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Ivan Hlaváček (Praha)
Ján Lov́ı̌sek (Bratislava)

CONTROL IN OBSTACLE-PSEUDOPLATE PROBLEMS
WITH FRICTION ON THE BOUNDARY.

APPROXIMATE OPTIMAL DESIGN
AND WORST SCENARIO PROBLEMS

Abstract. In addition to the optimal design and worst scenario problems
formulated in a previous paper [3], approximate optimization problems are
introduced, making use of the finite element method. The solvability of the
approximate problems is proved on the basis of a general theorem of [3].
When the mesh size tends to zero, a subsequence of any sequence of approx-
imate solutions converges uniformly to a solution of the continuous problem.

Introduction. The optimal design problems and reliable solution
(worst scenario) problems, which have been introduced and studied in [3],
have to be solved approximately. To this end, we employ the simplest kind of
finite elements, namely piecewise linear functions over triangulations. In this
way the space of state functions and the sets of admissible design variables
are discretized in Section 1. To simplify the calculations we also use some
quadrature formulae. We define an approximate state problem (variational
inequality), optimal design and penalized weight minimization problems.
We prove that these problems have at least one solution on the basis of
the general Theorem 2.2 of [3]. In Section 2 we study the convergence of
approximate solutions when the mesh size tends to zero.

Section 3 is devoted to approximate reliable solutions, i.e., to approxi-
mations of the worst scenario method, which has been formulated in [3, Sec-
tion 4]. We prove the solvability of approximate problems. The convergence
of some subsequence of approximate solutions is justified in Section 4.
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1. Approximate optimal design. In the following we use the notation
of [3]. Assume that the domain Ω has a polygonal boundary ∂Ω. Consider
a regular family of triangulations {Th}, h→ 0+, of Ω which are consistent
with all subdomains Ω∗i and Gj and with ∂ΩC . We introduce the finite
element space of piecewise linear functions

Xh = {vh ∈ C(Ω) : vh|T ∈ P1(T ) for all triangles T ∈ T }
and the following sets:

Vh = Xh ∩ V,
UHhad = UHad ∩Xh, UZhad = UZad ∩X0

h, UFhad = UFad ∩Xc
h,

where

X0
h = Xh|Ω\Ω∗ , Xc

h = Xh|∂ΩC ,

Uhad = UHhad × UZhad × UFhad ,

Kh(Hh) = {vh ∈ Vh : vh(P ) ≥ Hh(P )−Oi, i = 1, . . . , N,

for all nodes P ∈ Σh},
where Σh denotes the set of all vertices of triangles T ∈ Th, T ⊂ Ω∗ and
Hh ∈ UHhad . Note that Kh(Hh) ⊂ K(Hh) (cf. [3, (1.3)]).

Let [p, ξ]h be a suitable quadrature formula such that

(1.1) [p, ·]h ∈ (Vh)∗, |〈p, ξ〉0 − [p, ξ]h| ≤ Ch‖ξ‖1
for all ξ ∈ Vh. We define

(1.2) bh(Zh;uh, wh) =
∑

T⊂Ω\Ω∗

�

T

Zh[uh]−(γ)wh dx,

where γ is the centroid of the triangle T and

(1.3) Φh(eh)(vh) =
∑

E⊂∂ΩC

�

E

Fh|vh(γ)| ds+ IKh(Hh)(vh),

where E denotes the edge of a triangle T ∈ Th adjacent to ∂ΩC and γ is the
midpoint of E.

Now we may define the following

Approximate State Problem. Given any eh ≡ {Hh,Zh,Fh} ∈ Uhad,
find uh(eh) ∈ Kh(Hh) such that

(1.4) a(Hh;uh(eh), vh − uh(eh)) + bh(Zh;uh(eh), vh − uh(eh))

+ Φh(eh)(vh)− Φh(eh)(uh(eh))

≥ [p, vh − uh(eh)]h − 2ω〈Hh, vh − uh(eh)〉0
for all vh ∈ Kh(Hh).
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Finally, let us define the functionals

(1.5)

LhDD = LDD, LhISS = LISS,

LhCOM(eh, vh) = [p, vh]h − 2ω〈Hh, vh〉0,
LhTR(eh, vh) = 〈Hh grad vh, grad θ〉0 + 2ω〈Hh, θ〉0

+
∑

T⊂Ω\Ω∗
〈Zh[vh(γ)]−, θ〉0,T − [p, θ]h.

(Note that the auxiliary function θ can be chosen in X(Ω) ∩ Vh.)
We introduce

Approximate Optimal Design Problems. Given a fixed triangula-
tion Th, find

(1.6) e∗hJ = arg min
eh∈Uhad

LhJ (eh, uh(eh))

where J = DD, ISS,COM,TR and uh(eh) is the solution of the Approximate
State Problem (1.4).

Theorem 1.1. (i) The Approximate State Problem (1.4) has a unique
solution uh(eh) for any eh ∈ Uhad and any h sufficiently small.

(ii) The Approximate Optimal Design Problem (1.6) has at least one
solution for any J = DD, ISS,COM,TR and for any h sufficiently small.

Proof. Let us verify the assumptions of [3, Theorem 2.2], where we
set Uad := Uhad, e := eh, V := Vh, K(e) := Kh(Hh) and define Ah(eh) :
Vh → (Vh)∗ by the relation

(1.7) 〈Ah(eh)vh, wh〉 := a(Hh; vh, wh) + bh(Zh; vh, wh),

and

Φ(e) := Φh(eh), 〈f, v〉 := [p, v]h, 〈B(e), v〉 := −2ω〈Hh, v〉0.
Lemma 1.2. For any Hh ∈ UHhad the set Kh(Hh) is a closed convex

subset of Vh. If Hhn ∈ UHhad and Hhn → Hh as n→∞, then

Kh(Hh) = Lim
n→∞

Kh(Hhn).

Proof. The argument is nearly the same as that for [3, Lemma 2.2].
Instead of the function ϑ we may take ϑh ∈ Vh such that 0 ≤ ϑh ≤ 1 in Ω
and ϑh = 1 in Ω∗.

