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CONTROL IN OBSTACLE-PSEUDOPLATE PROBLEMS
WITH FRICTION ON THE BOUNDARY. OPTIMAL

DESIGN AND PROBLEMS WITH UNCERTAIN DATA

Abstract. Four optimal design problems and a weight minimization prob-
lem are considered for elastic plates with small bending rigidity, resting on
a unilateral elastic foundation, with inner rigid obstacles and a friction con-
dition on a part of the boundary. The state problem is represented by a
variational inequality and the design variables influence both the coefficients
and the set of admissible state functions. If some input data are allowed to
be uncertain a new method of reliable solutions is employed. We prove the
existence of a solution to the above-mentioned problems on the basis of a
general theorem on the control of variational inequalities.

Introduction. We consider some optimal design problems for an elas-
tic pseudoplate (a plate with small bending rigidity). The bending of the
pseudoplate is described by means of a shear model: the plate is deformed
only by shear forces (see e.g. [1]). In classical elasticity theory a pseudoplate
is a plate offering resistance to bending when only a shear is acting. We
assume that a homogeneous and isotropic pseudoplate occupying a domain
Ω × (−H,H) of the space R3 is loaded by a transversal distributed force
p(x1, x2) perpendicular to the plane Ox1x2. The pseudoplate rests on a uni-
lateral elastic foundation and is supported unilaterally by a finite number
of rigid obstacles (punchs). The role of design variables is played by (i) the
thickness of the pseudoplate, (ii) the stiffness characteristic of the Winkler
medium and (iii) the friction bound (slip limit). The design variables have
to belong to a set of Lipschitz-continuous functions. The following cost func-
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tionals are considered: (i) desired deflection, (ii) total reaction, (iii) compli-
ance, (iv) intensity of shear forces and (v) weight of the pseudoplate. In the
last case, i.e., the weight minimization problem, we introduce constraints,
which express bounds for some mean values of the intensity of shear stresses.

The state problem is modelled by a variational inequality, where the
control variables influence both the coefficients of the non-linear monotone
operator and the set of admissible state functions. On the basis of a gen-
eral existence theorem for a class of optimization problems with variational
inequalities, we prove the existence of at least one solution to each of the
optimal control problems mentioned above. The last one, i.e. the weight
minimization, is treated via a penalty method.

In Section 4, we consider the same state problem with some uncertain
data; namely, we assume that the distributed load, the coefficient of the
elastic foundation and the slip limit are uncertain, being prescribed in some
a priori given sets. Here we employ a method of reliable solutions (alias
worst scenario method) (cf. [2], [3]). The existence of a “reliable” solution
is proved on the basis of the general theorem introduced in Section 2.

In a forthcoming paper we shall propose approximate solutions of the
problems mentioned above and present some convergence analysis.

1. Setting of the problem. Let the midplane of the pseudoplate
occupy a given bounded domain Ω ⊂ R2 with Lipschitz boundary ∂Ω.
We denote the standard Sobolev function spaces by Hk(Ω) ≡ W k,2(Ω),
k = 1, 2. Let the norm in Hk(Ω) be denoted by ‖ · ‖k. In the following
L2(Ω) and L∞(Ω) denote the spaces of Lebesgue-square integrable and es-
sentially bounded functions on Ω, respectively, with the standard norms
‖ · ‖0 and ‖ · ‖∞. The inner product in L2(Ω) will be denoted by 〈·, ·〉0.

Let the boundary ∂Ω be decomposed as follows:

∂Ω = ∂ΩD ∪ ∂ΩC
where ∂ΩD and ∂ΩC are open, non-empty and non-overlapping parts. On
∂ΩD a homogeneous kinematic condition is prescribed, whereas on ∂ΩC the
pseudoplate is subject to a contact with friction.

The transversal displacements (deflections) v belong to the space

V = {v ∈ H1(Ω) : v = 0 on ∂ΩD}.
Let τ13, τ23 denote the components of the stress field (shear stresses). We
consider an isotropic and homogeneous elastic material. Assuming that the
in-plane displacements vanish, we have the following stress-strain relations:

τi3 = KGεi3 =
1
2
KG∂v/∂xi, i = 1, 2,
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where K is a shear correction factor (a positive constant) and G = const is
the elastic shear modulus.

For simplicity, we set KG ≡ 1.
Then the shear forces of the pseudoplate are

Vi3 =
H�

−H
τi3 dz = H∂v/∂xi, i = 1, 2.

The equilibrium equation of a pseudoplate without any internal obstacles or
elastic supports has the form

∂V13/∂x1 + ∂V23/∂x2 + p = 0

or
div(H grad v) = −p.

On the boundary, we have

Vn3 =
2∑

i=1

niVi3 = H∂v/∂n,

where n denotes the unit outward normal. On the part ∂ΩC we prescribe
a slip limit F and the following friction conditions: either the surface force
|Vn3| is less than the slip limit F and then the pseudoplate remains in its
original position because of friction, or |Vn3| equals F and the pseudoplate
can slip into a new equilibrium position in the opposite direction to the
friction force. As a consequence, we have the following conditions on ∂ΩC :

H|∂v/∂n| ≤ F ,
H|∂v/∂n| < F ⇒ v = 0,

H|∂v/∂n| = F ⇒ ∃λ ≥ 0 such that v = −λVn3.

