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OPTIMAL MEAN-VARIANCE BOUNDS ON
ORDER STATISTICS FROM FAMILIES
DETERMINED BY STAR ORDERING

Abstract. We present optimal upper bounds for expectations of order
statistics from i.i.d. samples with a common distribution function belonging
to the restricted family of probability measures that either precede or follow
a given one in the star ordering. The bounds for families with monotone
failure density and rate on the average are specified. The results are obtained
by projecting functions onto convex cones of Hilbert spaces.

1. Introduction. Consider a finite sequence X1, . . . ,Xn of independent
identically distributed random variables, with common distribution func-
tion F , mean µ and variance σ2 <∞. The respective order statistics will be
denoted by X1:n, . . . ,Xn:n. Moriguti (1953) proved that for 2 ≤ j ≤ n− 1,

EFXj:n − µ =
1�

0

F−1(x)[fj:n(x)− 1] dx(1.1)

=
1�

0

[F−1(x)− µ] d(Fj:n − U)(x)

≤
1�

0

[F−1(x)− µ] d(F j:n − U)(x)

≤
{ 1�

0

[F−1(x)− µ]2 dx
1�

0

[f j:n(x)− 1]2 dx
}1/2

= ‖f j:n − 1‖Uσ,
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where

fj:n(x) = n

(
n− 1
j − 1

)
xj−1(1− x)n−j, 1 ≤ j ≤ n,(1.2)

is the density function of the jth order statistic of the standard uniform
sample with distribution function U(x) = x, 0 ≤ x ≤ 1, and

Fj:n(x) =
x�

0

fj:n(t) dt =
n∑

k=j

(
n

k

)
xk(1− x)n−k;(1.3)

moreover

F j:n(x) =
{
Fj:n(x) if 0 ≤ x ≤ δ,
fj:n(δ)(x− 1) + 1 if δ ≤ x ≤ 1,

(1.4)

with δ ∈
(
0, j−1

n−1

)
uniquely determined by

1− Fj:n(δ) = (1− δ)fj:n(δ),(1.5)
is the greatest convex minorant of Fj:n, with derivative

f j:n(x) = fj:n(min{x, δ}),(1.6)

and ‖ · ‖U denotes the L2-norm on the unit interval with uniform weighting.

Since � 1
0 f j:n(x) dx = F j:n(1) = Fj:n(1) = 1, we have

‖f j:n − 1‖2U =
1�

0

f 2
j:n(x) dx− 1 =

δ�

0

f2
j:n(x) dx+ (1− δ)f2

j:n(δ)− 1(1.7)

= n

(2j−2
j−1

)(2n−2j
n−j

)
(2n−1

n

) F2j−1:2n−1(δ) + (1− δ)f2
j:n(δ)− 1.

Explicit formulae for (1.7) in the special cases j = 2, 3, n−2, n−1 were pre-
sented in Balakrishnan (1993). The functions f j:n − 1 are the L2([0, 1], dx)-
projections of the increasing-decreasing fj:n − 1, 2 ≤ j ≤ n − 1, onto the
convex cone of nondecreasing functions integrating to 0, which coincides
with the class of all possible F−1 − µ. Generally, the projection Ph of an
arbitrary h onto a convex cone C of a real Hilbert space is characterized by
two relations:
(1.8) ∀g ∈ C (g, h) ≤ (g, Ph),

(1.9) (Ph, h) = (Ph, Ph)
(see, e.g. Balakrishnan (1981, Section 1.4)). In our case, (1.8) is equivalent
to (1.1), and (1.9) follows from

(1.10)
1�

0

[fj:n(x)− 1][f j:n(x)− 1] dx

=
δ�

0

[fj:n(x)− 1]2 dx+ [fj:n(δ)− 1]2(1− δ)

= ‖f j:n − 1‖2U



Mean-variance bounds on order statistics 17

(cf. (1.5)). By (1.10), the distribution function F defined by

F−1 − µ =
f j:n − 1

‖f j:n − 1‖U
σ,(1.11)

i.e. the inverse of a polynomial with jump 1 − δ at the right end-point of
support is the unique marginal distribution with given first two moments
that provides equality in (1.1).

Note that for the decreasing functions f1:n−1, the projection is constant
f1:n−1 = 0 (since F j:n = U), and the trivial bound EFX1:n ≤ µ holds, which
becomes equality for the Dirac measure at µ. For j = n, Gumbel (1954) and
Hartley and David (1954) applied the Schwarz inequality to the second line
of (1.1), and obtained

EFXn:n − µ ≤ ‖fn:n − 1‖Uσ = (n− 1)(2n− 1)−1/2σ,(1.12)

with equality attained for

(1.13) F

(
x− µ
σ

)
=
[

n− 1
(2n− 1)1/2n

· x− µ
σ

+
1
n

]1/(n−1)

,

−(2n− 1)1/2

n− 1
≤ x− µ

σ
≤ (2n− 1)1/2

(cf. (1.11)). This is a consequence of the fact that fn:n − 1 is actually in-
creasing, and so it coincides with its projection. Accordingly, formula (1.1)
expressed in terms of projections onto nondecreasing functions holds true
for general 1 ≤ j ≤ n, and (1.11) is a necessary and sufficient condition for
equality.