Lemma 1.3. For any Zh ⊂ UZhad , uh, wh ∈ Vh,

(1.8) bh(Zh;uh, uh − wh)− bh(Zh;wh, uh − wh) ≥ −C1h‖uh − wh‖21,
where C1 does not depend on h and Zh.
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Proof. The left-hand side of (1.8) is equal to

(1.9)
∑

T

�

T

Zh(uh − wh)([uh]−(γ)− [wh]−(γ)) dx

=
∑

T

{ �

T

Zh(uh(γ)− wh(γ))([uh]−(γ)− [wh(γ)]−) dx

+
�

T

Zh((uh − wh)− (uh − wh)(γ))([uh]−(γ)− [wh]−(γ)) dx
}

=
∑

T

MT +
∑

T

RT .

Since

(1.10) (a− − b−)(a− b) ≥ (a− − b−)2,

the terms MT are non-negative. For brevity, set vh := uh − wh. Using the
estimate |a− − b−| ≤ |a− b|, which follows from (1.10), we may write

(1.11) |RT | = |[uh]−(γ)− [wh]−(γ)| · |F (vh)| ≤ |vh(γ)| · |F (vh)|,
where

F (vh) =
�

T

Zh(vh − vh(γ)) dx,

(1.12) |F (vh)| ≤ Zmax

�

T

|vh − vh(γ)| dx ≤ Zmax

�

T

hT |grad vh| dx

≤ Zmaxh
2
T |vh|1,T .

Moreover, a standard affine transformation to the reference triangle T̂
yields

|v(γ)| ≤ C‖v̂‖1,p,T̂ ≤ Ch
−2/p
T ‖v‖1,p,T

for any p > 2 and

‖vh‖1,p,T ≤ Ch−1+2/p
T ‖vh‖1,2,T .

Combining the previous estimates, we obtain

|RT | ≤ C1hT ‖vh‖21,2,T
so that ∣∣∣

∑

T

RT
∣∣∣ ≤ C1h‖vh‖21,2,Ω = C1h‖uh − wh‖21.

Substituting this estimate into (1.9), we arrive at (1.8).

Using [3, (2.16)] and Lemma 1.3, we may write

(1.13) a(Hh;uh − wh, uh − wh) + bh(Zh;uh, uh − wh)

− bh(Zh;wh, uh − wh) ≥ (CFHmin − C1h)‖uh − wh‖21.
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As a consequence, the strong monotonicity of [3, (2.1)(iii)] is satisfied for
sufficiently small mesh size h.

Next, we have

(1.14) |bh(Zh;uh, w)− bh(Zh; vh, w)|
=
∣∣∣
∑

T

�

T

Zh([uh]−(γ)− [vh]−(γ))w dx
∣∣∣

≤
∑

T

Zmax

�

T

|uh(γ)−vh(γ)| · |w| dx≤
∑

T

Zmax‖uh−vh‖0,T ‖w‖0,T

≤ Zmax‖uh − vh‖0,Ω‖w‖0,Ω .
Here we employed the estimate

(1.15) ‖ϕh‖∞,T ≤ Ch−1
T ‖ϕh‖0,T

for all ϕh ∈ Vh [1, Thm. 3.2.6].
Using [3, (2.18)] and (1.14), we deduce that the mapping Ah(eh) from

(1.7) is Lipschitz-continuous in Vh, uniformly in Uad.
Next, let ehn → eh as n→∞, ehn ∈ Uhad. We may write

(1.16) |〈Ah(ehn)vh − Ah(eh)vh, w〉|
≤ ‖Hhn −Hh‖∞‖vh‖1‖w‖1 +

∑

T

‖Zhn − Zh‖∞‖vh‖∞,ThT ‖w‖0,2,T
≤ C‖ehn − eh‖∞‖vh‖1‖w‖1,

arguing as in the derivation of (1.14). As a consequence,

Ah(ehn)vh → Ah(eh)vh in (Vh)∗ for all vh ∈ Vh.

Lemma 1.4. The system of functionals {Φh(eh)}, eh ∈ Uhad, defined by
(1.3), satisfies the assumptions [3, (2.2), (2.3)].

Proof. We can proceed as in the proof of [3, Lemma 2.4]. Write

φh(eh) = φ
(1)
h (eh) + φ

(2)
h (eh),

where

φ
(1)
h (eh)v =

∑

E⊂∂ΩC

�

E

Fh|v(γ)| ds, φ
(2)
h (eh)v = IKh(Hh)(v).

We shall verify the condition [3, (2.2)] by means of [3, Definition 2.2]. Con-
sider a sequence {ehn}, ehn → eh as n→∞, ehn ∈ Uhad.

(i) Let vh ∈ Kh(Hh). By Lemma 1.2 there exists a sequence {vhn},
vhn ∈ Kh(Hhn), such that vhn → vh as n→∞. Then
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|φh(ehn)vhn − φh(eh)vh| ≤ |λ1n|+ |λ2n|,
where

|λ1n| = |φ(1)
h (ehn)vhn − φ(1)

h (eh)vh|

≤ |φ(1)
h (ehn)vhn − φ(1)

h (eh)vhn|+ |φ(1)
h (eh)vhn − φ(1)

h (eh)vh|

≤
∑

E

(
|vhn(γ)|

�

E

|Fhn − Fh| ds+ |vhn(γ)− vh(γ)|
�

E

Fh ds
)
→ 0

as n→∞,
|λ2n| = |IKh(Hhn)(vhn)− IKh(Hh)(vh)| = 0 for all n.

Altogether, we have

(1.17) lim
n→∞

Φh(ehn)vhn = Φh(eh)vh.

Second, let vh 6∈ Kh(Hh). Setting vhn = vh for all n = 1, 2, . . . , we have

lim supΦh(ehn)vhn ≤ lim sup
∑

E

�

E

Fhn|vh(γ)| ds+∞(1.18)

=
∑

E

�

E

Fh|vh(γ)| ds+ Φ
(2)
h (eh)vh = Φh(eh)vh.

Combining (1.17) and (1.18), we obtain

lim sup
n→∞

Φh(ehn)vhn ≤ Φh(eh)vh.

(ii) Let vhn → vh as n→∞. We have

lim inf Φh(ehn)vhn ≥ lim inf φ(1)
h (ehn)vhn + lim inf φ(2)

h (ehn)vhn.

Arguing as in the case of λ1n, we obtain

limΦ
(1)
h (ehn)vhn = Φ

(1)
h (eh)vh.