Moreover, we consider several unilateral inner obstacles as follows. Given
mutually disjoint subdomains Ω∗i , i = 1, . . . , N, such that Ω∗i ⊂ Ω, Ω∗i ∩
Ω∗j = ∅ for i 6= j and constants

(1.1) Oi ≥ Hmax, i = 1, . . . , N,

where Hmax is a given upper bound for the half-thickness (see the definition
of UHad below), we consider the conditions

(1.2) v(x) ≥ H(x)−Oi for a.a. x ∈ Ω∗i ,
for all i = 1, . . . , N .

On Ω \ Ω∗, where Ω∗ =
⋃N
i=1 Ω

∗
i , we consider a unilateral elastic foun-

dation of Winkler type, i.e., the reaction force Rw is proportional to the
negative part of the deflection v:

Rw = Z[v]−, [v]− = min{v, 0},
where Z is a given non-negative coefficient (see the definition of UZad below).
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Let us use the virtual displacement principle to establish a variational
formulation of the problem. To this end we introduce the set

(1.3) K(H) = {v ∈ V : v satisfies (1.2)},
a bilinear form

(1.4) a(H; v, w) =
�

Ω

H grad v · gradw dx

and a form

(1.5) b(Z; v, w) =
�

Ω\Ω∗
Z[v]−w dx.

Here

H ∈ UHad = {H ∈ C(0),1(Ω) (i.e., Lipschitz-continuous functions) :

Hmin ≤ H(x) ≤ Hmax, |∂H/∂xi| ≤ CHi , i = 1, 2}
with given positive constants Hmin, Hmax, CHi such that Hmin < Hmax,
1 ∈ [Hmin,Hmax], and

Z∈UZad ={Z ∈ C(0),1(Ω \Ω∗) : 0≤Z(x)≤Zmax, |∂Z/∂xi|≤CZi , i=1, 2}
with given positive constants Zmax, CZi .

We define the friction functional Φ(H,F) : H1(Ω)→ R by the formula

(1.6) Φ(H,F)(v) =
�

∂ΩC

F|v| ds+ IK(H)(v)

where

F ∈UFad ={F ∈ C(0),1(∂ΩC) : 0≤F(s)≤Fmax, |dF/ds|≤CF a.e. in ∂ΩC}
with given positive constants Fmax, CF , and IK(H)(·) is the indicatrix func-
tion of the set K(H). Finally, let a transversal load p ∈ L2(Ω) and a constant
specific weight ω be given.

In what follows, we set e = {H,Z,F} and define

Uad = UHad × UZad × UFad.

On the basis of the virtual displacement principle we introduce the following
state problem: given any e ∈ Uad, find u(e) ∈ K(H) such that

(1.7) a(H;u(e), v − u(e)) + b(Z;u(e), v − u(e))

+ Φ(H,F)(v)− Φ(H,F)(u(e)) ≥ 〈p− 2ωH, v − u(e)〉0
for all v ∈ K(H).

Later on, we shall prove that the variational inequality (1.7) has a unique
solution u(e) for any e ∈ Uad.
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Next, let us consider several optimal design problems. First, we introduce
cost functionals. The simplest will be

(1.8) LDD(v) =
�

Ω

(v − z)2 dx,

where z ∈ L2(Ω) is a given function, or

(1.9) LISS(v) =
�

Ω

|grad v|2 dx,

which is closely related to the integral of the intensity of shear stresses, i.e.,
�

Ω

3(τ2
13 + τ2

23) dx =
3
4

�

Ω

|grad v|2 dx.

The third cost functional will be the compliance

(1.10) LCOM(e, v) =
�

Ω

(p− 2ωH)v dx.

Let θ be any (fixed) function in H1
0 (Ω) such that θ = 1 on Ω∗ a.e. and let

Z0 be an extension of the function Z ∈ UZad by zero on Ω∗. We define

(1.11) LTR(e, v) =
�

Ω

(H grad v · grad θ + (Z0[v]− − p+ 2ωH)θ) dx.

This functional represents the resultant of transverse reactive forces on the
inner obstacles. Let us justify the definition of LTR in detail: for any v ∈
K(H) ∩H2(Ω) we decompose each subdomain Ω∗i into the set

Si(v) := {x ∈ Ω∗i : v(x) > H −Oi}
and its complement Qi(v) = Ω∗i \ Si(v). Define

Q(v) =
N⋃

i=1

Qi(v).

Obviously, v = H −Oi on Qi(v). We introduce the following set:

X(Ω) = {θ ∈ H1
0 (Ω) : θ = 1 a.e. on Ω∗}.

Lemma 1.1. If the solution u(e) of the state problem (1.7) belongs to
H2(Ω), then

LTR(e, u(e)) =
�

Q(u(e))

(−p+ 2ωH − div(H gradu(e))) dx,

i.e., it has the same value for all θ ∈ X(Ω).