The Moriguti projection method used together with the Hölder inequal-
ity provides more general bounds in terms of various central absolute mo-
ments of a single observation (see Rychlik (1998)). Raqab (1997) used the
Moriguti method to find exact moment bounds on kth records. Gajek and
Okolewski (2000) combined the greatest convex minorants with the Stef-
fensen inequality and derived some general bounds for order and record
statistics. We also refer to Robertson et al. (1988) for numerous applications
of discrete versions of the Moriguti algorithm in order restricted statistical
inference.

The idea of using projections to determine sharp bounds for statistical
functionals on restricted families was first presented in Gajek and Rych-
lik (1996). That paper contains applications of the method for determin-
ing bounds on expected order statistics of dependent identically distributed
samples with decreasing density and failure rate, and symmetric unimodal
distribution, when either the second moment or the mean and variance of
a single observation are given. Analogous problems for independent samples
were solved in Gajek and Rychlik (1998). Dependent samples with increasing
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densities and failure rates and symmetric U -shaped densities were studied
in Rychlik (1998), and those with monotone failure rates on the average in
Rychlik (2001). An application of the projection method for improvements
of records was presented in Rychlik (1997).

The purpose of this paper is to find sharp upper mean-variance bounds
for the expectations of order statistics of independent identically distributed
random variables from restricted families of distributions defined by means
of star ordering. We consider an absolutely continuous marginal distribution
function F with density function f concentrated on an interval [aF , dF ),
−∞ < aF < dF ≤ ∞. We say that F precedes G in the star ordering
(F ≺? G) iff G−1F is starshaped, i.e. G−1F (x)/(x − aF ) is nondecreasing
on the support of F . Observe that the relation is a location-scale invariant
partial ordering so that F ≺? G implies the same for any location-scale trans-
formations of F and G. We extend here the standard notion of star ordering
defined for distribution functions with the left end-point aF = aG = 0, which
is merely scale invariant. Properties of starshaped functions were studied
in Barlow et al. (1969). Barlow and Proschan (1966) determined some in-
equalities for L-statistics imposed by the star ordering of the distributions
of observations. Shaked (1982) discovered a close relation of the star and
dispersive orderings.

We consider restricted classes of parent distributions F which either pre-
cede or succeed a given distribution W in the star ordering. A particular
emphasis will be laid on the cases of uniform W (x) = U(x) = x, 0 ≤ x ≤ 1,
and exponential distributions W (x) = E(x) = 1− e−x, 0 ≤ x <∞. For the
former, F ≺? U (resp. F �? U) means that (x− aF )−1 � xaF f(t) dt is nonde-
creasing (resp. nonincreasing). We can say that the density is nondecreasing
(resp. nonincreasing) on the average: although f can be multimodal, the
larger values in [aF , dF ) are more (resp. less) probable than the smaller ones.
In the latter case, the relations F ≺? E and F �? E with aF = 0 define no-
tions of increasing and decreasing failure rate on the average 1

x � x0 f(t)
1−F (t) dt,

respectively, which are of importance in reliability theory.

In Section 2, we study the bounds for order statistics of i.i.d. samples for
classes of parent distributions with fixed maximal and minimal element W
in the star ordering. Assumptions on W will be chosen so as to cover the
cases of interest. We state and solve auxiliary problems of projecting a given
function onto convex cones in a Hilbert space. In particular, we show that
for F ≺? W , the general bounds (1.1) hold. For F �? W , the solution,
dependent on the sample size n and the number j of the order statistic, is
given up to a pair of numerical parameters determined by two equations.
In Section 3, we specify the results for families with monotone density and
failure rate on the average. For each bound, we describe a (limiting) location-
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scale family of parent distributions that attains it. Section 4 contains the
proofs of the results presented in Section 2.

2. Projection problem. Changing variables in (1.1), we get

EFXj:n − µ =
d�

a

[F−1W (x)− µ][fj:nW (x)− 1]w(x) dx(2.1)

= (F−1W − µ, fj:nW − 1)W ,
where W is an absolutely continuous distribution function with density w,
support [a, d), and a finite second moment, and (·, ·)W denotes the inner
product in the real Hilbert space L2([a, d), w(x) dx) of square integrable
functions with weight w on the interval [a, d). Since W will be fixed, we
simplify the notation by dropping subscripts of its support end-points. The
transformation F−1W − µ for arbitrary F with a finite second moment
satisfying F �? W (resp. F ≺? W ) defines a family C1 (resp. C2) of functions
in L2([a, d), w(x) dx) as

Ci =
{
g ∈ Ĉi :

d�

a

g(x)w(x) dx = 0
}
, i = 1, 2,

with
(2.2) Ĉ1 = {g ∈ L2([a, d), w(x) dx) : g(x) and [g(x)− g(a)]/(x− a)

are nondecreasing},
(2.3) Ĉ2 = {g ∈ L2([a, d), w(x) dx) : g(x) is nondecreasing

and [g(x)− g(a)]/(x− a) is nonincreasing}.
Observe that all Ci, Ĉi, i = 1, 2, are convex cones, and the latter pair is
translation invariant: g ∈ Ĉi implies that g + c ∈ Ĉi, i = 1, 2, for all real c.
By the arguments of Section 1, for determining the bounds for F �? W and
F ≺? W it is crucial to find the projections Pi(fj:nW − 1) of fj:nW − 1
onto Ci, i = 1, 2. Indeed, combining (2.1) with (1.8), we obtain

EFXj:n − µ ≤ ‖Pi(fj:nW − 1)‖Wσ, i = 1, 2(2.4)
(cf. (1.1)). Similarly, for

F−1W − µ =
Pi(fj:nW − 1)
‖Pi(fj:nW − 1)‖W

σ ∈ Ci, i = 1, 2,

we obtain equality in (2.4), using (2.1) and (1.9) (cf. also (1.10)).
We also notice that we can replace the original projection problems

by simpler ones of projecting fj:nW onto (2.2) and (2.3). We first recall
Lemma 1 of Rychlik (2001).