Next, we may write
lim inf IKh(Hhn)(vhn) = a,

where a is either +∞ or zero. If a = +∞, then obviously

(1.19) a ≥ IKh(Hh)(vh).

If a = 0, there exists a subsequence {vhk} ⊂ {vhn} such that vhk ∈ Kh(Hhk)
for all k → ∞. By Lemma 1.2 the limit vh belongs to Kh(Hh), so that
IKh(Hh)(vh) = 0 and (1.19) holds again. As a consequence,

lim inf Φ(2)
h (ehn)vhn ≥ Φ(2)

h (eh)vh

and the condition [3, (2.2)(ii)] is fulfilled.
To satisfy condition [3, (2.3)], we can choose an = 0 for all n, since

0 ∈ Kh(Hhn) for all Hhn ∈ UHhad , due to [3, (1.1)]. Then

Φh(ehn)an = 0 for all n.
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Lemma 1.5. The functionals LhDD, LhISS, LhCOM, LhTR satisfy condition
[3, (2.5)].

Proof. The proof of the cases LhDD and LhISS is the same as that for
[3, Lemma 2.5]. Let ehn → eh and vhn → vh as n→∞. We may write

LhCOM(ehn, vhn) = [p, vhn]h − 2ω〈Hh, vhn〉0 + ψn,

|ψn| = 2ω|〈Hhn −Hh, vhn〉0| ≤ C‖Hhn −Hh‖∞‖vhn‖0 → 0.

Then

lim
n→∞

LhCOM(ehn, vhn) = [p, vh]h − 2ω〈Hh, vh〉0 = LhCOM(eh, vh).

Next, we may write

LhTR(ehn, vhn) = LhTR(eh, vhn) +Mn,(1.20)

|Mn| =
∣∣∣〈(Hhn −Hh) grad vhn, grad θ〉0 + 2ω〈Hhn −Hh, θ〉0(1.21)

+
∑

T

〈(Zhn − Zh)[vhn(γ)]−, θ〉0,T
∣∣∣

≤ (‖Hhn−Hh‖∞ + ‖Zhn−Zh‖∞)(C1‖vhn‖1 + C2)→ 0,

using also estimate (1.15) in the last inequality. Making use of (1.15) again,
we obtain

(1.22) |LhTR(eh, vhn)− LhTR(eh, vh)| ≤ Hmax‖vhn − vh‖1‖θ‖1
+Zmax

∑

T

‖vhn − vh‖0,T ‖θ‖0,T ≤ C‖vhn − vh‖1 → 0.

Combining (1.20)–(1.22), we arrive at

lim
n→∞

LhTR(ehn, vhn) = LhTR(eh, vh).

We define the following

Approximate Weight Minimization Problem. Find

(1.23) eεh = arg min
eh∈Uhad

LW (ε; eh, uh(eh)),

where LW is the penalized cost functional, defined in [3, Section 3].

Theorem 1.6. The Approximate Weight Minimization Problem (1.23)
has at least one solution for any positive ε and any h sufficiently small.

Proof. In proving Theorem 1.1 we have verified all assumptions of the
abstract [3, Theorem 2.1], so that

uh(ehn)→ uh(eh)

provided h is sufficiently small, ehn ∈ Uhad and ehn → eh as n → ∞. Then
the functions

eh 7→ [Fj(uh(eh)]+, j = 1, . . . ,M,
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are continuous in Uhad (cf. the analogous proof of [3, Lemma 3.1]). Since the
weight 〈ω,Hh〉0 is continuous in Uhad as well, we find that

eh 7→ LW (ε; eh, uh(eh))

is continuous in the compact set Uhad. As a consequence, a minimizer eεh
exists.

2. Convergence results. In the present section we will study the con-
vergence of finite element approximations when the mesh size tends to zero.
To this end we establish the crucial

Proposition 2.1. Let eh ∈ Uhad with eh → e in U as h→ 0+. Then

uh(eh)→ u(e) in V as h→ 0+.

Proof. For brevity, set uh := uh(eh). Substituting vh = 0 in the inequal-
ity (1.4) and using (1.1), (1.7), (1.13), we obtain

(CFHmin − C1h)‖uh‖21 ≤ 〈Ah(eh)uh, uh〉 ≤ −[p, uh]h + 2ω〈Hh, uh〉0
≤ C2‖uh‖1,

so that ‖uh‖1 ≤ C for all h sufficiently small. As a consequence, there exist
u ∈ V and a subsequence of {uh} (denoted by the same symbol) such that

(2.1) uh ⇀ u (weakly) in V.

One can prove that u ∈ K(H). Indeed, following [2, pp. 33–34], consider any
function ϕ ∈ C∞0 (Ω∗i ) with ϕ ≥ 0 and define a piecewise constant function

ϕh =
∑

T⊂Ω∗i

ϕ(γ)χT ,

where χT is the characteristic function of the triangle T and γ is the centroid
of T . Define ψ = H −Oi on Ω∗i and ψh = Hh −Oi. Then

(2.2) lim
h→0

�

Ω∗i

(uh − ψh)ϕh dx =
�

Ω∗i

(u− ψ)ϕdx,

since uh → u in L2(Ω∗i ) by Rellich’s Theorem and ϕh → ϕ, ψh → ψ in
L2(Ω∗i ).

On the other hand, we have

(2.3)
�

Ω∗i

(uh − ψh)ϕh dx =
∑

T⊂Ω∗i

ϕ(γ)
�

T

(uh − ψh) dx.

By definition of Kh(Hh), we obtain

(2.4)
�

T

(uh − ψh) dx =
1
3

(measT )
3∑

j=1

(uh − ψh)(aj) ≥ 0,
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where aj are the vertices of T . Combining (2.3) and (2.4), we arrive at
�

Ω∗i

(uh − ψh)ϕh dx ≥ 0.

