Ryszard Zieliński (Warszawa)

CONSTRUCTING MEDIAN-UNBIASED ESTIMATORS IN ONE-PARAMETER FAMILIES OF DISTRIBUTIONS VIA STOCHASTIC ORDERING

Abstract. If $\theta \in \Theta$ is an unknown real parameter of a given distribution, we are interested in constructing an exactly median-unbiased estimator $\hat{\theta}$ of θ , i.e. an estimator $\hat{\theta}$ such that a median $\operatorname{Med}(\hat{\theta})$ of the estimator equals θ , uniformly over $\theta \in \Theta$. We shall consider the problem in the case of a fixed sample size n (nonasymptotic approach).

1. The model. Let \mathcal{F} be a one-parameter family $\{F_{\theta} : \theta \in \Theta\}$ of distributions, where Θ is a (finite or infinite) interval on the real line. The family \mathcal{F} is assumed to be a family of distributions with continuous and strictly increasing distribution functions and stochastically ordered by θ so that for every $x \in \operatorname{supp} \mathcal{F} = \bigcup_{\theta \in \Theta} \operatorname{supp} F_{\theta}$ and for every $q \in (0, 1)$, the equation $F_{\tau}(x) = q$ has exactly one solution in $\tau \in \Theta$. Given a sample X_1, \ldots, X_n from an F_{θ} , we are interested in median-unbiased estimation of θ ; here n is a fixed integer (nonasymptotic approach).

This model covers a wide range of one-parameter families of distributions.

EXAMPLE 1. The family of uniform distributions on $(\theta, \theta + 1)$, with $-\infty < \theta < \infty$.

EXAMPLE 2. The family of power distributions on (0, 1) with distribution functions $F_{\theta}(x) = x^{\theta}, \theta > 0.$

EXAMPLE 3. The family of gamma distributions with probability distribution functions (pdf) of the form

²⁰⁰⁰ Mathematics Subject Classification: 62F10, 62G05.

Key words and phrases: median-unbiased estimators, stochastic ordering, optimal nonparametric quantile estimators.

R. Zieliński

$$f_{\alpha}(x) = \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x}, \quad x > 0,$$

with $\alpha > 0$.

EXAMPLE 4. Consider the family of Cauchy distributions with pdf of the form

$$g_{\lambda}(y) = \frac{1}{\lambda} \frac{1}{1 + (y/\lambda)^2}, \quad -\infty < y < \infty,$$

and distribution function of the form

$$G_{\lambda}(y) = \frac{1}{2} + \frac{1}{\pi} \arctan \frac{x}{\lambda}$$

with $\lambda > 0$. The family $\{F_{\lambda} : \lambda > 0\}$ of distribution functions of X = |Y| with

$$F_{\lambda}(x) = \frac{2}{\pi} \arctan \frac{x}{\lambda}$$

satisfies the model assumptions so that the problem of estimating λ from a sample Y_1, \ldots, Y_n amounts to estimating λ from the sample X_1, \ldots, X_n with $X_i = |Y_i|, i = 1, \ldots, n$.

EXAMPLE 5. Consider the one-parameter family of Weibull distributions with distribution functions of the form

$$G_{\alpha}(y) = 1 - e^{-y^{\alpha}}, \quad y > 0, \ \alpha > 0,$$

and let $X = \max\{Y, 1/Y\}$. The family $\{F_{\alpha} : \alpha > 0\}$ of distributions of X with distribution functions

$$F_{\alpha}(x) = e^{-x^{-\alpha}} - e^{-x^{\alpha}}, \quad x > 1, \ \alpha > 0,$$

satisfies the model assumptions.

EXAMPLE 6 (Estimating the characteristic exponent of a symmetric α -stable distribution). Consider the one-parameter family of α -stable distributions with characteristic functions $\exp\{-t^{\alpha}\}$, $0 < \alpha \leq 2$. The problem is to construct a median-unbiased estimator of α . Some related results can be found in Fama and Roll (1971) and Zieliński (2000). We shall not consider this problem in this note because it needs (and deserves) a special treatment and will be discussed in detail elsewhere.