Lemma 1. If Ĉ is a translation invariant convex cone in the space
L2([a, d), w(x) dx) with � da w(x) dx = 1, and the projection P̂ h of some h ∈
L2([a, d), w(x) dx) onto Ĉ exists, then � da P̂ h(x)w(x) dx = � da h(x)w(x) dx.
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Since � da[fj:nW (x) − 1]w(x) dx = � 1
0 fj:n(x) dx − 1 = 0, by Lemma 1,

Pi(fj:nW − 1) = P̂ (fj:nW − 1), i = 1, 2. Furthermore, P̂ (h + c) = P̂ h + c

for all real c and every translation invariant convexcone of Ĉ implies that
P̂ (fj:nW − 1) = P̂ fj:nW − 1, i = 1, 2.

Throughout this section we consider general weight functions w : [a, d)→
[0,∞) such that

d�

a

w(x) dx = 1,
d�

a

x2w(x) dx <∞,(2.5)

and 0 ≤ h ∈ L2([a, d), w(x) dx) satisfying

d�

a

h(x)w(x) dx = 1.(2.6)

We also assume that h is bounded continuously differentiable, and h(a) = 0,
and there are a ≤ b < c ≤ d such that h is increasing and strictly convex
in (a, b), and increasing and strictly concave in (b, c), and decreasing in (c, d).
Either of (a, b) and (c, d) may be empty. Here h = fj:nW for brevity of no-
tation. Conditions (2.5) mean that w is a density function on [a, d) with
a finite variance. Writing � da fj:nW (x)w(x) dx = � 1

0 fj:n(x) dx = 1, we triv-
ially check (2.6). The functions fj:n, 2 ≤ j ≤ n − 1, start with zero value,
then increase, and eventually decrease, and so do the compositions fj:nW
by strict increase of W . If W = U , then the assumptions of consecutive
convexity and concavity are satisfied for 2 ≤ j ≤ n − 1 with a = b, when
j = 2. If W = E, the shape assumptions hold for 2 ≤ j ≤ n with a = b
and c = d for j = 2 and j = n, respectively. Since f1:nW is decreasing,
Pi(f1:nW − 1), i = 1, 2, are identical with the projections P̂i(f1:nW − 1) = 0
onto the class of all nondecreasing functions. This gives the zero bound
for the sample minimum. We exclude this trivial case from the further
study.

We now formulate the main results of this section. For a ≤ p ≤ c and
p ≤ q ≤ c, q 6= a, set

G(p, q) =
d�

q

[
h(q)− h(p)

q − a (x− a) + h(p)− h(x)
]
(x− a)w(x) dx,(2.7)

H(p, q) =
p�

a

[h(p)− h(x)]w(x) dx(2.8)

+
d�

q

[
h(q)− h(p)

q − a (x− a) + h(p)− h(x)
]
w(x) dx.
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Then for a < p ≤ c,

G(p) = G(p, p) =
d�

p

[h(p)− h(x)](x− a)w(x) dx,(2.9)

H(p) = H(p, p) =
d�

a

[h(p)− h(x)]w(x) dx = h(p)− 1.(2.10)

Theorem 1. Let p0 be the unique zero of (2.10) in (a, c). If

G(p0) =
d�

p0

[1− h(x)](x− a)w(x) dx ≥ 0,(2.11)

then P1h = 1. Otherwise there exists a unique pair (p?, q?), a ≤ p? < p1 =
G−1(0) < p0, max{p?, b} < q? < c, determined by the equations

G(p, q) = 0,(2.12)

H(p, q) = 0,(2.13)

such that P1h = hp?q? for

hpq(x) =





h(p) if a ≤ x ≤ p,
h(x) if p ≤ x ≤ q,
h(q)− h(p)

q − a (x− a) + h(p) if q ≤ x < d.

(2.14)

Since h is strictly increasing from h(a) = 0 to h(c) = suph > 1 (cf.
(2.5) and (2.6)), p0 is indeed well defined. If a ≤ p ≤ q ≤ c, q 6= a, then
(2.14) is nondecreasing, and constant for a < p = q ≤ c in particular. If
q? < q(p?) ∈ (max{p?, b}, c) defined in Lemma 2 of Section 4, then hp?q?

is also starshaped. Existence and uniqueness of (p?, q?) will follow from
Lemma 3. Taking h = fj:nW , we can deduce the following sharp bounds
for the expectations of order statistics.