Proof. Let us show that

(1.12) Nz(e, u(e)) ≡ −div(H gradu(e)) + Z0[u(e)]− − p+ 2ωH = 0

in Ω \Q(u(e)) a.e.
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Consider a point x0 ∈ Si(u(e)). There is a ball B%(x0) ⊂ Si(u(e)) and
a non-negative function ϕ ∈ C∞0 (B%(x0)) such that ϕ > 0 on a closed ball
B%/2(x0) and u(e) ≥ H−Oi+ϕ in B%(x0). Hence for any ϑ ∈ C∞0 (B%/2(x0))
we may find ε > 0 such that u(e) + εϑ ≥ H − Oi + ϕ/2 in B%/2(x0). As
a consequence v ≡ u(e) + εϑ ∈ K(H). Substituting this v in (1.7), we find
v − u(e) = εϑ and

�

Ω

H gradu(e) · gradϑdx ≥
�

Ω

(p− 2ωH)ϑdx.

Since the opposite inequality follows for v ≡ u(e)− εϑ, we obtain
�

Ω

(H gradu(e) · gradϑ− (p− 2ωH)ϑ) dx = 0

for all ϑ ∈ C∞0 (B%/2(x0)). Integrating by parts, we obtain (1.12) in Ω∗ \
Q(u(e)).

Next, consider a point x0 ∈ Ω \ Ω∗. We may find B%(x0) ⊂ Ω \Ω∗ and
for any ϑ ∈ C∞0 (B%(x0)) we substitute v = u(e) ± ϑ in (1.7) to find that
(1.12) holds in Ω \Ω∗.

Finally, integrating by parts and using (1.12), we may write

LTR(e, u(e)) =
�

Ω

Nz(e, u(e))ϑdx =
�

Q(u(e))

Nz(e, u(e)) dx

and the assertion of the lemma follows, since Z0 = 0 on Q(u(e)).

Remark 1.1. Some results on the regularity of solutions to obstacle
problems (cf. [7]) can justify the conjecture that u(e) ∈ H2(Ω) provided
Ω is convex and H ∈ H2(Ω∗i ) for all i = 1, . . . , N . These assumptions seem
to be sufficient for the justification of the functional LTR.

Remark 1.2. Let θ ∈ X(Ω). Then

(1.13) LTR(e, u(e)) =
�

Ω

θ dµ(e, u(e)) =
�

Q(u(e))

dµ(e, u(e)) ≥ 0,

where µ(e, u(e)) is a non-negative Radon measure with suppµ(e, u(e)) ⊂
Q(u(e)).

Define
R(e)v = −div(H grad v) + Z0[v]−

for any v ∈ H1(Ω). We can rewrite the inequality (1.7) for v := u(e) + ϕ,
where ϕ ∈ X(Ω), ϕ ≥ 0, as follows:

〈R(e)u(e), ϕ〉 ≥ 〈p− 2ωH,ϕ〉0.
As a consequence, R(e)u(e)−p+ 2ωH is a non-negative distribution on the
domain Ω, i.e., a non-negative Radon measure in Ω (cf. the Riesz–Schwartz
Theorem in [8]). By virtue of (1.12), its support is contained in Q(u(e))
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and (1.13) holds. This measure represents the interaction forces between
the pseudoplate and the obstacles.

We define the following optimal design problems:

e∗DD = arg min
e∈Uad

LDD(u(e)).(1.14)

e∗ISS = arg min
e∈Uad

LISS(u(e)),(1.15)

e∗COM = arg min
e∈Uad

LCOM(e, u(e))(1.16)

e∗TR = arg min
e∈Uad

LTR(e, u(e)),(1.17)

where u(e) denotes the solution of the state problem (1.7).
Moreover, we introduce the functionals

Fj(v) = (measGj)−1‖grad v‖20,Gj − τ2, j = 1, . . . ,M,

where Gj are given subdomains of Ω and τ is a given constant. We define a
set of admissible design variables

Sad =
{
e ∈ Uad :

M∑

j=1

[Fj(u(e))]+ = 0
}

and the following weight minimization problem:

(1.18) e∗w = arg min
e∈Sad

�

Ω

ωH dx.

2. Existence of a solution to the optimal design problems. In
this section we shall consider a class of abstract optimal control problems
and prove their solvability. Then we shall apply the general result to our
optimal design problems.

Let U be a Banach space of controls, Uad a subset of admissible controls.
We assume that Uad is compact in U . Let V be a reflexive Banach space
endowed with a norm ‖ · ‖ and let V ∗ be its dual with a norm ‖ · ‖∗, the
duality pairing between V and V ∗ being denoted by 〈·, ·〉.

Definition 2.1. We say that a sequence {Kn}, n = 1, 2, . . . , of convex
subsets of V converges to a set K, written

K = Lim
n→∞

Kn,

if the following two conditions are satisfied:

(i) for any v ∈ K there exists a sequence {vn} such that vn ∈ Kn and

lim
n→∞

vn = v in V ;

(ii) if vn ∈ Kn and vn ⇀ v (weakly) in V , then v ∈ K.
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Definition 2.2 (cf. [6]). Let Wn : V → [0,+∞], n = 1, 2, . . . , be a
sequence of functionals. We say that

W = lim
n→∞

Wn

if the following conditions hold:

(i) for each v ∈ V there exists a sequence {vn} such that vn ∈ V ,
limn→∞ vn = v in V and

lim sup
n→∞

Wn(vn) ≤ W(v);

(ii) for each subsequence {Wnk}, k = 1, 2, . . . , and each sequence {vk},
vk ∈ V , weakly convergent to v ∈ V , we have

W(v) ≤ lim inf
k→∞

Wnk(vk).