Then (2.2) yields �

Ω∗i

(u− ψ)ϕdx ≥ 0,

which in turn implies that u ≥ ψ a.e. in Ω∗i , i.e., u ∈ K(H).
Next, let us verify that u coincides with a solution u(e) of the variational

inequality [3, (1.7)]. Consider an arbitrary v ∈ K(H). There exists a function
ψ ∈ C(0),1(Ω) such that ψ = 0 on ∂ΩD, ψ = H − Oi on Ω∗i for all i =
1, . . . , N . Then

ω := v − ψ ∈ K0 = {w ∈ V : w ≥ 0 a.e. in Ω∗}.
Let us employ a regularization operator %κ (see e.g. [4]). Let %κEψ and %κEω
denote the regularization applied to a proper extension of the functions ψ
and ω to a larger domain Ω̃ ⊃ Ω, so that

%κEω ≥ 0 and %κEOi = Oi on Ω∗i , i = 1, . . . , N.

We define

(2.5) vh = πh(%κEψ + %κEω + (‖%κEH −H‖∞,Ω∗ + ‖H −Hh‖∞,Ω∗)ϑ),

where ϑ ∈ C∞0 (Ω) is such that 0 ≤ ϑ ≤ 1 in Ω and ϑ = 1 for x ∈ Ω∗ and πh
denotes the Lagrange linear interpolation over Th. Consequently, vh ∈ Vh
and for any node P ∈ Σh we have

vh(P ) ≥ %κEψ(P ) + |%κEH(P )−H(P )|+ |H(P )−Hh(P )| ≥ Hh(P )−Oi,
so that vh ∈ Kh(Hh). Furthermore, we may write

‖vh − v‖1 = ‖πh(%κEψ)− ψ + πh(%κEω)− ω(2.6)

+ (‖%κEH −H‖∞,Ω∗ + ‖H −Hh‖∞,Ω∗)πhϑ‖1
≤ ‖πh(%κEψ)− %κEψ‖1 + ‖%κEψ − ψ‖1

+ ‖πh(%κEω)− %κEω‖1 + ‖%κEω − ω‖1
+ (‖%κEH −H‖∞,Ω∗ + ‖H −Hh‖∞,Ω∗)‖πhϑ‖1 → 0

as κ→ 0+ and h→ 0+.
Here we have used the fact that H ∈W 1,p(Ω) for any p > 2 and

‖%κEH −H‖∞,Ω∗ ≤ C‖%κEH −H‖1,p,Ω → 0

as κ→ 0+ (see [4, Thms. 2.1 and 3.1]).
For any eh ∈ Uhad, uh ∈ Vh and v ∈ V the following estimate holds (see

[3, (2.15)] for the definition of A(eh)):

(2.7) |〈Ah(eh)uh, v〉 − 〈A(eh)uh, v〉| ≤ Ch‖uh‖1‖v‖0.
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Indeed, we have

(2.7a) |〈Ah(eh)uh, v〉 − 〈A(eh)uh, v〉| = |bh(Zh;uh, v)− b(Zh;uh, v)|
=
∣∣∣
∑

T⊂Ω\Ω∗

�

T

Zh([uh]− − [uh]−(γ))v dx
∣∣∣

≤
∑

T

�

T

Zh|uh − uh(γ)| · |v| dx ≤ Ch‖uh‖1‖v‖0,

arguing as in the proof of Lemma 1.3.
Let us substitute vh in the inequality (1.4) and pass to lim inf as h→ 0+.

It is easy to see that

(2.8) lim inf 〈A(e)uh, uh〉 ≥ 〈A(e)u, u〉.
In fact, the functional u 7→ a(H;u, u) is weakly lower semicontinuous,

being convex and differentiable. Second, we may write

|b(Z;uh, uh)− b(Z;u, u)| ≤
�

Ω\Ω∗
Z|uh[uh]− − u[u]−| dx(2.9)

≤ CZmax(‖uh‖0 + ‖u‖0)‖uh − u‖0 → 0

due to Rellich’s Theorem. Hence,

lim inf{a(H;uh, uh) + b(Z;uh, uh)} ≥ a(H;u, u) + b(Z;u, u)(2.10)

= 〈A(e)u, u〉.
Making use of [3, (2.1)(iv) and Lemma 2.3], we derive that

(2.11) |〈A(eh)uh, uh〉−〈A(e)uh, uh〉| ≤ ‖A(eh)uh−A(e)uh‖∗‖uh‖1 → 0.

Therefore,

lim inf 〈A(eh)uh, uh〉 ≥ lim inf 〈A(e)uh, uh〉 ≥ 〈A(e)u, u〉
by (2.10) and (2.11).

Making also use of (2.7), we obtain

(2.12) lim inf 〈Ah(eh), uh, uh〉 ≥ lim inf 〈A(eh), uh, uh〉
+ lim inf (〈Ah(eh)uh, uh〉 − 〈A(eh)uh, uh〉) ≥ 〈A(e)u, u〉.

Next, we prove that

(2.13) lim 〈Ah(eh)uh, v〉 = 〈A(e)u, v〉
for all v ∈ V . Indeed, if we employ (2.7), it suffices to show that

(2.14) lim 〈A(eh)uh, v〉 = 〈A(e)u, v〉.
First, we may write

(2.15) |〈A(eh)uh, v〉 − 〈A(e)uh, v〉| ≤ ‖A(eh)uh − A(e)uh‖∗‖v‖1 → 0

by [3, (2.1)(iv) and Lemma 2.3]. Second,
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(2.16) a(H;uh, v)→ a(H;u, v)

by the weak convergence (2.1). Third, we have

|b(Z;uh, v)− b(Z;u, v)| =
∣∣∣

�

Ω\Ω∗
Z([uh]− − [u]−)v dx

∣∣∣(2.17)

≤ Zmax‖uh − u‖0‖v‖0 → 0.

Then (2.14) follows from (2.15)–(2.17).
Next, using the Lipschitz continuity of Ah(eh) in Vh (see (1.14)),

Ah(eh)0 = 0, (2.6) and (2.13), we obtain

(2.18) |〈Ah(eh)uh, vh〉 − 〈A(e)u, v〉|
≤ |〈Ah(eh)uh, vh − v〉|+ |〈Ah(eh)uh, v〉 − 〈A(e)u, v〉| → 0.

Consider the estimate

|Φh(eh)vh − Φ(eh)vh| =
∣∣∣
∑

E⊂∂ΩC

�

E

Fh(|vh(γ)| − |vh|) ds
∣∣∣

≤ Fmax

∑

E

�

E

|vh(γ)− vh| ds.