Theorem 2. Let X1, . . . ,Xn be i.i.d. random variables with finite mean
µ and variance σ2, and a distribution function F such that F �? W . Suppose
that the density w of W and h = fj:nW for some 2 ≤ j ≤ n satisfy the
assumptions presented above (see (2.5)–(2.6)). If for p0 = W−1f−1

j:n(1) ∈
(a, c) =

(
W−1(0),W−1

( j−1
n−1

))
we have

GW (p0) =
d�

p0

[1− fj:nW (x)](x− a)w(x) dx ≥ 0,(2.15)

then
EFXj:n ≤ µ,(2.16)
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with equality when F is concentrated at µ. Otherwise there exists a pair
(p?, q?), a ≤ p? < c, a < q? ∈ [p?, c), determined by

GW (p, q) =
QW − PW
q − a

d�

q

(x− a)2w(x) dx+ PW

d�

q

(x− a)w(x) dx(2.17)

−
d�

q

fj:nW (x)(x− a)w(x) dx = 0,

HW (p, q) = PW [W (p) + 1−W (q)]− Fj:nW (p)− 1 + Fj:nW (q)(2.18)

+
QW − PW
q − a

d�

q

(x− a)w(x) dx = 0,

with PW , QW denoting fj:nW (p), fj:nW (q), respectively. Then
EFXj:n − µ ≤ B(j, n)σ(2.19)

for
(2.20) B2 = B2(j, n) = P 2

W [W (p) + 1−W (q)]

+ 2PW
QW − PW
q − a

d�

q

(x− a)w(x) dx

+
(
QW − PW
q − a

)2 d�

q

(x− a)2w(x) dx− 1

+ n

(2j−2
j−1

)(2n−2j
n−j

)
(2n−1

n

) [F2j−1:2n−1W (q)− F2j−1:2n−1W (p)].

Equality in (2.19) is attained by

(2.21) FW

(
x− µ
σ

)

=





0 if
x− µ
σ

< −1− PW
B

,

f−1
j:n

(
B
x− µ
σ

+ 1
)

if −1− PW
B

≤ x− µ
σ

<−1−QW
B

,

W

(
a+

(q − a)
(
B x−µ

σ + 1− PW
)

QW − PW

)
if
x− µ
σ
≥ −1−QW

B
.

The proof is straightforward once we apply the conclusions of Theorem 1
for determining P1(fj:nW − 1) = P̂1h − 1. Formula (2.11) can be specified
as (2.15), and (2.16), apparently true for small order statistics, follows from
the first statement. Rewriting (2.12)–(2.13) as (2.17)–(2.18), we calculate
B2(j, n) = ‖hp?q? − 1‖2W = ‖hp?q?‖2W − 1. Observe that (2.21) has a jump
of height W (p) at the left end-point, and, under linear transformations of
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its argument, coincides then with the inverse of a Bernstein polynomial and
ultimately with W generating the class of parent distributions.

Formally, (2.21) does not belong to the class of absolutely continuous
distributions following W in the star ordering. However, it is easy to find
sequences of absolutely continuous Fk �? W , k → ∞, which attain the
bounds asymptotically. It suffices that

‖F−1
k W − F−1

W W‖2W =
1�

0

[F−1
k (x)− F−1

W (x)]2 dx→ 0.

For instance, if P1h = hp?q? for some a ≤ p? < q?, then we can replace the
constant part in (2.14) by

hk(x) = h(p)− p− x
k(p− a)

∼ F−1
k W (x)− µ, a ≤ x ≤ p,

for sufficiently large k. Consequently, ‖F−1
k W −F−1

W W‖2W ≤ const W (p)/k2

→ 0, and F−1
k W−µ ∈ Ĉ1. Since (F−1

k W−F−1
W W, 1)W = (F−1

k W−µ, 1)W →
0, we have C1 3 F−1

k W−(F−1
k W, 1)W → F−1

W W−µ. Such Fk have increasing
densities proportional to w in shrinking left neighborhoods of the left-end
support point of FW . Details of the construction of approximations for other
forms of projections are left to the reader.

Theorem 3 asserts that the best bounds for order statistics of i.i.d. sam-
ples with distributions F ≺? W are identical with general ones described in
(1.1)–(1.7). Since the distributions attaining the bounds (see (1.11)) have
jumps at their right-end support points, except for (1.13) in case j = n,
they should also be approximated by absolutely continuous sequences.

Theorem 3. If X1, . . . ,Xn are i.i.d. with distribution function F ≺?W ,
finite mean and variance, and the assumptions on w = dW/dx and h =
fj:nW are satisfied , then (1.1) with (1.7) provide the best possible bounds for
EF (Xj:n − µ)/σ. They are attained in limit by sequences Fk ≺? W whose
quantile functions tend in L2([0, 1], dx) to one defined in (1.11). In partic-
ular , the general bounds cannot be improved in the classes of distributions
with increasing density function and failure rate on the average.