Remark 2.1. By Definition 2.2, W = limn→∞Wn implies that for each
v ∈ V there exists a sequence {vn} such that vn ∈ V , vn → v in V and
limn→∞Wn(vn) =W(v).

Consider a system {K(e)}, e ∈ Uad, of closed convex subsets K(e) ⊂ V
and a family {A(e)}, e ∈ Uad, of operators A(e) : V → V ∗ satisfying the
following assumptions:

(2.1) (i)
⋂
e∈Uad

K(e) 6= ∅.
(ii) en → e in U , en ∈ Uad ⇒ K(e) = Limn→∞K(en).

(iii) There exist constants 0 < αA < MA independent of e ∈ Uad and
such that

αA‖v − w‖2 ≤ 〈A(e)v − A(e)w, v − w〉,
‖A(e)v − A(e)w‖∗ ≤MA‖v − w‖,

for all v, w ∈ V and all e ∈ Uad.
(iv) en → e in U , en ∈ Uad ⇒ A(en)v → A(e)v in V ∗ for all v ∈ V .

Moreover, we consider a system {Φ(e)}, e ∈ Uad, of functionals Φ(e) :
V → [0,+∞], lower semicontinuous and convex on V and such that

(2.2)
en ∈ Uad, en → e in U ⇒ Φ(e) = limΦ(en),

domΦ(e) ≡ {v ∈ V : Φ(e)v < +∞} = K(e)

for all e ∈ Uad.
Furthermore, we assume that for each sequence {en}, n = 1, 2, . . . , such

that en ∈ Uad, en → e in U , there is a bounded sequence {an} with an ∈
K(en), and

(2.3) lim sup
n→∞

Φ(en)an < +∞.

Finally, let a functional f ∈ V ∗ and a continuous mapping B : U → V ∗ be
given.
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For any e ∈ Uad consider the following variational inequality: find u(e) ∈
K(e) such that

(2.4) 〈A(e)u(e), v − u(e)〉+ Φ(e)v − Φ(e)u(e) ≥ 〈f +B(e), v − u(e)〉
for all v ∈ K(e).

There exists a unique solution u(e) for any e ∈ Uad. In fact, we can
employ the general theory of variational inequalities (cf. e.g. [5, Thm. 8.5]
for a proof of existence; the uniqueness follows from the strong monoton-
icity).

Next, let L : U × V → R be a functional such that

(2.5) en ∈ Uad, en → e in U and vn ⇀ v (weakly) in V

⇒ lim inf
n→∞

L(en, vn) ≥ L(e, v).

Let us introduce a functional J : Uad → R by the formula

J(e) = L(e, u(e)),

where u(e) is the solution of the problem (2.4). We shall solve the optimiza-
tion problem

(2.6) e∗ = arg min
e∈Uad

J(e).

Theorem 2.1. Let the data of the state problem (2.4) satisfy the assump-
tions (2.1)–(2.3). Let en ∈ Uad, en → e∗ in U . Then u(en)→ u(e∗) in V.

Proof. For brevity, write un ≡ u(en), An = A(en), Φn = Φ(en), Kn =
K(en), Bn = B(en). Consider the inequality (2.4) for any en, n = 1, 2, . . .
Inserting v = an (see (2.3)), and adding the term 〈Anan, un − an〉 to both
sides, we derive the inequality

(2.7) 〈Anun − Anan, un − an〉+ Φnun

≤ 〈f +Bn, un − an〉+ 〈Anan, an − un〉+ Φnan.

Using (2.1)(iii)&(iv), (2.3) and the continuity ofB, we deduce that ‖un‖ ≤ C
for all n. Hence there exists a subsequence {uk} ⊂ {un} and u∗ ∈ V such
that uk ⇀ u∗ (weakly) in V. The assumption (2.1)(ii) implies that u∗ ∈
K(e∗), so that

(2.8) Φ(e∗)u∗ < +∞
by (2.2). Using Remark 2.1, we can find a sequence {θk} such that θk ∈ K(ek)
and

(2.9) θk → u∗ in V, limΦkθk = Φ(e∗)u∗.

Note that θk ∈ K(ek) follows from (2.2) and (2.8), (2.9).
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Next, consider again the inequality (2.4) for ek, insert v := θk, and add
the term 〈Akθk, uk − θk〉 to both sides to obtain

(2.10) lim sup〈Akuk − Akθk, uk − θk〉
≤ lim sup〈Akθk, θk − uk〉+ lim sup〈f +Bk, uk − θk〉

+ lim supΦkθk − lim inf Φkuk ≤ 0.

The last inequality follows from the weak convergence of uk, (2.9), the con-
tinuity of B, the assumption (2.2) and the following assertion:

(2.11) ek → e, ek ∈ Uad and vk → v in V

⇒ ‖Akvk − A(e)v‖∗ ≤MA‖vk − v‖+ ‖Akv − A(e)v‖∗ → 0,

which is a consequence of (2.1)(iii)&(iv).
Using (2.1)(iii) and (2.10), we obtain lim ‖uk − θk‖ = 0. Combining this

with (2.9), we arrive at

(2.12) uk → u∗ in V.

Moreover, (2.11) and (2.12) imply

(2.13) Akuk → A(e∗)u∗ in V ∗.