We may write

|vh(γ)− vh(s)| ≤ 1
2 `E|∂vh/∂s| ≤ 1

2`E‖grad vh(TE)‖
≤ `EC%−1

T |vh|1,TE ≤ C̃|vh|1,TE ,
where `E = measE, TE is the triangle adjacent to the edge E and %T is the
radius of the largest circle inscribed in TE .

Thus we obtain∑

E

�

E

|vh(γ)− vh| ds ≤ C̃
∑

E

`E |vh|1,TE

≤ C̃h1/2
(∑

E

`E

)1/2(∑

E

|vh|21,TE
)1/2

≤ C̃h1/2(meas∂ΩC)1/2|vh|1,Ω → 0.

As a consequence,

(2.19) Λ1h := |Φh(eh)vh − Φ(eh)vh| → 0.

Since v ∈ K(H), we have

Λ2h := |Φ(eh)vh − Φ(eh)v| =
∣∣∣

�

∂ΩC

Fh(|vh| − |v|) ds
∣∣∣(2.20)

≤ Fmax(meas∂ΩC)1/2‖vh − v‖0,∂ΩC → 0.

Finally, we may write

Λ3h := |Φ(eh)v − Φ(e)v|(2.21)

=
∣∣∣

�

∂ΩC

(Fh − F)|v| ds
∣∣∣ ≤ ‖Fh − F‖∞

�

∂ΩC

|v| ds→ 0.
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Combining (2.19)–(2.21), we arrive at

(2.22) |Φh(eh)vh − Φ(e)v| ≤ Λ1h + Λ2h + Λ3h → 0 as h→ 0+.

In a parallel way, we can deduce that

(2.23) |Φh(eh)uh − Φ(e)u| → 0 as h→ 0+,

using the boundedness of {uh} in V and the compactness of the trace oper-
ator (cf. (2.20)).

On the basis of (1.1), (2.6) and the weak convergence (2.1), we obtain

(2.24) |[p, vh − uh]h − 〈p, v − u〉0|
≤ |[p, vh−uh]h−〈p, vh − uh〉0|+ |〈p, (vh−uh)− (v−u)〉0| → 0.

Finally, it is easy to see that

(2.25) |〈Hh, vh − uh〉0 − 〈H, v − u〉0|
≤ |〈Hh −H, vh − uh〉0|+ |〈H, (vh − uh)− (v − u)〉0|
≤ C‖Hh−H‖∞‖vh−uh‖0 + ‖H‖0‖vh−v‖0 + |〈H,u−uh〉0| → 0.

Coming back to the variational inequality (1.4) and passing to limes
inferior or limes superior as h→ 0+, we employ (2.12), (2.18), (2.22)–(2.25)
to get

〈A(e)u, u〉 ≤ lim inf〈Ah(eh)uh, uh〉 ≤ lim sup〈Ah(eh)uh, uh〉(2.26)

≤ 〈A(e)u, v〉+ Φ(e)v − Φ(e)u+ 〈p− 2ωH, u− v〉0
for all v ∈ K(H).

Thus u is a solution of the inequality [3, (1.7)]. From the uniqueness of
u(e) we conclude that u = u(e) and the whole sequence {uh(eh)} tends to
u(e) weakly in V as h→ 0+.

It remains to prove the strong convergence. We may set v := u in (2.26)
to obtain

(2.27) lim 〈Ah(eh)uh, uh〉 = 〈A(e)u, u〉.
Next, we have

(2.28) |〈A(e)uh, uh〉 − 〈Ah(eh)uh, uh〉|
≤ |〈A(e)uh, uh〉−〈A(eh)uh, uh〉|+ |〈A(eh)uh, uh〉−〈Ah(eh)uh, uh〉|
≤ ‖A(e)uh −A(eh)uh‖∗‖uh‖1 + Ch‖uh‖1‖uh‖0 → 0,

making use of (2.15) and (2.7). Thus

(2.29) lim 〈A(e)uh, uh〉 = 〈A(e)u, u〉
follows from (2.27) and (2.28).
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Using (2.29), [3, (2.15)] and (2.9), we arrive at

lim a(H;uh, uh) = lim〈A(e)uh, uh〉 − lim b(Z;uh, uh)(2.30)

= 〈A(e)u, u〉 − b(Z;u, u) = a(H;u, u).

The bilinear form a(H; ·, ·) can be taken for a scalar product in V (see
[3, (2.16)]). From (2.30) and the weak convergence of (uh) we conclude that

lim a(H;uh − u, uh − u) = 0,

which in turn implies that uh → u in V .

Proposition 2.2. Let eh ∈ Uhad with eh → e in U as h→ 0+. Then

lim
h→0+

LhJ (eh, uh(eh)) = LJ (e, u(e))

for J = DD, ISS,COM,TR, and

lim
h→0+

LW (ε; eh, uh(eh)) = LW (ε; e, u(e))

for any ε > 0.

Proof. Define u := u(e), uh := uh(eh). It is readily seen that

|LhDD(eh, uh)− LDD(e, u)| =
∣∣∣

�

Ω

((uh − z)2 − (u− z)2) dx
∣∣∣

≤ ‖uh − u‖0‖uh + u− 2z‖0 → 0,

|LhISS(eh, uh)− LISS(e, u)| =
∣∣|uh|21 − |u|21

∣∣ ≤
∣∣|uh|1 − |u|1

∣∣ · (|uh|1 + |u|1)

≤ C|uh − u|1 → 0.

Next, we have

|LhCOM(eh, uh)−LCOM(e, u)|
≤ |LhCOM(eh, uh)−LCOM(eh, u)|+ |LCOM(eh, u)−LCOM(e, u)| ≡ L1 +L2,

where
L1 ≤ |[p, uh]h − 〈p, uh〉0|+ |〈p, uh − u〉0|+ 2ω|〈Hh, u− uh〉0|
≤ Ch‖uh‖1 + C1‖u− uh‖0 → 0

by (1.1) and Proposition 2.1.
Moreover,

L2 = 2ω|〈H −Hh, uh〉0| ≤ C‖H −Hh‖∞‖uh‖0 → 0,

so that
LhCOM(eh, uh)→ LCOM(e, u).