Generally, every family of distributions F_{θ} with continuous and strictly increasing F_{θ} and a location parameter θ satisfies the model assumptions. Similarly, every family of continuous and strictly increasing distributions on $(0, \infty)$ with a scale parameter fits into the model.

252

2. The method. The method consists in:

1) For a given $q \in (0, 1)$, estimating the *q*th quantile of the underlying distribution in a nonparametric setup; denote the estimator by \hat{x}_q . A restriction is that for a fixed *n* a median-unbiased estimator of the *q*th quantile exists iff $\max\{q^n, (1-q)^n\} \leq \frac{1}{2}$.

2) Solving the equation $F_{\tau}(\hat{x}_q) = q$ with respect to τ . The solution, to be denoted by $\hat{\theta}_q$, is considered as an estimator of θ . The solution of the equation $F_{\tau}(x) = q$ with respect to τ will be denoted by $\hat{\theta}_q(x)$ so that $\hat{\theta}_q = \hat{\theta}_q(\hat{x}_q)$.

In the model, if \hat{x}_q is a median-unbiased estimator of x_q then, due to monotonicity of $\hat{\theta}_q(x)$ with respect to x, $\hat{\theta}_q$ is a median-unbiased estimator of θ . What is more, if \hat{x}_q is the median-unbiased estimator of x_q the most concentrated around x_q in the class of all median-unbiased estimators which are equivariant with respect to monotone transformations of data (briefly: the best estimator) then, due to monotonicity again, $\hat{\theta}_q$ is the median-unbiased estimator of θ most concentrated around θ in the class of all median-unbiased estimators which are equivariant with respect to monotone transformations of data (briefly: the best estimator).

Given $q \in (0, 1)$, the best estimator \hat{x}_q of x_q is given by the formula

[E]
$$\widehat{x}_q = X_{k:n} \mathbf{1}_{(0,\lambda]}(U) + X_{k+1:n} \mathbf{1}_{(\lambda,1)}(U)$$

where $X_{k:n}$ is the kth order statistic, $X_{1:n} \leq \ldots \leq X_{n:n}$, from the sample X_1, \ldots, X_n and

$$k = k(q)$$

= the unique integer such that $Q(k; n, q) \ge 1/2 \ge Q(k+1; n, q)$,

$$\lambda = \lambda(q) = \frac{1/2 - Q(k+1; n, q)}{Q(k; n, q) - Q(k+1; n, q)},$$
$$Q(k; n, q) = \sum_{j=k}^{n} {n \choose j} q^{j} (1-q)^{n-j};$$

here U is a random variable uniformly distributed on (0, 1) and independent of the sample X_1, \ldots, X_n (Zieliński 1988).

When estimating θ in a parametric model $\{F_{\theta} : \theta \in \Theta\}$, the problem is to choose an "optimal" q. To define a criterion of optimality (or "an ordering in the class $\hat{\theta}_q$, 0 < q < 1, of estimators"), recall (e.g. Lehmann 1983, Sec. 3.1) that a median-unbiased estimator $\hat{\theta}$ of a parameter θ is the one for which

[K]
$$E_{\theta}|\widehat{\theta} - \theta| \le E_{\theta}|\widehat{\theta} - \theta'|$$
 for all $\theta, \theta' \in \Theta$

(the estimator is closer to the "true" value $\theta \in \Theta$ than to any other value

 $\theta' \in \Theta$ of the parameter). According to this property, we shall choose q_{opt} as the one with minimal risk under the loss function $|\hat{\theta} - \theta|$, i.e. such that

$$E_{\theta}|\widehat{\theta}_{q_{\text{opt}}} - \theta| \le E_{\theta}|\widehat{\theta}_{q} - \theta|, \quad 0 < q < 1,$$

for all $\theta \in \Theta$, if possible.

Using the fact that $\theta \in \Theta$ generates the stochastic ordering of the family $\{F_{\theta} : \theta \in \Theta\}$, we shall restrict our attention to finding q_{opt} which satisfies criterion [K] for a fixed θ , for example $\theta = 1$; then the problem reduces to minimizing

$$R(q) = E|\widehat{\theta}_q - 1|$$

with respect to $q \in (0, 1)$, where $E = E_1$.