Given any v ∈ K(e∗), by (2.2) and Remark 2.1 there exists a sequence {ϕk}
such that ϕk ∈ K(ek), ϕk → v in V and

(2.14) Φkϕk → Φ(e∗)v.

Inserting v := ϕk in (2.4) for ek, we obtain

〈Akuk, uk − ϕk〉 − 〈f +Bk, uk − ϕk〉 ≤ Φkϕk − Φkuk.
Passing to the lim sup on both sides and using (2.12)–(2.14) and the as-
sumption (2.2), we arrive at

〈A(e∗), u∗ − v〉 − 〈f +B(e∗), u∗ − v〉 ≤ Φ(e∗)v − Φ(e∗)u∗.

From the uniqueness of u(e∗), we deduce u∗ = u(e∗). Moreover, the whole
sequence {u(en)} converges to u(e∗) in V .

Theorem 2.2. Let the data of the state problem (2.4) satisfy the assump-
tions (2.1)–(2.3). Let the functional L satisfy the condition (2.5). Then there
exists at least one solution of the optimal control problem (2.6).

Proof. Since the set Uad is compact in U , there exists a sequence {en}
such that en ∈ Uad and

en → e∗ in U, e∗ ∈ Uad, J(en)→ inf
e∈Uad

J(e).

Then (2.5) and Theorem 2.1 imply that

L(e∗, u(e∗)) ≤ lim inf
n→∞

L(en, u(en)) = inf
e∈Uad

L(e, u(e)).

As a consequence, e∗ is a solution to the problem (2.6).
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Let us apply Theorem 2.2 to the proof of existence of solutions to the
optimal design problems (1.14)–(1.17). We have to verify the assumptions
of Theorem 2.1.

We have U = C(Ω)× C(Ω \Ω∗)× C(∂ΩC) and

Uad = UHad × UZad × UFad.

Lemma 2.2. For any H ∈ UHad the set K(H), defined in (1.3), is a closed
and convex subset of V and

Hn ∈ UHad, Hn → H in C(Ω) ⇒ K(H) = Lim
n→∞

K(Hn).

Moreover , v ≡ 0 ∈ ⋂K(H) for all H ∈ UHad.

Proof. The closedness follows from the Lebesgue Theorem. The convex-
ity is immediate. Let Hn ∈ UHad, Hn → H in C(Ω). There exists a function
ϑ ∈ C0(Ω) such that 0 ≤ ϑ ≤ 1 in Ω and ϑ = 1 for x ∈ Ω∗. For any
v ∈ K(H) we construct a sequence

vn = v + ϑ‖Hn −H‖∞.
Then

vn ≥ H −Oi + (Hn −H) = Hn −Oi
for a.a. x ∈ Ω∗i , so that vn ∈ K(Hn). Moreover,

‖vn − v‖1 = ‖Hn −H‖∞‖ϑ‖1 → 0 as n→∞.
Next, let vn ∈ K(Hn), vn ⇀ v in V . By the Rellich Theorem, we have

vn → v in L2(Ω) and vn ≥ Hn−Oi for a.a. x ∈ Ω∗i . The Lebesgue Theorem
yields v ≥ H −Oi, so that v ∈ K(H).

Since Oi ≥ Hmax for all i = 1, . . . , N by assumption (1.1), the zero
function belongs to K(H) for any H ∈ Uad.

As a consequence, (2.1)(i)&(ii) are satisfied. For any e ∈ Uad we define
the mapping A(e) : V → V ∗ by the formula

(2.15) 〈A(e)v, w〉 = a(H; v, w) + b(Z; v, w) ∀v, w ∈ V
(see (1.4), (1.5)).

Lemma 2.3. The family of operators {A(e)}, e ∈ Uad, satisfies the as-
sumptions (2.1)(iii)&(iv).

Proof. It is readily seen that

(2.16) a(H; v, v) ≥ Hmin

�

Ω

|grad v|2 dx ≥ CFHmin‖v‖21

for all v ∈ V , since we can employ the Friedrichs inequality. We also have

(2.17) b(Z; v, v − z)− b(Z; z, v − z) =
�

Ω\Ω∗
Z([v]− − [z]−)(v − z) dx ≥ 0,



418 I. Hlaváček and J. Lov́ı̌sek

since
([v]− − [z]−)(v − z) ≥ ([v]− − [z]−)2.

Combining (2.16), (2.17) and (2.15), we may write

〈A(e)v − A(e)z, v − z〉 = a(H; v − z, v − z) + b(Z; v, v − z)− b(Z; z, v − z)

≥ CFHmin‖v − z‖21
for all H ∈ UHad, Z ∈ UZad, v ∈ V and z ∈ V .