Next, we may write

|LhTR(eh, uh)− LTR(e, u)|
≤ |LhTR(eh, uh)− LTR(eh, u)|+ |LTR(eh, u)− LTR(e, u)| ≡M1 +M2.
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Using also (2.7a) in the final step, we derive that

M1 ≤ |〈Hh grad(uh − u), grad θ〉0|+
∣∣∣
∑

T⊂Ω\Ω∗
〈Zh([uh(γ)]− − [u]−), θ〉0,T

∣∣∣

≤ HmaxC‖uh − u‖1 + Zmax

∑

T

�

T

(|uh(γ)− uh|+ |uh − u|)|θ| dx

≤ HmaxC‖uh − u‖1 + C1

(
h‖uh‖1‖θ‖0 +

∑

T

‖uh − u‖0,T ‖θ‖0,T
)
→ 0.

Next, we also have

M2 ≤ |〈(Hh −H) gradu, grad θ〉0|+ 2ω|〈H −Hh, θ〉0|
+ |〈(Z0

h − Z0)[u]−, θ〉0| ≤ C(‖Hh −H‖∞ + ‖Z0
h − Z0‖∞)‖u‖1‖θ‖1 → 0,

so that
LhTR(eh, uh)→ LTR(e, u).

Finally, we may write

|LW (ε, eh, uh)− LW (ε; e, u)|

≤ |〈ω,Hh −H〉0|+ ε−1
M∑

j=1

|[Fj(uh)]+ − [Fj(u)]+|

≤ C{‖Hh −H‖∞ + ‖uh − u‖1(‖uh‖1 + ‖u‖1)} → 0,

using an argument analogous to the proof of [3, Lemma 3.1].

Lemma 2.3. For any e ≡ {H,Z,F} ∈ Uad and any sequence {h} with
h→ 0+, there exists a sequence {eh} such that

eh ≡ {Hh,Zh,Fh} ∈ Uhad, eh → e in U ≡ C(Ω)×C(Ω \Ω∗)×C(∂ΩC).

Proof. Let πhH denote the Lagrange linear interpolate of H over the
triangulation Th. Since H ∈ W 1,∞(Ω), interpolation theory (see e.g. [1])
yields

‖H − πhH‖0,∞ ≤ Ch‖H‖1,∞.
Obviously, Hmin ≤ πhH ≤ Hmax everywhere. For any straight-line segment
PQ ∈ T parallel to the xi-axis and any triangle T ⊂ Th we have

|∂πhH/∂xi| = `−1|H(Q)−H(P )| ≤ `−1
Q�

P

|∂H/∂xi| ≤ CHi ,

where ` = |PQ|.
Analogous arguments hold for πhZ and for π0

hF ∈ XC
h , i.e., the Lagrange

linear interpolate of F over the partition of ∂ΩC , generated by Th.
Now eh = {πhH,πhZ, π0

hF} satisfies the conditions of the lemma.
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Theorem 2.4. Let {e∗hJ }, h → 0+, be a sequence of solutions to the
Approximate Optimal Design Problem (1.6), J = DD, ISS,COM,TR. Then
there exists a subsequence {e∗ĥJ } ⊂ {e∗hJ } such that

(2.31) e∗ĥJ → e∗J in U ≡ C(Ω)× C(Ω \Ω∗)× C(∂ΩC),

(2.32) uĥ(e∗ĥJ )→ u(e∗J) in V,

where e∗J is a solution of the Optimal Design Problem [3, one of (1.14)–
(1.17)]. The limit of each subsequence of {e∗hJ }, converging in U , is a solu-
tion of the latter problem and an analogue of (2.32) holds.

Proof. Since each Uhad ⊂ Uad and Uad is compact in U , there exists a
subsequence {e∗ĥJ }, ĥ → 0+, such that (2.31) holds. Consider an e ∈ Uad.
By Lemma 2.3, there exists a sequence of eĥ ∈ U ĥad such that eĥ → e in U

as ĥ→ 0+. By definition, we have

LĥJ (e∗ĥJ , uĥ(e∗ĥJ )) ≤ LĥJ (eĥ, uĥ(eĥ)).

Letting ĥ→ 0+ and applying Proposition 2.2 to both sides of this inequality,
we arrive at

LJ (e∗J , u(e∗J)) ≤ LJ (e, u(e)),

so that e∗J is a solution of the original Optimal Design Problem. Making use
of Proposition 2.1, we obtain (2.32). This line of thought may be repeated
for any uniformly convergent subsequence of {e∗hJ }.

Theorem 2.5. Let {eεh}, h → 0+, be a sequence of solutions of the
Approximate Weight Minimization Problem (1.23). Then there exists a sub-
sequence {eε

ĥ
} ⊂ {eεh} such that

eε
ĥ
→ eε in U,

where eε is a solution of the penalized optimization problem [3, (3.1)].

Proof. Analogous to that of Theorem 2.4.

3. Approximate reliable solutions. We shall introduce approxima-
tions of the method of reliable solution (alias worst scenario method), which
has been introduced in [3, Section 4] for problems with some uncertain input
data. In contrast with the previous sections, we keep the half-thickness H(x)
fixed, H ∈ C(0),1(Ω), H > 0 everywhere and Oi ≥ maxx∈Ω H(x), 1 ≤ i ≤ N
(see [3, (1.1)]). On the other hand, we allow the loading function p to vary
in the set Upad.

Here we use again the finite element spaces Xh, Vh, and the sets UZhad ,
UFhad , but we introduce a new set Uphad = Upad ∩Xh. Assume that p0 ∈ Xh0

for some triangulation Th0 .
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Hence we have to assume that the triangulations Th are consistent also
with the boundaries ∂Ωm, m = 1, . . . ,M , which play a role in the definition
of Upad, and with the boundaries of Gj , which appear in the definition of Φ1

and Φ2. Then we define

Uhad = Uphad × UZhad × UFhad

and consider approximate input data eh = {ph,Zh,Fh} ∈ Uhad.
Instead of the criterions Φi, i = 1, 2, 3, we introduce

Φh1 (vh) = max
1≤j≤J

(measGj)−1
∑

T⊂Gj
|vh(γ)|measT,

Φh2 (vh) = Φ2(vh) = max
1≤j≤J

(measGj)−1
�

Gj

|grad vh|2 dx,

Φh3 (eh, vh) = 〈H grad vh, gradϕ〉0 + 〈2ωH − ph, ϕ〉0
+

∑

T⊂Ω\Ω∗
〈Zh[vh(γ)]−, ϕ〉0,T , ϕ ∈ H1

0 (Ω) ∩Xh.