3. Distributions with decreasing density and failure rate on the
average. To shorten notation, we write PU = fj:n(p) and QU = fj:n(q) for
some fixed 2 ≤ j ≤ n−1 and some 0 ≤ p < q < j−1

n−1 defined in Proposition 1
below. For W = U , (2.17) and (2.18) have the forms

(3.1) GU (p, q) =
1− q3

3q
QU −

(1− q)2(2 + q)
6q

PU −
j

n+ 1
[1− Fj+1:n+1(q)],

(3.2) HU (p, q) =
[
p− (1− q)2

2q

]
PU +

1− q2

2q
QU − 1− Fj:n(p) + Fj:n(q).
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Proposition 1. Let X1, . . . ,Xn be i.i.d. with distribution function F ,
and µ, σ2 and a stand for the finite mean, variance and left-end support
point. Assume that F (x)/(x − a) is nonincreasing for x > a. For given
2 ≤ j ≤ n−1, let pU ∈

(
0, j−1

n−1

)
be the unique point such that fj:n(pU ) = 1. If

1− p2
U ≥

2j
n+ 1

[1− Fj+1:n+1(pU )],(3.3)

then (2.16) holds. Otherwise there are unique 0 < p < pU , p < q < j−1
n−1 at

which (3.1) and (3.2) vanish, and

EFXj:n − µ ≤ BU (j, n)σ,(3.4)

where

B2
U = B2

U (j, n)(3.5)

=
[
p+

(1− q)3

3q2

]
P 2
U −

(1− q)2(2 + q)
3q2 PUQU +

1− q3

3q2 Q2
U

+ n

(2j−2
j−1

)(2n−2j
n−j

)
(2n−1

n

) [F2j−1:2n−1(q)− F2j−1:2n−1(p)]− 1.

Equality in (3.4) holds for the location-scale family of distributions

(3.6) FU

(
x− µ
σ

)

=





0 if
x− µ
σ

< −1− PU
BU

,

f−1
j:n

(
BU

x− µ
σ

+ 1
)

if −1− PU
BU

≤ x− µ
σ

< −1−QU
BU

,

q
(
BU

x−µ
σ + 1− PU

)

QU − PU
if −1−QU

BU
≤ x− µ

σ
<

(QU − PU )/q − 1 + PU
BU

,

1 if
x− µ
σ
≥ (QU − PU )/q − 1 + PU

BU
.

It is clear that condition (3.3) and the trivial bound (2.16) hold for small
order statistics. For greater ones, we have (3.4)–(3.5), which are specified
from general results of Theorem 2. The extreme distribution function (3.6)
has a jump at the left end, then coincides with the inverse of a Bernstein
polynomial of degree n − 1, and is uniform in the right part. Observe that
(1.13) has a decreasing density. Therefore it satisfies the assumptions of
Proposition 1, and provides the accurate bound (1.12) for the maximum of
a sample with decreasing density on the average.

With the notation PE = fj:n(1− e−p) < QE = fj:n(1− e−q), 2 ≤ j ≤ n,
we now specify
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GE(p, q) = (q + 2 + 2/q)e−qQE − (1 + 2/q)e−qPE(3.7)

−
j∑

k=1

1
n+ 1− k Fn+1−k:n(e−q)− qFn+1−j:n(e−q),

HE(p, q) = (1− e−p − e−q/q)PE + (1 + 1/q)e−qQE(3.8)

− 1 + Fn+1−j:n(e−p)− Fn+1−j:n(e−q).

We derive (3.7)–(3.8) from (2.17)–(2.18), respectively, combining elementary
calculus formulae with
∞�

q

xfj:n(1− e−x)e−x dx =
j∑

k=1

1
n+ 1− k Fn+1−k:n(e−q) + qFn+1−j:n(e−q).

Proposition 2. In the notation of Proposition 1, set pE = − ln(1−pU )
and assume that − ln[1 − F (x)]/(x − a) is nonincreasing for x > a. If for
2 ≤ j ≤ n and p = pE , we have

GE(p) = (1 + p)e−p −
j∑

k=1

1
n+ 1− k Fn+1−k:n(e−p)− pFn+1−j:n(e−p) ≥ 0,

then (2.16) holds. Otherwise there exist 0 < p < pE , p < q < ln n−1
n−j for

which both (3.7) and (3.8) are equal to 0, and

EFXj:n − µ ≤ BE(j, n)σ,(3.9)

where

(3.10) B2
E = B2

E(j, n) = (1− e−p + 2q−2e−q)P 2
E − 2(2 + q)q−2e−qPEQE

+ (2 + 2q + q2)q−2e−qQ2
E − 1

+ n

(2j−2
j−1

)(2n−2j
n−j

)
(2n−1

n

) [F2n+1−2j:2n−1(e−p)− F2n+1−2j:2n−1(e−q)].

Equality holds in (3.9) for

(3.11) FE

(
x− µ
σ

)

=





0 if
x− µ
σ

< −1− PE
BE

,

f−1
j:n

(
BE

x− µ
σ

+ 1
)

if −1− PE
BE

≤ x− µ
σ

<−1−QE
BE

,

1− exp
(
−q
(
BE

x−µ
σ + 1− PE

)

QE − PE

)
if
x− µ
σ
≥ −1−QE

BE
.