Next, we have

|a(H; v, w)− a(H; z, w)| =
∣∣∣

�

Ω

H grad(v − z) gradw dx
∣∣∣(2.18)

≤ Hmax‖v − z‖1‖w‖1
and

|b(Z; v, w)− b(Z; z, w)| =
∣∣∣

�

Ω\Ω∗
Z([v]− − [z]−)w dx

∣∣∣(2.19)

≤ Zmax‖v − z‖1‖w‖1,
where the relation |[v]− − [z]−| ≤ |v − z| has been used. Combining (2.15),
(2.18) and (2.19), we obtain

|〈A(e)v −A(e)z, w〉| ≤ (Hmax + Zmax)‖v − z‖1‖w‖1.
As a consequence, the assumption (2.1)(iii) is satisfied. To verify (2.1)(iv),
we write

|〈A(en)v − A(e)v, w〉| ≤
∣∣∣

�

Ω

(Hn −H) grad v · gradw dx
∣∣∣

+
∣∣∣

�

Ω\Ω∗
(Zn −Z)[v]−w dx

∣∣∣

≤ (‖Hn −H‖∞ + ‖Zn − Z‖∞)‖v1‖ · ‖w‖1,
using the relation |[v]−| ≤ |v|. Then

‖A(en)v − A(e)v‖∗ ≤ (‖Hn −H‖∞ + ‖Zn − Z‖∞)‖v‖1 → 0

if en → e in U .

Lemma 2.4. The system {Φ(e)}, e ∈ Uad, of functionals defined by (1.6)
satisfies the assumptions (2.2) and (2.3).

Proof. Since the integral is continuous on V and the indicatrix is lower
semicontinuous, their sum is lower semicontinuous on V for any H ∈ UHad
and F ∈ UFad. The convexity is immediate. For any e ∈ Uad and v ∈ K(H),
the integral is finite and the indicatrix vanishes.
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Let us verify the assumption (2.2). Let us write

Φ(e)v = Φ1(e)v + Φ2(e)v,

Φ1(e)v =
�

∂ΩC

F|v| ds, Φ2(e)v = IK(H)(v),

|Φ(en)vn−Φ(e)v| ≤ |Φ1(en)vn−Φ1(e)v|+ |Φ2(en)vn−Φ2(e)v| = |Λ1|+ |Λ2|.
We verify the conditions (i) and (ii) of Definition 2.2. First, let v ∈ K(H). By
Lemma 2.2 there exists a sequence {vn} such that vn ∈ K(Hn) and vn → v
in V . Then we have

|Λ1| ≤ |Φ1(en)vn − Φ1(e)vn|+ |Φ1(e)vn − Φ1(e)v|
≤

�

∂ΩC

(|Fn − F| · |vn|+ F|vn − v|) ds

≤ C(‖Fn −F‖∞‖vn‖1 + Fmax‖vn − v‖1)→ 0,

Λ2 = IK(Hn)(vn)− IK(H)(v) = 0.

Altogether, we obtain

(2.20) limΦ(en)vn = Φ(e)v.

Second, let v 6∈ K(H). Setting vn = v for all n = 1, 2, . . . , we have

lim supΦ(en)vn ≤ lim sup
�

∂ΩC

Fn|v| ds+ lim sup IK(Hn)(v)(2.21)

≤
�

∂ΩC

F|v| ds+∞ = Φ1(e)v + Φ2(e)(v)

= Φ(e)v,

since IK(H)(v) = +∞.
Combining (2.20) and (2.21), we obtain lim supΦ(en)vn ≤ Φ(e)v for any

v ∈ V . As a consequence, condition (i) is satisfied.
Next, let vn ⇀ v in V . We have

lim inf Φ(en)vn ≥ lim inf Φ1(en)vn + lim inf Φ2(en)vn.

Using the compactness of the trace mapping H1(Ω) → L2(∂Ω), we may
write

|Φ1(en)vn − Φ1(e)v| ≤
�

∂ΩC

(|Fn − F| · |vn|+ F|vn − v|) ds→ 0,

so that
limΦ1(en)vn = Φ1(e)v.

We have
lim inf Φ2(en)vn = lim inf IK(Hn)(vn) = a,
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where a is either +∞ or zero. If a = +∞, then obviously

(2.22) a ≥ IK(H)(v).

If a = 0, there exists a subsequence {vk} ⊂ {vn} such that vk ∈ K(Hk)
for all k → ∞. By Lemma 2.2 the weak limit v belongs to K(H), so that
IK(H)(v) = 0 and (2.22) holds again. As a consequence, condition (ii) is
fulfilled, as well. Thus Φ(e) = limΦ(en) whenever en → e in U .

To verify condition (2.3), we can set an = 0, n = 1, 2, . . . , since 0 ∈ K(H)
for all H ∈ UHad, by (1.1). Then Φ(en)an = 0 for all n.

Lemma 2.5. Any of the cost functionals (1.8)–(1.11) satisfies the as-
sumption (2.5).

Proof. Let en ∈ Uad, en → e in U and vn ⇀ v in V . By the Rellich
Theorem, vn → v in L2(Ω), so that

|LDD(vn)−LDD(v)| ≤
�

Ω

|(vn−z)2−(v−z)2| dx ≤ ‖vn+v−2z‖0‖vn−v‖0 → 0

and so
lim
n→∞

LDD(vn) = LDD(v).

The functional LISS is convex and differentiable in V . Therefore it is
weakly lower semicontinuous and (2.5) follows.

Next, we may write

LCOM(en, vn) = 〈p− 2ωHn, vn〉0 = 〈p− 2ωH, vn〉0 + ψn,

where

|ψn| = 2ω|〈H −Hn, vn〉0| ≤ 2ω‖H −Hn‖∞C‖vn‖1 → 0.

Then
limLCOM(en, vn) = 〈p− 2ωH, v〉0 = LCOM(e, v).

