))2

∣∣∣∣

≤ Eη
∣∣∣∣
1
n

n∑

i=1

(f(Xi)− fn(Xi))2 − EX(f(X)− fn(X))2

∣∣∣∣

we also have

P

{∣∣∣∣
1
n

n∑

i=1

Eη(f(Xi)− fn(Xi))2 −EηEX(f(X)− fn(X))2

∣∣∣∣ > ε

}
≤ Dn

for n such that |f | ≤ Bn (see Lemma 2.5). Furthermore, the obvious in-
equality

(f(Xi)− fn(Xi))2 ≤ (f(Xi)− f̂n(Xi))2

implies

(3) P

{
EηEX(f(X)− fn(X))2 >

1
n

n∑

i=1

Eη(f(Xi)− f̂n(Xi))2 + ε

}
≤ Dn.

The standard squared bias plus variance decomposition with respect to η
variable yields

RnN =
1
n

n∑

i=1

Eη(f(Xi)− f̂n(Xi))2

=
1
n

n∑

i=1

(f(Xi)− Eη f̂n(Xi))2 +
1
n

n∑

i=1

Eη(f̂n(Xi)− Eη f̂n(Xi))2.

Taking into account (1) we obtain for N ≤ n,

1
n

n∑

i=1

Eη(f̂n(Xi)−Eη f̂n(Xi))2 =
1
n

n∑

i=1

Eη

〈
eN (Xi), G−1

n

1
n

n∑

j=1

ηje
N (Xj)

〉2
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=
σ2
η

n3

n∑

i=1

n∑

j=1

〈eN (Xi), G−1
n eN (Xj)〉2 =

σ2
η

n2

n∑

i=1

〈eN (Xi), G−1
n eN (Xi)〉

=
σ2
η

n
TrGnG−1

n = σ2
η

N

n
,

which implies the equality

RnN =
1
n

n∑

i=1

(f(Xi)− Eη f̂n(Xi))2 + σ2
η

N

n
.

Now, since for fixed observation points Xi, i = 1, . . . , n, we have

1
n

n∑

i=1

(f(Xi)− Eη f̂n(Xi))2 ≤ 1
n

n∑

i=1

(f(Xi)− hN (Xi))2

for any linear combination hN =
∑N
k=1 ckek, (c1, . . . , cN )T ∈ RN , we imme-

diately obtain

RnN ≤
1
n

n∑

i=1

(f(Xi)− hN (Xi))2 + σ2
η

N

n
.

The above inequality together with (3) proves the lemma.

If the function f can be approximated in the supremum norm by linear
combinations of the functions ek, k = 1, 2, . . . , the following theorem holds.

Theorem 3.1. Assume that the regression function f ∈ L2([a, b]d) is
bounded and for N = 1, 2, . . . , there exist gN ∈ span{e1, . . . , eN} such that
‖f − gN‖∞ → 0 as N → ∞. If the sequences of reals Bn and integers
N(n), n = 1, 2, . . . , satisfy

N(n)→∞, Bn →∞,
N(n)
n
→ 0,

N(n)B4
n ln(n)

n1−2β → 0,

where 0 < β < 1/2, then the estimator fn constructed according to (1) and
(2) satisfies

EX(f(X)− fn(X))2 = Op

(
‖f − gN(n)‖2∞ + σ2

η

N(n)
n

+ n−β
)
.

Proof. Putting ε = n−β and applying Lemma 3.1 we have

P

{
EηEX(f(X)− fn(X))2 >

1
n

n∑

i=1

(f(Xi)− gN (Xi))2 + σ2
η

N

n
+ n−β

}

≤ 24(27eB2
nn

β ln(27eB2
nn

β))N+1 exp
(
−n

1−2β

211B4
n

)

for N ≤ n and sufficiently large n. As one can easily verify, the conditions
imposed on the sequences Bn and N(n) assure that the right hand side tends
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to zero as n→∞. In consequence,

P

{
EηEX(f(X)− fn(X))2 > ‖f − gN(n)‖2∞ + σ2

η

N(n)
n

+ n−β
}
→ 0,

and hence

EX(f(X)− fn(X))2 = Op

(
‖f − gN(n)‖2∞ + σ2

η

N(n)
n

+ n−β
)

which proves the theorem.

In the case when the convergence rate of the uniform approximation
error ‖f − gN(n)‖∞ is known, the following corollary is valid.

Corollary 3.1. Assume that the regression function f ∈ L2([a, b]d)
is bounded and for N = 1, 2, . . . , there exist gN ∈ span{e1, . . . , eN} such
that ‖f − gN‖∞ = O(N−α), where α > 0. If N(n) ∼ n1/(1+2α) (i.e.
r1 ≥ N(n)n−1/(1+2α) ≥ r2, r1, r2 > 0), and the sequence of reals Bn, n =
1, 2, . . . , satisfies

Bn →∞,
B4
n ln(n)
nδ

→ 0,

where 0 < δ < 2α/(1 + 2α), then the estimator fn constructed according to
(1) and (2) satisfies

EX(f(X)− fn(X))2 = Op(n−α/(1+2α)+δ/2).

