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ON AN INVERSE PROBLEM IN
THE THEORY OF THERMISTORS

Abstract. An inverse problem for a nonlocal problem describing the tem-
perature of a conducting device is studied.

1. Introduction. In this paper we consider the following nonlocal prob-
lem for a nonlinear differential equation:

(1) θ′′ + λ
f(θ)

(
� 1
−1 f(θ(x)) dx)2

= 0, −1 < x < 1,

(2) θ(−1) = θ(1) = 0,

where θ : [−1, 1] → [0,∞) is an unknown function, f : [0,∞) → (0,∞)
is a given function, and λ > 0 is a real parameter. This problem models
the stationary temperature θ of a conducting device occupying the interval
−1 ≤ x ≤ 1 when the electric current flows through the material with
temperature-dependent electrical resistivity f(θ) > 0, subject to a fixed
potential difference V , and λ = V 2.

The temporal evolution of the temperature θ and the electric potential
ϕ is described by the system

(3) θt = θxx + σϕ2
x,

(4) (σϕx)x = 0,

where σ(θ) = 1/f(θ) is the electrical conductivity (see [4]). We assume
that the thermal conductivity, the density and the specific heat of the one-
dimensional conductor are equal to one.

We fix the electric potential at the ends of the conductor, i.e. ϕ(−1) = V1,
ϕ(1) = V2, and we assume that θ = 0 at x = ±1.
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From (4) we have σϕx = J(t), so

(5) ϕx = f(θ)J(t).

Integrating (5) over [−1, 1] we get J(t) = V/
� 1
−1 f(θ), where V = V2 − V1.

Then we have

ϕx = V
f(θ)

� 1
−1 f(θ)

.

Hence we can write the equation (3) in the form

θt = θxx + λ
f(θ)

(
� 1
−1 f(θ))2

,

where λ = V 2.
Thus the stationary temperature θ satisfies the equation (1) with the

boundary conditions (2).

2. Existence of solutions. Let θλ be a solution of the problem (1)–(2).
It is known that the solution of (1)–(2) is an even function and the

maximum of θλ is attained at 0, θλ(0) ≡M(λ) (see [2]).
Note that

(6) λ = 8
M(λ)�

0

f(s) ds.

Indeed, integrating (1) over [−1, 1] and using θ′λ(1) = −θ′λ(−1) we obtain

(7) 2θ′λ(1) +
λ

� 1
−1 f(θλ)

= 0.

On the other hand, multiplying (1) by 2θ′λ and then integrating over [0, 1]
we get

(θ′λ(1))2 +
2λ

(
� 1
−1 f(θλ))2

1�

0

f(θλ)θ′λ = 0.

Hence

(8) (θ′λ(1))2 − 2λ

(
� 1
−1 f(θλ))2

M(λ)�

0

f(s) ds = 0.

Combining (7) and (8) we finally obtain the formula (6).
Hence the maximum M(λ) of the solution of the problem (1)–(2) is an

increasing function of λ. Moreover, in the case
� ∞
0 f(s) ds = ∞, we have

M(λ) → ∞ as λ → ∞, and if
� ∞
0 f(s) ds < ∞, then M(λ) → ∞ as

λ→ 8
� ∞
0 f(s) ds (see [5]).
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Under the assumption that f is a positive decreasing function, the ex-
istence and uniqueness of solutions of (1)–(2) have been investigated in [2]
and [5]. The following facts were proved:

(a) If
� ∞
0 f(s) ds = ∞, then there is a unique solution of the problem

(1)–(2) for each λ > 0,
(b) If

� ∞
0 f(s) ds <∞, then the problem (1)–(2) has

(i) a unique solution for each λ < 8
� ∞
0 f(s) ds,

(ii) no solution for λ ≥ 8
� ∞
0 f(s) ds.

In [2] the following result was obtained. If f(θ) is a positive increasing
function such that θf ′(θ)/f(θ) → ∞ as θ → ∞, then the problem (1)–(2)
has a solution for each λ > 0.

Here we generalize the above result proving the existence of a solution
of the problem (1)–(2) for an arbitrary positive increasing function f .

Theorem 1. Let f be a continuous positive increasing function. Then
there is a solution θ in C0[−1, 1]∩C2(−1, 1) of the problem (1)–(2) for each
λ > 0.

Proof. We introduce the following operator T on the space C0[−1, 1]:

Tθ(x) =
λ

(
� 1
−1 f(|θ|))2

1�

−1

G(x, y)f(|θ(y)|) dy,

where

G(x, y) =
{

(1− x)(y + 1)/2 for −1 ≤ y ≤ x ≤ 1,
(1− y)(x+ 1)/2 for −1 ≤ x ≤ y ≤ 1,

is the Green function for the operator −θ′′ (see [1]). The solution of the
problem (1)–(2) is a fixed point of the map T .

The proof of the existence of a fixed point will be based on the Leray–
Schauder Theorem applied in the space C0[−1, 1] with the supremum
norm ‖θ‖∞.

The operator T is continuous on C0[−1, 1]. Moreover (Tθ(x))′ is uni-
formly bounded if θ belongs to a bounded subset of C0[−1, 1]. Indeed, if
‖θ‖∞ ≤ C, then ‖(Tθ)′‖∞ ≤ λf(C)/(4f2(0)). Hence T is a compact opera-
tor.

To apply the Leray–Schauder Theorem, it is sufficient to prove a uniform
a priori estimate of solutions θα of the equation θ = αTθ for α ∈ [0, 1].

Obviously we have ‖θα‖∞ ≤ λ/(4f(0)) ≡ C for α ∈ [0, 1].

3. The inverse problem. Here we study an inverse problem related to
(1)–(2), consisting in the unique identification of the function f in the case
when we have some information about the solutions of the problem (1)–(2).
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First we investigate the problem of the determination of f by the values
of the solutions of (1)–(2) on [0, 1].