We solve the following approximate maximization problems: find

(3.1i) e∗hi = arg max
eh∈Uhad

Φhi (eh, uh(eh)), i = 1, 2, 3,

where uh(eh) denotes the solution of the Approximate State Problem (1.4)
for the input data eh ≡ {ph,Zh,Fh} ∈ Uhad, i.e., uh(eh) ∈ Kh(H) such that

(3.2) a(H;uh(eh), vh − uh(eh)) + bh(Zh;uh(eh), vh − uh(eh))

+ Φh(eh)(vh)− Φh(eh)(uh(eh)) ≥ 〈ph − 2ωH, vh − uh(eh)〉0
for all vh ∈ Kh(H).

Theorem 3.1. (i) The problem (3.2) has a unique solution uh(eh) for
any eh ∈ Uhad and any h sufficiently small.

(ii) The approximate maximization problem (3.1i), i = 1, 2, 3, has at least
one solution for any h sufficiently small.

Proof. The argument is analogous to that of Theorem 1.1. Let us ver-
ify the assumptions of [3, Theorem 2.1], where we set K(e) := Kh(H),
〈f, vh〉 = −2ω〈H, vh〉0, 〈Be, vh〉 = 〈ph, vh〉0, Uad := Uhad, e := eh, V := Vh,
A(e) := Ah(eh),

〈Ah(eh)vh, wh〉 := a(H; vh, wh) + bh(Zh; vh, wh),

Φ(e)(vh) := Φh(eh)(vh) =
∑

E⊂∂ΩC

�

E

Fh|vh(γ)| ds+ IKh(H)(vh).

Then Lemma 1.3 holds and Lemma 1.4 can be proved by nearly the same
(simpler) argument. Instead of Lemma 1.5 we prove the following
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Lemma 3.2. Let ehn → eh, ehn ∈ Uhad and vhn → vh, vhn ∈ Vh, as
n→∞. Then

lim
n→∞

Φhi (ehn, vhn) = Φhi (eh, vh), i = 1, 2, 3.

Proof. We may write

lim
n→∞

Φh1 (vhn) = lim max
1≤j≤J

(measGj)−1
∑

T⊂Gj
|vhn(γ)|measT

= max
j

lim
n→∞

ψj(vhn) = max
j
ψj(vh) = Φh1 (vh),

since∣∣∣
∑

T⊂Gj
|vhn(γ)|measT −

∑

T⊂Gj
|vh(γ)|measT

∣∣∣

≤
∑

T⊂Gj
|vhn(γ)− vh(γ)|measT ≤

∑

T⊂Gj
‖vhn − vh‖∞,T measT

≤
∑

T⊂Gj
C‖vhn − vh‖0,T (measT )1/2 ≤ C‖vhn − vh‖0,Gj measGj → 0.

Here we have used the inequality (1.15) in the final step.
Second, we have∣∣∣

�

Gj

(|grad vhn|2 − |grad vh|2) dx
∣∣∣ ≤ ‖vhn − vh‖1(‖vhn‖1 + ‖vh‖1)→ 0,

so that

lim
n→∞

Φh2 (vhn) = lim
n→∞

max
1≤j≤J

(measGj)−1
�

Gj

|grad vhn|2 dx

= max
j

lim
n→∞

(. . .) = Φh2 (vh).

Third, we may write

|Φh3 (ehn, vhn)− Φh3 (eh, vh)| ≤ |Φh3 (ehn, vhn)− Φh3 (eh, vhn)|
+ |Φh3 (eh, vhn)− Φh3 (eh, vh)| ≡ L1 + L2,

and using (1.15) again,

L1 ≤ |〈phn − ph, ϕ〉0|+
∑

T

|〈(Zhn − Zh)[vhn(γ)]−, ϕ〉0,T |

≤ C(‖phn − ph‖0 + ‖Zhn − Zh‖∞‖vhn‖0)→ 0,

L2 ≤ |〈H grad(vhn − vh), gradϕ〉0|+
∑

T

|〈Zh([vhn(γ)]− − [vh(γ)]−), ϕ〉0,T |

≤ C‖vhn − vh‖1 + Zmax

∑

T

‖vhn − vh‖0,T · ‖ϕ‖0,T → 0.
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As a consequence,

lim
n→∞

Φh3 (ehn, vhn) = Φh3 (eh, vh).

Finally, the existence of solutions of the problems (3.1i) follows if we set
L ≡ −Φhi .

4. Convergence results. Let us study the convergence of finite-
element approximations when the mesh size tends to zero. First of all, we
have to establish the following

Proposition 4.1. Let eh ∈ Uhad with eh → e in U as h→ 0+. Then

uh(eh)→ u(e) in V as h→ 0+.

Proof. The proof is analogous to that of Proposition 2.1. We can insert
vh = 0 in the inequality (3.2) to get the boundedness of uh := uh(eh) as
h → 0+. In proving that the weak limit of a subsequence {uh} belongs to
K(H), we substitute Hh := πhH, i.e., the linear Lagrange interpolate of H
over the triangulation Th, and use the fact that

‖πhH −H‖0,Ω∗i → 0 as h→ 0+

(cf. the proof of Lemma 2.3).
We derive (2.7)–(2.18), (2.22), (2.23). Instead of (2.24), (2.25) we obtain

(4.1) |〈ph − 2ωH, vh − uh〉0 − 〈p− 2ωH, v − u〉0|
≤ C{‖vh − v‖0 + ‖uh − u‖0 + ‖ph − p‖∞} → 0.

Passing to limes inferior or limes superior in the inequality (3.2) and em-
ploying (2.12), (2.18), (2.22), (2.23) and (4.1), we arrive at (2.26), so that
u satisfies the inequality [3, (1.7)]. As a consequence, the whole sequence
{uh(eh)} tends to u(e) weakly in V as h→ 0+.

The proof of strong convergence is the same as in the proof of Proposi-
tion 2.1.

Proposition 4.2. Let eh ∈ Uhad with eh → e in U as h→ 0+. Then

lim
h→0+

Φhi (eh, uh(eh)) = Φi(e, u(e)), i = 1, 2, 3.