Proof. It follows from the assumptions that ‖f−gN(n)‖2∞+σ2
ηN(n)/n =

O(n−2α/(1+2α)). Putting

β =
1
2

(
2α

1 + 2α
− δ
)

we have 1−2β = 1/(1 + 2α)+δ > 0. The condition B4
n ln(n)/nδ → 0 implies

N(n)B4
n ln(n)/n1−2β → 0 and by Theorem 3.1,

EX(f(X)− fn(X))2 = Op(n−2α/(1+2α) + n−β) = Op(n−β),

which completes the proof.

The next theorem holds for bounded regression functions f ∈ L2([a, b]d)
which can be approximated only in the mean-square sense.

Theorem 3.2. Assume that the regression function f ∈ L2([a, b]d) and
density % are bounded and for N = 1, 2, . . . , let fN be the orthogonal projec-
tion of f on the subspace span{e1, . . . , eN}. If the sequences of reals Bn and
integers N(n), n = 1, 2, . . . , satisfy

N(n)→∞, Bn →∞,
N(n)
n
→ 0,

N(n)B4
n ln(n)

n1−2β → 0,



266 W. Popiński

where 0 < β < 1/2, then the estimator fn constructed according to (1) and
(2) satisfies

EX(f(X)− fn(X))2 = Op

(
‖f − fN(n)‖+ σ2

η

N(n)
n

+ n−β
)
.

Proof. Putting ε = n−β and following the proof of Theorem 3.1 we see
that

P

{
EηEX(f(X)− fn(X))2 >

1
n

n∑

i=1

(f(Xi)− fN(n)(Xi))2 +σ2
η

N(n)
n

+n−β
}

tends to zero as n→∞. Furthermore, since % ≤ D <∞ we have

EX
1
n

n∑

i=1

(f(Xi)− fN(n)(Xi))2 = EX(f(X)− fN(n)(X))2 ≤ D‖f − fN(n)‖2,

which further yields

P

{
1
n

n∑

i=1

(f(Xi)− fN(n)(Xi))2 > ‖f − fN(n)‖
}
≤ D‖f − fN(n)‖ → 0.

Thus,

P

{
EηEX(f(X)− fn(X))2 > ‖f − fN(n)‖+ σ2

η

N(n)
n

+ n−β
}
→ 0

as n→∞ and consequently

EX(f(X)− fn(X))2 = Op

(
‖f − fN(n)‖+ σ2

η

N(n)
n

+ n−β
)
.

For f ∈ L2([a, b]d) we have ‖f − fN‖ → 0 as N → ∞, so under the as-
sumptions of Theorem 3.2, EX(f(X)− f̂N(n)(X))2 = op(1), i.e. the relevant
estimator is consistent in the sense of the generalization error. Inspection of
the proof of Theorem 3.2 reveals that the same conclusion holds for an arbi-
trary density % if the set of finite linear combinations of ek, k = 1, 2, . . . , is
dense in L2([a, b]d, µ) for any probability measure µ. Examples of orthogonal
systems which satisfy this condition are given in the following section.

In the case when the convergence rate of the mean-square approximation
of f by its Fourier series is known, the following corollary holds.

Corollary 3.2. Assume that the regression function f ∈ L2([a, b]d)
and density % are bounded and the N -term Fourier series fN approximates
f in L2([a, b]d) at the rate ‖f − fN‖ = O(N−α), where α > 0. If N(n) ∼
n1/(1+α) (i.e. r1 ≥ N(n)n−1/(1+α) ≥ r2, r1, r2 > 0), and the sequence of
reals Bn, n = 1, 2, . . . , satisfies

Bn →∞,
B4
n ln(n)
nδ

→ 0,
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where 0 < δ < α/(1+α), then the estimator fn constructed according to (1)
and (2) satisfies

EX(f(X)− fn(X))2 = Op(n−α/(2(1+α))+δ/2).

Proof. It follows from the assumptions that ‖f − fN(n)‖+ σ2
ηN(n)/n =

O(n−α/(1+α)). Putting

β =
1
2

(
α

1 + α
− δ
)

we have 1−2β = 1/(1 + α) + δ > 0. The condition B4
n ln(n)/nδ → 0 implies

N(n)B4
n ln(n)/n1−2β → 0 and by Theorem 3.2,

EX(f(X)− fn(X))2 = Op(n−α/(1+α) + n−β) = Op(n−β),

which is our claim.

As one can clearly see from Corollary 3.1, our convergence rates do not
attain Stone’s [15] bound on the best obtainable rate n−2α/(1+2α).