The shapes of the distribution functions (3.6) and (3.11) differ only in
the right tails: the former is uniform, and the latter is exponential. If µ =
(1− PE)σ/BE, then (3.11) is a DFRA life distribution starting at 0.
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In Table 1, we present a numerical comparison of the bounds described
in Propositions 1 and 2 with general ones for order statistics from samples of
size 15. By Theorem 3, the bounds for distributions with increasing density
and failure rate on the average are identical with the general ones. Zero
bounds indicate that the expectation of the order statistic cannot exceed µ
for any distribution of a given family. Observe that

EUX7:15 < sup
F�?U

EFX7:15 ≤ µ = EUX8:15 < sup
F�?U

EFX8:15,(3.12)

EEX9:15 < sup
F�?E

EFX9:15 ≤ µ < EEX10:15 < sup
F�?U

EFX10:15.(3.13)

The last inequalities in (3.12) and (3.13) are obvious, because for any W
we have W �? W , and (2.19) becomes equality for FW 6= W (see (2.21)).
It is not apparent why EWXj:n < µ implies BW (j, n) = 0 for W = U,E for
a number of examples of sample sizes, different from 15 as well. Table 1 also
contains values of parameters (see (1.5), (3.1)–(3.2), and (3.7)–(3.8)) which
enable us to determine the bounds and respective extreme distributions (see
(1.11) with (1.6), and (3.6), and (3.11)).
Table 1. Bounds on expectations of Xj:15, 1 ≤ j ≤ 15, for i.i.d. samples with general
distribution (increasing density and failure rate on the average), and decreasing density
and failure rate on the average

general distribution decreasing density on average decreasing failure rate on average

j δ ‖f j:15 − 1‖U p q BU (j, 15) p q BE(j, 15)

1 — 0 — — 0 — — 0

2 0.00510 0.04056 — — 0 — — 0

3 0.03358 0.12918 — — 0 — — 0

4 0.07789 0.21656 — — 0 — — 0

5 0.13206 0.30127 — — 0 — — 0

6 0.19339 0.38562 — — 0 — — 0

7 0.26050 0.47223 — — 0 — — 0

8 0.33264 0.56384 0.29572 0.30248 0.09398 — — 0

9 0.40945 0.66376 0.33460 0.36546 0.31211 — — 0

10 0.49085 0.77663 0.37258 0.44111 0.52643 0.56252 0.57152 0.10876

11 0.57705 0.90967 0.40975 0.53016 0.74334 0.66193 0.70031 0.32040

12 0.66863 1.07586 0.44577 0.63093 0.97623 0.77152 0.87277 0.57884

13 0.76682 1.30263 0.47863 0.74153 1.25356 0.89202 1.13102 0.91738

14 0.87441 1.66662 0.49832 0.86228 1.65242 1.01481 1.59609 1.42872

15 — 2.59973 — — 2.59973 0.95203 3.25991 2.58621

4. Proofs. The proof of Theorem 1 is preceded by two lemmas. For
fixed p ∈ [a, c), let

sp(q) = [h(q)− h(p)]/(q − a), a 6= q ∈ [p, c),(4.1)
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denote the slopes of the lines lAQ(x) = sp(q)(x− a) + h(p) passing through
A = (a, h(p)) and the points Q = (q, h(q)), p ≤ q < c, of the graph of h (cf.
the last line of (2.14)). Write sa(a) = h′(a) ≥ 0 for completeness.

Lemma 2. For every p ∈ [a, c) there exists q(p) ∈ B = [max{p, b}, c)
such that sp increases on (p, q(p)) and decreases on (q(p), c).

Proof. The statement is trivial for p = a = b with q(p) = a. Indeed, by
concavity of h on (a, c), for any a < q1 < q2 < c the point Q1 lies above lAQ2

and so sa(q1) > sa(q2).
We now claim that sp is increasing-decreasing on B if either p > a = b or

p ≥ a 6= b. The proof consists in checking that the following is false: for every
fixed q ∈ B there exist q1 < q < q2, qi ∈ B, such that sp(qi) ≥ sp(q), i = 1, 2.
If lAQ is tangent to h at q, it runs above all graph points Q′, q 6= q′ ∈ B.
Accordingly, sp(q′) < sp(q). If lAQ is a secant line to the curve, then these
cross each other in B once more at most. If h− lAQ changes its sign from −
to + at q, then h(q1) < lAQ(q1) and sp(q1) < sp(q) for all B 3 q1 < q. If the
sign changes from + to −, then the analogous relations hold for B 3 q2 > q.
Therefore our claim is indeed true.

By continuity of sp, it remains to show that (4.1) is increasing in (p, b)
when a ≤ p < b. Note that max{h(p), h(x)} is convex in (a, b) and strictly
convex in (p, b). For every p ≤ q1 < q2 ≤ b the point Q1 lies below lAQ2 , and
hence sp(q1) < sp(q2). This completes the proof.

It is clear that q(p) is the point where lAQ(p) is tangent to h and therefore
can be determined by

h(q)− h(p) = h′(q)(q − a).(4.2)

We now take an arbitrary g ∈ Ĉ1 and modify it to improve the approx-
imation of h. If g(a) ≥ h(c) = maxa≤x≤d h(x), then h 6= g ≥ h, and, by
Lemma 1, subtracting a constant c > g(a) − h(c) from g gives a function
closer to h than the original one. If g(a) < 0, then max{g, 0} ∈ Ĉ1 lies
between g and h by nonnegativity of h. Therefore it suffices to study the
functions g ∈ Ĉ1 such that h(a) = 0 ≤ g(a) < h(c).