Proof. For uh := uh(eh) and u := u(e) we may write
∣∣∣
∑

T⊂Gj
|uh(γ)|measT −

�

Gj

|u| dx
∣∣∣ ≤

∑

T⊂Gj

�

T

(|uh(γ)− uh|+ |uh − u|) dx

≤ (h‖uh‖1,Gj + ‖uh − u‖0,Gj ) measGj → 0 as h→ 0,
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by Proposition 4.1. As a consequence,

lim
h→0+

Φh1 (uh) = lim
h→0

max
1≤j≤J

(measGj)−1
∑

T⊂Gj
|uh(γ)|measT

= max
j≤J

lim
h→0

(. . .) = max
j≤J

(measGj)−1
�

Gj

|u| dx = Φ1(u).

Since ∣∣∣
�

Gj

|graduh|2 dx−
�

Gj

|gradu|2 dx
∣∣∣ ≤ C|uh − u|1,Gj → 0,

we have

lim
h→0+

Φh2 (uh) = lim
h→0+

max
1≤j≤J

(measGj)−1
�

Gj

|graduh|2 dx

= max
j≤J

lim
h→0+

(. . .) = Φ2(u).

Third, we may write

|Φh3 (eh, uh)− Φ3(e, u)| ≤ |Φh3 (eh, uh)− Φ3(eh, u)|+ |Φ3(eh, u)− Φ3(e, u)|
= M1 +M2,

where

M1 ≤ |〈H grad(uh − u), gradϕ〉0|+
∑

T⊂Ω\Ω∗
|〈Zh([uh(γ)]− − [u]−), ϕ〉0,T |

≤ C‖uh − u‖1 + C1(h‖uh‖1 + ‖uh − u‖0)‖ϕ‖0 → 0

(cf. the proof of Proposition 2.2 for LhTR), and

M2 ≤
∣∣∣

�

Ω\Ω∗
(Zh − Z)[u]−ϕdx

∣∣∣+ |〈p− ph, ϕ〉0|

≤ C(‖Zh − Z‖∞ + ‖p− ph‖∞)→ 0.

As a consequence, we obtain limh→0 Φ
h
3 (eh, uh) = Φ3(e, u).

Lemma 4.3. For any e≡{p,Z,F}∈Uad and any sequence {h}, h→ 0+,
there exists a sequence {eh} such that eh ≡ {ph,Zh,Fh} ∈ Uhad and eh → e

in U = (
∏M
m=1 C(Ωm))× C(Ω \Ω∗)× C(∂ΩC).

Proof. Consider the restriction pm = p|Ωm of any p ∈ Upad and define
ph = πhpε, where πh is the linear Lagrange interpolation over Th and

pε = εp0 + (1− ε)pm, x ∈ Ωm,
where ε is a real parameter, 0 < ε < 1. We have

‖∂pε/∂xi‖∞,Ωm ≤ ε‖∂p0/∂xi‖∞ + (1− ε)‖∂pm/∂xi‖∞(4.2)

≤ C2, i = 1, 2,
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by definitions of Uad and p0. Since

‖pε‖∞,Ωm ≤ ε‖p0‖∞ + (1− ε)‖pm‖∞ ≤ max{‖p0‖∞, ‖pm‖∞} ≡ C3,

we obtain
‖pε‖1,∞,Ωm ≤ C3 + 2C1 ≡ C4

for all ε. Using the estimate

‖q − πhq‖∞,Ωm ≤ Ch‖q‖1,∞,Ωm
we may write

‖ph − p0‖∞,Ωm ≤ ‖πhpε − pε‖∞ + ‖pε − p0‖∞(4.3)

≤ CC4h+ (1− ε)‖pm − p0‖∞
≤ CC4h+ (1− ε)C1 ≤ C1

if

(4.4) CC4h ≤ C1ε.

Let PQ ⊂ T ⊂ Ωm be a straight-line segment of length `, parallel to the
xi-axis. Then

|∂πhpε/∂xi| =
∣∣∣∣`−1

Q�

P

∂pε
∂xi

dxi

∣∣∣∣ ≤ `−1
Q�

P

|∂pε/∂xi| dxi ≤ C2

by (4.2), so that

(4.5) ‖∂ph/∂xi‖∞,Ωm ≤ C2, i = 1, 2.

Next, we have

‖ph − pm‖∞,Ωm ≤ ‖πhpε − pε‖∞ + ‖pε − pm‖∞(4.6)

≤ CC4h+ ε‖p0 − pm‖∞
≤ CC4h+ εC1 → 0 as h→ 0+ and ε→ 0+.

Combining (4.3)–(4.6), we can find a sequence {ph}, h → 0+, such that
ph ∈ Uphad and ph → p in

∏M
m=1 C(Ωm).

The components Zh and Fh can be defined as linear Lagrange interpo-
lates of Z and F , respectively (cf. the proof of Lemma 2.3).

Theorem 4.4. Let {e∗hi }, h → 0+, be a sequence of solutions of the
approximate maximization problem (3.1i), i = 1, 2, 3. Then there exists a
subsequence {e∗ĥi } ⊂ {e∗hi } such that

e∗ĥi → e∗i in U,(4.7)

uĥ(e∗ĥi )→ u(e∗i ) in V,(4.8)

Φĥi (e∗ĥi , uĥ(e∗ĥi ))→ Φi(e∗i , u(e∗i )),(4.9)
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where e∗i is a solution of the maximization problem (4.1)i of [3]. The limit
of each subsequence of {e∗hi }, converging in U , is a solution of the prob-
lem (4.1)i and the analogues of (4.8), (4.9) hold.

Proof. Analogous to that of Theorem 2.4. Instead of Proposition 2.2 and
Lemma 2.3, we employ Proposition 4.2 and Lemma 4.3. Proposition 2.1 is
replaced by Proposition 4.1.

Acknowledgments. The first author thankfully acknowledges the sup-
port of the Grant Agency of the Czech Republic under grant 201/98/0528
and of the Ministry of Education, Youth and Sports under grant OK-407.

References

[1] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, 1978.
[2] R. Glowinski, Lectures on Numerical Methods for Non-linear Variational Problems,

Tata Inst. Fund. Res. and Springer, 1980.
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