Consider a fixed θ ∈ X(Ω) in (1.11) and write

(2.23) LTR(en, vn) = LTR(e, vn) +Mn,

(2.24) |Mn| =
∣∣∣

�

Ω

[(Hn −H) grad vn · grad θ

+ 2ω(Hn −H)θ + (Z0
n −Z0)[vn]−θ] dx

∣∣∣
≤ C[‖Hn −H‖∞(‖vn‖1 + 1) + ‖Z0

n − Z0‖∞‖vn‖1]→ 0.

By the Rellich Theorem,
∣∣∣

�

Ω

Z0([vn]− − [v]−)θ dx
∣∣∣ ≤ Zmax

�

Ω

|vn − v|θ dx ≤ C‖vn − v‖0 → 0.
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As a consequence, we obtain

(2.25) limLTR(e, vn) = LTR(e, v).

Combining (2.23)–(2.25), we arrive at limLTR(en, vn) = LTR(e, v).

The Arzelà–Ascoli Theorem yields the compactness of the sets UHad, UZad
and UFad in the spaces C(Ω), C(Ω \Ω∗) and C(∂ΩC), respectively. Thus Uad

is compact in U . Finally, setting

〈f, v〉 = 〈p, v〉, 〈Be, v〉 = −2ω〈H, v〉0,
it is readily seen that f ∈ V ∗ and B : U → V ∗ is a continuous mapping.

Altogether, all the assumptions of Theorem 2.2 are fulfilled, by Lemmas
2.2–2.5. As a consequence, each of the optimal design problems (1.14)–(1.17)
has at least one solution.

3. Existence of a solution to the weight minimization prob-
lem. The existence of a solution to the problem (1.18) will be proved by
means of a penalization method. Consider a penalized cost functional

Lw(ε, e, u) = 〈ω,H〉0 + ε−1
M∑

j=1

[Fj(u)]+,

where ε is an arbitrary positive constant parameter. We define the following
penalized optimization problem: find

(3.1) eε = arg min
e∈Uad

Lw(ε, e, u(e)),

where u(e) is the solution of the state problem (1.7).

Lemma 3.1. Let en → e in U , en ∈ Uad, as n→∞. Then

lim
n→∞

[Fj(u(en))]+ = [Fj(u(e))]+, j = 1, . . . ,M.

Proof. We may write

|[Fj(u(en))]+ − [Fj(u(e))]+|
≤ |Fj(u(en))− Fj(u(e))|

≤ (measGj)−1
�

Gj

∣∣|gradu(en)|2 − |gradu(e)|2
∣∣ dx

≤ C
�

Gj

|grad(u(en)− u(e))|(|gradu(en)|+ |gradu(e)|) dx

≤ C‖u(en)− u(e)‖1(‖u(en)‖1 + ‖u(e)‖1)→ 0,

where Theorem 2.1 has been used in the last step.
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Lemma 3.2. The penalized optimization problem (3.1) has a solution for
any positive ε.

Proof. By Lemma 3.1, the functionals e 7→ [Fj(u(e))]+ are continuous in
Uad and so is the weight 〈ω,H〉0. Since the set Uad is compact in U , there
exists a minimizer in Uad.

Theorem 3.1. Assume that Sad 6= ∅ and the data satisfy all assump-
tions of Theorem 2.1. Let {eεn}, εn → 0+, be a sequence of solutions of
the penalized optimization problems (3.1). Let {u(eεn)} be the correspond-
ing sequence of solutions to the state problem (1.7). Then there exists a
subsequence {eεk} ⊂ {eεn} and e∗w ∈ Sad such that

eεk → e∗w in U,(3.2)

u(eεk)→ u(e∗w) in V,(3.3)

where e∗w is a solution to the weight minimization problem (1.18).

Proof. Since Uad is compact in U , there exists a subsequence such that
(3.2) holds. Then (3.3) follows from Theorem 2.1. Let us show that e∗w is a
solution of (1.18). By definition, setting

Jw(e) = 〈ω,H〉0,
we have

(3.4) Jw(eεk) + ε−1
k

M∑

j=1

[Fj(u(eεk))]+ ≤ Jw(e)

for any e ∈ Sad. Then
M∑

j=1

[Fj(u(ek))]+ ≤ εkJw(e).

Passing to the limit as εk → 0+ and using Lemma 3.1, we obtain
M∑

j=1

[Fj(u(e∗w))]+ ≤ 0

so that e∗w ∈ Sad follows.
Next, in view of (3.4) we have

(3.5) Jw(eεk) ≤ Jw(e)

for all e ∈ Sad. Pass to the limit, use (3.2) and the continuity of Jw in U to
obtain

Jw(e∗w) ≤ Jw(e)

for any e ∈ Sad. Hence e∗w is a solution of (1.18).
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Corollary 3.1. Assume that Sad 6= ∅ and the data satisfy all assump-
tions of Theorem 2.1. Then there exists at least one solution of the weight
minimization problem (1.18).

Proof. This is a consequence of Lemma 3.2 and Theorem 3.1.

4. Reliable solutions of problems with uncertain data. In this
section we will consider the state problem (1.7) with some uncertain input
data. It may happen that the distributed load p, the coefficient Z of the
elastic foundation and the slip limit F are uncertain, i.e., they are not given
uniquely, but the only available information is that they belong to some
given sets Upad, UZad and UFad, respectively. On the other hand, we assume
that the half-thickness function H is fixed, H ∈ C(0),1(Ω) and H > 0.