4. Strong convergence of the generalization error. Let us now
consider the observation model where i.i.d. realizations (Xi, Yi), i = 1, . . . , n,
of a pair of random variables (X,Y ) are given, where X is the previously
defined predictor variable and Y is real-valued and satisfies |Y | ≤ L <∞ a.s.
For such a model, estimators defined by (1) and (2) estimate the regression
function f(x) = E(Y |X = x). In this section we assume that the estimators
are constructed using the system of trigonometric functions in L2([0, 2π]d)
or algebraic polynomials in L2([−1, 1]d), respectively.

Let BnFN := {g ∈ FN | ∀x ∈ [a, b]d : |g(x)| ≤ Bn} be the set of functions
in FN = span{e1, . . . , eN} which are bounded in absolute value by Bn. The
next lemma allows us to obtain sufficient conditions for strong consistency
of the estimators considered.

Lemma 4.1. Assume that N(n)→∞, Bn →∞ as n→∞,

(i) sup
g∈TnFN(n)

∣∣∣∣
1
n

n∑

i=1

(g(Xi)− Yi)2 − E(g(X)− Y )2

∣∣∣∣→ 0 a.s.

for every distribution of (X,Y ) with |Y | ≤ L for some L ∈ R and

(ii) inf
g∈BnFN(n)

�

[a,b]d

|g(x)− f(x)|2 µ(dx)→ 0

for every distribution of (X,Y ) with EY 2 <∞, where µ denotes the margin-
al distribution of X. Then the sequence of estimators fn, n = 1, 2, . . . ,
defined by (1) and (2) is strongly consistent.

Proof. The proof is analogous to the proof of Lemma 2 (Section 4) in
Kohler [7].
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Now we can prove the following theorem on strong consistency of trigono-
metric and polynomial regression estimators.

Theorem 4.1. If |Y | ≤ L < ∞, X has absolutely continuous distribu-
tion with density % ∈ L1([0, 2π]d) (resp. % ∈ L1([−1, 1]d)), and the sequences
of reals Bn and integers N(n), n = 1, 2, . . . , satisfy

N(n)→∞, Bn →∞,
N(n)B4

n ln(n)
n

→ 0,
B4
n

n1−δ → 0

for some δ > 0 and n → ∞, then the trigonometric (resp. polynomial)
estimator fn constructed according to (1) and (2) is strongly consistent in
the sense of the generalization error , i.e.

lim
n→∞

EX(f(X)− fn(X))2 = 0 a.s.

Proof. The assumptions on the sequences Bn and N(n), n = 1, 2, . . . ,
imply by Lemma 2.5 and the Borel–Cantelli lemma that condition (i) of
Lemma 4.1 is satisfied (see [7], [8] for details). Moreover, for any prob-
ability measure µ the set of continuous functions of compact support is
dense in L2([0, 2π]d, µ) (resp. L2([−1, 1]d, µ)) [4]. Since such functions can
be uniformly approximated by trigonometric (resp. algebraic) polynomials
condition (ii) of Lemma 4.1 is also satisfied. Hence, the assertion follows.

5. Conclusions. Results concerning convergence rates of the general-
ization error for orthogonal series estimators were earlier obtained in [6],
[14] under the assumption that the density % satisfies 0 < c ≤ %. In the case
of bounded regression functions, applying the results from empirical pro-
cess theory and the notion of the VC-dimension of function classes enabled
obtaining the convergence rates without this restrictive assumption. How-
ever, the rates given in the present work are not optimal. Another approach
aiming at relaxing the condition 0 < c ≤ % is presented in [1].

As already remarked in [12], [13] series type regression function estima-
tors constructed using the system of multivariate trigonometric functions
from L2([0, 2π]d) can be represented as single-layer neural network estima-
tors with an appropriate activation function called the cosine squasher. Since
the estimators considered in the present work can be obtained by proper
truncation of least squares trigonometric estimators, they can also be repre-
sented as neural network estimators with slightly more complex structure,
i.e. as two-layer neural network estimators. Thus, our results contribute to
understanding the asymptotic properties of neural network estimators once
again.

Other approaches to nonparametric regression function estimation, based
on empirical process theory and properties of the VC-dimension, are pre-
sented in [3]. They include Regularization Networks and Support Vector
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Machines of which Radial Basis Functions are a special case. The regres-
sion problem considered is formulated as a variational problem of finding a
function f that minimizes the functional

min
f∈H

Q[f ] =
1
n

n∑

i=1

U(Yi, f(Xi)) + λ‖f‖2K ,

where U is a loss function, ‖f‖K is a norm in a Reproducing Kernel Hilbert
Space H defined by the positive definite kernel function K and λ is a reg-
ularization parameter. Under rather general conditions the solution of the
above variational problem is f̃n(x) =

∑n
i=1 ciK(x,Xi).

It is worth mentioning that the kernel function in the RKHS space H
can be given by the formula K(x, y) =

∑∞
k=1 λkek(x)ek(y), where λk is a

sequence of positive numbers and ek, k = 1, 2, . . . , is an orthogonal system
of functions. Thus, the estimators investigated in [3] can be constructed
using orthogonal functions, although they are not series type estimators.
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