By [E] we obtain

$$R(q) = \lambda(q)E|\widehat{\theta}_q(X_{k(q):n}) - 1| + (1 - \lambda(q))E|\widehat{\theta}_q(X_{k(q)+1:n}) - 1|$$

It is obvious that q_{opt} satisfies

$$\lambda(q_{\rm opt}) = 1$$

and

$$E|\widehat{\theta}_{q_{\text{opt}}}(X_{k(q_{\text{opt}}):n}) - 1| \le E|\widehat{\theta}_{q}(X_{k(q):n}) - 1|, \quad 0 < q < 1.$$

By the very definition of λ , $\lambda(q) = 1$ iff $q \in \{q_1, \ldots, q_n\}$ where q_i satisfies $Q(i; n, q_i) = 1/2$, and the problem reduces to finding the smallest element of the finite set

$$\{E|\widehat{\theta}_{q_i}(X_{i:n}) - 1| : i = 1, \dots, n\}.$$

If $X_{k:n}$ is the kth order statistic from the sample X_1, \ldots, X_n from a distribution function F, then $U_{k:n} = F(X_{k:n})$ is the kth order statistic from the sample U_1, \ldots, U_n from the uniform distribution on (0, 1), which gives us

$$\begin{split} E|\widehat{\theta}_{q_i}(X_{i:n}) - 1| &= E|\widehat{\theta}_{q_i}(F^{-1}(U_{i:n})) - 1| \\ &= \frac{\Gamma(n)}{\Gamma(i)\Gamma(n-i+1)} \int_0^1 |\widehat{\theta}_{q_i}(F^{-1}(t)) - 1| t^{i-1}(1-t)^{n-i} dt. \end{split}$$

The latter can be easily calculated numerically.

3. Applications

EXAMPLE 1A. In the case of uniform distributions on $(\theta, \theta + 1)$, the solution τ of the equation $F_{\tau}(\hat{x}_q) = q$ takes the form $\tau = \hat{x}_q - q$. For example for n = 10 the best estimator is $X_{1:10} - 0.067$ or $X_{10:10} - 0.933$.

EXAMPLE 2A. In the case of power distributions, the best estimator is the (unique) solution, with respect to τ , of the equation $\hat{x}_q^{\theta} = q_{\text{opt}}$; for n = 10 the estimator takes the form $-1.81854/\text{Log}[X_{2:10}]$.

EXAMPLE 3A. In the case of gamma distributions, the best estimator is the (unique) solution, with respect to τ , of the equation $F_{\tau}(\hat{x}_q) = q_{\text{opt}}$; for n = 10 this equation takes the form $F_{\tau}(X_{3:10}) = 0.2586$.

EXAMPLE 4A. In the case of Cauchy distributions the solution τ of the equation $F_{\tau}(\hat{x}_q) = q$ can be written in the form

$$\tau = \frac{\widehat{x}_q}{\tan\left(\frac{\pi}{2}q\right)}$$

and for n = 10 the best estimator is $1.16456 \cdot X_{5:10}$.

EXAMPLE 5A. In the case of Weibull distributions, the best estimator is the (unique) solution, with respect to τ , of the equation $F_{\tau}(\hat{x}_q) = q_{\text{opt}}$; for n = 10 this equation takes the form $F_{\tau}(X_{8:10}) = 0.7414$, which gives us the optimal estimator $0.302/\text{Log}(X_{8:10})$.

Acknowledgements. The research was supported by Grant KBN 2 PO3A 033 17.

References

- E. F. Fama and R. Roll (1971), Parameter estimates for symmetric stable distributions, J. Amer. Statist. Assoc. 66 (334), 331–338.
- E. L. Lehmann (1983), Theory of Point Estimation, Wiley.
- R. Zieliński (1988), A distribution-free median-unbiased quantile estimator, Statistics 19, 223–227.
- R. Zieliński (2000), A median-unbiased estimator of the characteristic exponent of a symmetric stable distribution, ibid. 34, 353–355.

Institute of Mathematics Polish Academy of Sciences P.O. Box 137 00-956 Warszawa 10, Poland E-mail: rziel@impan.gov.pl

> Received on 19.11.2002; revised version on 7.3.2003

(1663)