Lemma 3. For every p ∈ [a, c) and g ∈ Ĉ1 such that g(a) = h(p) there
exists a 6= q ∈ [p, q(p)) (see (4.2)) such that for hpq defined by (2.14) we have

‖hpq − h‖W ≤ ‖g − h‖W .(4.3)

Proof. If g(q(p)) ≥ h(q(p)), then we can take hpq(p). Since h(x) < h(p)
on [a, p), we have h < hpq(p) ≤ g there, because the constant h(p) is the
smallest nondecreasing function starting from level h(p). Also, hpq(p) = h is
the optimal approximation of h on [p, q(p)]. Finally, for x > q(p) we have

h(x) ≤ h(q(p))− h(p)
q(p)− a (x− a) + h(p) ≤ g(x).
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The former inequality holds because the middle term defines the line that
is tangent to h at q(p) and majorizes h. The latter is a consequence of the
fact that the line is the smallest starshaped function in [q(p), d) that passes
through A and Q(p) = (q(p), h(q(p))). The above arguments show that hpq(p)
indeed satisfies (4.3).

However, h 6= hpq(p) ≥ h and, due to Lemma 1, the approximation can
be further improved by a downward translation of hpq(p). So we consider the
case g(q(p)) < h(q(p)). Define r = inf{x > q(p) : g(x) ≥ h(x)}, putting
r = d if g < h in (q(p), d). Consider

lAR(x) =
h(r)− h(p)

r − a (x− a) + h(p).

We first prove that lAR < h in (q(p), r). If (c, r) 6= ∅, then lAR − h is
strictly increasing there, and lAR(r) − h(r) ≤ 0. For x ∈ (q(p),min{c, r})
the inequality follows from the strict convexity of lAR − h in the interval,
and its nonpositivity at the end-points. Now we check that lAR − h changes
sign in (a, q(p)) once at most. Assume that q is the largest point of sign
change in (a, q(p)). Evidently lAR − h is positive and negative to the left
and right of q, respectively. If q ∈ [b, q(p)), then convexity of lAR−h implies
its positivity in (b, q). This is also positive in (a, b) by its concavity there,
and nonnegativity at the end-points. If q ∈ (a, b), it suffices to repeat the
above argument with b replaced by q. Assume that a unique q exists. We
can write

lAR(x) =
h(q)− h(p)

q − a (x− a) + h(p).

Since lAR ≥ h(p), we get q ∈ [p, q(p)). Note that in the class of nondecreasing
starshaped functions passing through A = (a, h(p)) and (r, g(r)), the func-
tion lAR is maximal in [a, r] and minimal in [r, d). Therefore g ≤ lAR ≤ h
in [q, r] and h ≤ lAR ≤ g in [r, d). Also, h ≤ h(p) ≤ g in [a, p]. Conse-
quently, hpq defined to equal h(p), h, and lAR in [a, p], [p, q], and [q, d),
respectively, lies closer to h than g does. Since p ≤ q < q(p), we see that
hpq ∈ Ĉ1.

If p = a, it may happen that lAR has no sign changes in [a, r). Then
lAR(a) = h(a) = 0 and lAR < h in (a, r), while lAR > h in (r, d). The
last relation is a consequence of concavity and ultimate decrease of h. If
lAR = 0 ≤ h, referring to Lemma 1 we decrease the L2-distance to h by
adding a positive constant l+AR. If lAR has a positive slope, we can take a line
l−AR running through (r, g(r)) with a slightly smaller slope. Observe that l−AR
lies closer to h than lAR does in [a, r] and [r, d). Both the modifications lead
to linear functions which cross h once at some q < q(p). We are thus in
a position to apply the constuction of the previous paragraph, which ends
the proof.
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Proof of Theorem 1. By Lemma 3, we should minimize

D(p, q) =
p�

a

[h(p)− h(x)]2w(x) dx+
d�

q

[lAQ(x)− h(x)]2w(x) dx(4.4)

with respect to two parameters p ∈ [a, c) and a 6= q ∈ [max{p, b}, q(p)) ⊂
(a, c). Fixing p and differentiating (4.4) with respect to q, we obtain

∂D(p, q)
∂q

=
2

q − a [h′(q)− l′AQ]G(p, q)(4.5)

(cf. (2.7)). If p < q < q(p), then h − lAQ changes sign from − to + at q
and hence the expression in brackets is positive. This vanishes at q(p), but
q(p) cannot be optimal, because hpq(p) ≥ h. Analyzing the sign of (4.5), it
suffices to concentrate on (2.7). We have

∂G(p, q)
∂q

=
h′(q)− l′AQ

q − a

d�

q

(x− a)2w(x) dx > 0,

which implies that (4.5) is the product of a positive function and increasing
G(p, ·). Since the integrand is positive for q = q(p), we have G(p, q(p)) > 0.
If q = p > a, then lAQ = h(p). It follows that G(p) < 0 as p ↘ a and
G(p) > 0 for p↗ c.

We can summarize the behaviour of (4.4) as follows. If p is small enough
then (4.5) is negative for q close to p, and changes its sign at a q?(p) ∈
(p, q(p)) where (2.7) vanishes and the unique minimum of D(p, ·) is at-
tained. If p ≥ p1 satisfying G(p1) = 0 then (4.5) is positive for all q > p.
Then D(p, ·) is minimized at q?(p) = p, which gives a constant approx-
imation hpp = h(p). It remains to choose p ∈ [a, c) such that (p, q?(p))
minimizes (4.4), where q?(p) > p satisfies G(p, q?(p)) = 0 for p < p1 and
q?(p) = p for p ≥ p1.