Let UZad and UFad be the sets defined in Section 1. Let Ω be decomposed
into M disjoint subdomains, i.e.,

Ω =
M⋃

m=1

Ωm, Ωm ∩Ωk = ∅ if m 6= k,

and let

Upad =
{
p ∈ L∞(Ω) : p|Ωm ∈ C

(0),1(Ωm), m = 1, . . . ,M,

‖p− p0‖∞ ≤ C1,

∥∥∥∥
∂p

∂xi

∥∥∥∥
∞
≤ C2, i = 1, 2

}
,

where p0 is a given function such that

p0|Ωm ∈ C
(0),1(Ωm),

∥∥∥∥
∂p0

∂xi

∥∥∥∥
∞
≤ C2, i = 1, 2,

and C1, C2 are given constants.
Note that any p ∈ Upad is a piecewise Lipschitz-continuous function which

does not differ “too much” from a “central” piecewise Lipschitz-continuous
function p0.

We introduce the set

Uad = Upad × UZad × UFad,

the space

U =
( M∏

m=1

C(Ωm)
)
× C(Ω \Ω∗)× C(∂ΩC)

and the triples of data
e ≡ {p,Z,F} ∈ Uad.

We shall employ the method of reliable solutions alias worst scenario
method (see [2], [3]), which consists of the following steps:
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(i) choose a functional-criterion {e, u} 7→ Φ(e, u),
(ii) solve the following maximization problem:

(4.1) e∗ = arg max
e∈Uad

Φ(e, u(e)),

where u(e) denotes the (unique) solution of the state problem (1.7) for the
input data e.

The choice of the criterion Φ depends on the technical demands. For
instance, it can represent maximal deflection of the pseudoplate, maximal
intensity of shear stresses or the resultant transverse reactive force on a
given inner obstacle. Thus we can define

Φ1(u) = max
1≤j≤J

(measGj)−1
�

Gj

|u| dx,

Φ2(u) = max
1≤j≤J

(measGj)−1
�

Gj

|gradw|2 dx,

where Gj are some a priori chosen (small) subdomains,

Φ3(e, u) =
�

Ω

(H gradu · gradϕ+ (Z0[u]− − p+ 2ωH)ϕ)dx,

where

ϕ ∈ Xi(Ω) = {ϕ ∈ H1
0 (Ω) : ϕ = 1 a.e. on Ω∗i and

ϕ = 0 a.e. on Ω∗k for all k 6= i}.
Remark 4.1. Arguing as in the proof of Lemma 1.1 and in Remark 1

we can deduce for u(e) ∈ H2(Ω), on the basis of (1.12), that the functional
Φ3 represents the resultant of the transverse reactive forces of the obstacle
Ω∗i . In fact, we derive that

Φ3(e, u(e)) =
�

Ω

Nz(e, u(e))ϕdx =
�

Ω∗i

Nz(e, u(e)) dx.

Proposition 4.1. Let en ∈ Uad, en → e in U . Then u(en)→ u(e) in V.

Proof. This is based on Theorem 2.1. Since H is a fixed function, the
verification of (2.1)(i)&(ii) is obvious. Now we define

〈f, v〉 = −2ω〈H, v〉0 and 〈Be, v〉 = 〈p, v〉0,
so that B : U → V ∗ is a continuous mapping.

Lemma 4.1. Let en ∈ Uad, en → e in U . Then

(4.2) Φi(en, u(en))→ Φi(e, u(e)), i = 1, 2, 3,

as n→∞.
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Proof. Set un ≡ u(en), u ≡ u(e). By Proposition 4.1, un → u in V . Then
we may write∣∣∣

�

Gj

(|un| − |u|) dx
∣∣∣ ≤

�

Gj

|un − u| dx ≤ (measGj)1/2‖un − u‖0 → 0

and∣∣∣
�

Gj

|gradun|2 − |gradu|2) dx
∣∣∣

≤
�

Gj

|grad(un − u)|(|gradun|+ |gradu|) dx

≤ ‖un − u‖1(‖un‖1 + ‖u‖1)→ 0.

As a consequence, (4.2) follows for i = 1, 2.
Next, we have

|Φ3(en, un)− Φ3(e, u)| =
∣∣∣

�

Ω

(H grad(un − u) · gradϕ

+ (Z0
n[un]− − Z0[u]−)ϕ+ (p− pn)ϕ) dx

∣∣∣

≤ C
(
‖un − u‖1 + ‖p− pn‖∞

+
�

Ω

(|Z0
n −Z0|[un]− + Zmax|[un]− − [u]−|) dx

)

≤ C̃(‖un − u‖1 + ‖p− pn‖∞ + ‖Zn − Z‖∞)→ 0

arguing as in the proof of (2.24) and (2.25).

Theorem 4.1. The maximization problem (4.1) with any of the func-
tionals Φi, i = 1, 2, 3, has at least one solution.

Proof. The functional

J(e) ≡ Φi(e, u(e)), i = 1, 2, 3,

is continuous on the set Uad by Lemma 4.1. Since the set Uad is compact in
U , there exists a maximizer e∗ in Uad.
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