Theorem 2. The solution θλ of the problem (1)–(2) uniquely deter-
mines the function f on the interval [0,M(λ)].

Proof. From (1) we have

f(θλ(x)) = −4(
� 1
0 f(θλ))2

λ
θ′′λ(x).

Integrating (1) over [0, 1] we get
� 1
0 f(θλ) = −λ/(4θ′λ(1)). Then

f(θλ(x)) = − λθ′′λ(x)
4(θ′λ(1))2 .

Note that the solution of (1)–(2) is one-to-one on [0, 1]. Hence

(9) f(s) = −λθ
′′
λ(θ−1

λ (s))
4(θ′λ(1))2 for s ∈ [0,M(λ)].

Corollary 1. Let
� ∞
0 f(s) ds =

� ∞
0 f(s) ds =∞. If θλn = θλn for some

increasing sequence λn tending to ∞, then f = f on the whole half-line
[0,∞).

Corollary 2. Let
� ∞
0 f(s) ds =

� ∞
0 f(s) ds ≡ λ∗ < ∞. If θλn = θλn

for some increasing sequence λn tending to 8λ∗, then f = f on the whole
half-line [0,∞).

The formula (9) involves the first and second derivatives of θλ. Therefore
small C0-changes of θλ may give big changes in f . This kind of instability is
typical for inverse problems. Our aim is to describe a procedure for finding
f which is stable under C0-perturbations of θλ.

We start with the following example. In [3] the authors assumed that
the function f has the form f(θ) = aebθ, where a > 0, b > 0 are real
parameters. In that case the problem (1)–(2) has a unique solution for all
λ > 0 (see [2]). Our aim is to determine a and b if we know the value of the
temperature θλ(0) = M(λ) for some λ = λj , j = 1, 2. The formula (6) takes
the form λ/8 = a(ebM(λ)−1)/b, and we obtain a = λ1b/(8(ebM(λ1)−1)) and
λ1/λ2 = (ebM(λ1) − 1)/(ebM(λ2) − 1). Let λ1 > λ2. Then M(λ1) > M(λ2)
and we note that the right hand side of the last equation is an increasing
function of b. Hence we can determine uniquely the parameters a, b, provided
λ1/λ2 > M(λ1)/M(λ2).

On the other hand, if λ1/λ2 ≤ M(λ1)/M(λ2) for some λ1, λ2, we can
conclude that the dependence of the resistivity of the thermistor on the
temperature is not given by a function of the form f(θ) = aebθ.
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We prove that M(λ) determines f not only for f of the special form
f(θ) = aebθ but also for arbitrary f . Assume that M(λ) is a differentiable
function of λ. Then using the formula (6) we get the relation f(M(λ)) =
(8M ′(λ))−1. Hence f is uniquely determined by M . We see that small
changes of M(λ) in C0-norm may give big changes of f . In practice the val-
ues M(λ) are obtained experimentally, hence it is reasonable to ask about
the influence of inaccuracy in measuring M(λ) on the function f . Below we
show that under some assumptions on the dependence of the resistivity f
on the temperature θ, small C0-perturbations of M lead to small changes
of f .

Theorem 3. Let fn, f be differentiable positive functions such that
the sequences fn, f ′ − f ′n are uniformly bounded on [0,∞), and suppose� ∞
0 f(s) ds =

� ∞
0 fn(s) ds = ∞. Assume that the sequence Mn(λ) converges

uniformly to M(λ) on [0, λ]. Then the sequence fn(s) tends uniformly to
f(s) on [0,M(λ)].

Proof. Let fn ≤ c for some constant c > 0.

From (6) we get
� M(λ)
0 f(s) ds =

� Mn(λ)
0 fn(s) ds. Thus

(10)
∣∣∣
M(λ)�

0

(f(s)− fn(s)) ds
∣∣∣ =

∣∣∣
Mn(λ)�

M(λ)

fn(s) ds
∣∣∣ ≤ c|Mn(λ)−M(λ)|.

Let gn(x) =
� x
0 hn(s) ds, where x ≡ M(λ) and hn ≡ f − fn. Then by the

assumption of the theorem it follows from (10) that the sequence gn tends
uniformly to 0 on [0,M(λ)].

The sequence h′n is uniformly bounded, so by the Arzelà–Ascoli theorem
from each subsequence of hn we can choose some subsequence hnk uniformly
convergent to some function h. We have gnk(x) =

� x
0 hnk(s) ds and gnk → 0

uniformly on [0,M(λ)]. Hence
� x
0 h(s) ds = 0 for each x > 0, which implies

h = 0, and thus the sequence hn = f−fn tends uniformly to 0 on [0,M(λ)].

Remark. The assertion of Theorem 3 holds if we consider the differen-
tiable positive functions fn, f such that fn are decreasing , the sequences f ′n,
f ′−f ′n are uniformly bounded on [0,∞) and

� ∞
0 f(s) ds =

� ∞
0 fn(s) ds =∞.

It is sufficient to prove that the sequence fn(0) is bounded. Suppose
that fn(0)→∞. Then from the relation λ = 8

� Mn(λ)
0 fn(s) ds and uniform

boundedness of f ′n it follows that Mn(λ) tends to 0 for each λ > 0. Moreover
the Mn(λ) are increasing functions of λ. Thus we get uniform convergence
of the sequence Mn(λ) to M(λ) ≡ 0, a contradiction.

Immediately from Theorem 3 we get
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Corollary 3. Let
� ∞
0 fj(s) ds = ∞, j = 1, 2. If M1(λ) = M2(λ) for

each λ > 0, then f1 = f2 on the whole half-line [0,∞).
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