By Lemma 1, a necessary condition for that is

H(p, q?(p)) =
d�

a

[hpq?(p)(x)− h(x)]w(x) dx = 0(4.6)

(cf. (2.8)). It is clear that (2.10) strictly increases from negative H(a) to pos-
itive H(c)=H(c, q?(c)). We have H(p0)=0 if hp0p0 =h(p0)= � da h(x)w(x) dx
= 1. We show that H(p, q?(p)) is also increasing when q?(p) > p is deter-
mined by (2.12). Consider

dH(p, q?(p))
dp

= h′(p)
[
W (p) + 1−W (q?(p))−

d�

q?(p)

(x− a)w(x)
q?(p)− a dx

]
(4.7)

+
dq?(p)
dp

[h′(q?(p))− l′AQ?(p)]
d�

q?(p)

(x− a)w(x)
q?(p)− a dx.
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Plugging

dq?(p)
dp

=
h′(p) � dq?(p)[x− q?(p)](x− a)w(x) dx

[h′(q?(p))− l′AQ?(p)] � dq?(p)(x− a)2w(x) dx
> 0

into (4.7), we obtain

(4.8)
dH(p, q?(p))

dp
=

h′(p)

� dq?(p)(x− a)2w(x) dx

{
W (p)

d�

q?(p)

(x− a)2w(x) dx

+ [1−W (q?(p))]
d�

q?(p)

(x− a)2w(x) dx−
[ d�

q?(p)

(x− a)w(x) dx
]2}

.

The last line is positive by the Schwarz inequality and the same holds
for (4.8).

We are thus led to the following conclusions. If p0 ≥ p1 then (p?, q?(p?)) =
(p0, p0) is the unique pair satisfying the necessary condition (4.6) for min-
imizing (4.4). This gives the first statement of Theorem 1. To see that
p0 ≥ p1 coincides with (2.11), we note that (2.9) satisfies limp↘aG(p) <
0 < limp↗cG(p) and G′(p) = h′(p) � dp(x − a)w(x) dx > 0. Therefore G is

increasing and has a single zero at p1. The same holds for H which vanishes
at p0. Hence the conditions p0 ≥ p1 and (2.11) are equivalent. If p0 < p1,
then H(p1) = limp↗p1 H(p, q?(p)) > 0, and we can make H(p, q?(p)) smaller
by decreasing p. There is a p? ∈ [a, p1) that satisfies (4.6), because the op-
posite contradicts the existence of solution. Taking q? = q?(p?), we see that
(4.6) and (2.13) are identical, and (2.12) holds by the definition of q?(p?).

Proof of Theorem 3. The proof consists in showing that h = f j:nW is

a limit point of Ĉ2. Then � da h(x)w(x) dx = � 1
0 f j:n(x) dx = 1 implies that h−1

belongs to the border of C2. On the other hand, by a change of variables,
(1.1) can be rewritten as EFXj:n−µ ≤ ‖h−1‖Wσ. By construction, h(x) =
fj:nW (min{x, γ}) for a = W−1(0) < γ = W−1(δ) < c = W−1

( j−1
n−1

)
(cf.

(1.6)). We assumed that h is increasing on (a, c), strictly convex on some
(a, b) and strictly concave on (b, c) 6= ∅. Therefore h, identical with h in [a, γ],
is increasing, and either concave or convex-concave or convex there. It follows
that supa≤x≤γ h

′(x) is attained at β = min{b, γ}. Define straight lines lt
secant to the graph of h at t ∈ [a, d) by lt(x) = h′(t)(x − t) + h(t), and
consider sβ(t) = [h(t)− lβ(a)]/(t− a).

We show that sβ is nonincreasing for t > a by checking that

s′β(t) = [h′(t)(t− a) + lβ(a)− h(t)]/(t− a)2 ≤ 0.(4.9)

If t ∈ (a, β), then lβ(t) < lt(t) = h(t), and 0 ≤ h′(t) = l′t < h′(β) = l′β by
convexity of h. It follows that lt(x) > lβ(x) for all x < t, and lt(a) > lβ(a) in
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particular. Since the tangent lines lie above the concave curve h(t), t > β,
we have lβ(β) = h(β) < lt(β) and lt(t) = h(t) < lβ(t). This implies that lt
and lβ cross each other somewhere in (β, t), and so lt(t) > lβ(t) for all t.
Therefore h(t) = lt(t) = h′(t)(t− a) + lt(a) ≥ h′(t)(t− a) + lβ(a) and (4.9)
holds.

Consider now

hk(t) =
{
sβ(a+ 1/k)(t− a) + lβ(a) if a ≤ t ≤ a+ 1/k,
h(t) if a+ 1/k ≤ t < d,

for integers k > 1/(β − a). By definition, hk(a) = lβ(a), hk is continuous
nondecreasing and [hk(t)−hk(a)]/(t−a) = sβ(max{a+1/k, t}) is continuous
nonincreasing. Since ‖h− hk‖2W ≤ [h(a+ 1/k)− lβ(a)]W (a+ 1/k)→ 0, we
have C2 3 hk − � da hk(x)w(x) dx→ h in L2([a, d), w(x) dx) as well.
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