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ARBITRAGE AND PRICING IN A

GENERAL MODEL WITH FLOWS

Abstract. We study a fundamental issue in the theory of modeling of
financial markets. We consider a model where any investment opportunity
is described by its cash flows. We allow for a finite number of transactions
in a finite time horizon. Each transaction is held at a random moment.
This places our model closer to the real world situation than discrete-time
or continuous-time models. Moreover, our model creates a general frame-
work to consider markets with different types of imperfection: proportional
transaction costs, frictions on the numeraire, etc.

We develop an analog of the fundamental theorem of asset pricing. We
show that lack of arbitrage is essentially equivalent to existence of a Lipschitz
continuous discount process such that the expected value of discounted cash
flows of any investment is non-positive. We address the question of contin-
gent claim pricing and hedging.

1. Introduction. Financial mathematics is mostly engaged in design
of models of the financial world. In addition to being “good copies” of re-
ality these models should be tractable by mathematics. There are several
reasons to develop models. We will mention two of them: better under-
standing of the “nature of the market” and pricing of contingent claims.
A key notion for these questions is lack of arbitrage. It has always had an
economic meaning of inability to acquire positive gains without any risk.
However, incorporating it in the models of the market required major re-
finements. Simple discrete-time models used the most intuitive definition:
a self-financing strategy with zero initial capital is an arbitrage opportunity
if it produces a non-negative final value with probability one and positive
final value with probability greater than zero (Bingham–Kiesel [1]). During
its history financial mathematics developed a lot of theories that addressed
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different aspects of non-ideal market. These were lack of numeraire, transac-
tion costs, short-sale constraints, partial knowledge, etc. But there has been
a strong need for a general framework that would cover all those aspects
and allow research into the “nature” of arbitrage and pricing.

A remarkable step in this direction was made by Jouini and Napp in [3].
They adopted a model where all investment opportunities were described by
their cash flows. For instance, in such a model the investment which consists
of buying, in a perfect financial model, at date t1 one unit of a risky asset
whose price process is given by (St)t∈R+ and selling this unit at date t2 > t1,
is described by a process (Φt)t∈R+ which is null outside {t1, t2} and which
satisfies Φt1 = −St1 , Φt2 = St2 . Each investment (Φt)t∈R+ is null everywhere
but at a finite number of points. The market is defined as a positive convex
cone of such investments.

The framework proposed by Jouini and Napp is quite general. It allows
for a wide class of models: with perfect numeraire, with different rates of
borrowing and lending, with convex cone constraints on the quantities of
assets held by investors (e.g. short-sale constraints) and with proportional
transaction costs. Moreover, it is much closer to the real world than classical
discrete-time models. It generalizes the notion of discrete time. Each invest-
ment consists of a finite number of cash flows at deterministic moments, but
different investments can have cash flows at different moments. It reflects
the mechanism of trading in the real world. No investor can make an infinite
number of transactions in a finite time. However, one can argue that it is
possible to make transactions at a finite number of stopping times, for in-
stance when the price of the stock reaches a certain limit. A small progress
in this direction was made by Napp in [5]. She modified the model in such
a way that one could consider stopping times with a countable number of
values. In both papers the analog of the Fundamental Theorem of Asset
Pricing was presented. It stated that there is no possibility of free lunch
if and only if there exists an adapted discount process gt with a uniformly
bounded and strictly positive modification such that the expected value of
discounted cash flows of any investment is non-positive.

In the present paper we make further generalizations of Jouini’s ap-
proach. We construct a model that goes along with the following real world
rules:

• at each moment an agent has full knowledge of what has happened up
to that time,

• an agent can make only a finite number of transactions in a finite time
horizon,

• each transaction consists of a random cash flow occurring at a random
moment; the decision of choosing the moment is made according to
the knowledge available to the agent.
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We satisfy these rules by allowing for random cash flows at any bounded
stopping time. Therefore we exploit advantages of discrete-time and con-
tinuous-time models. Continuous models express our perception of time,
but continuous trading is a huge simplification to what one can observe.
On the contrary, discrete-time models go along our requirements for trad-
ing (there must be a gap between subsequent transactions). However, it
allows for transactions only at a finite set of moments in a finite hori-
zon.

For the constructed model we derive an analog of the Fundamental The-
orem of Asset Pricing in the spirit of Jouini and Napp ([3]). We prove that
the absence of free lunch (a stronger version of the no-arbitrage condition)
is equivalent to the existence of a discount process gt such that the ex-
pected value of discounted cash flows of any investment is non-positive.
The process gt has uniformly bounded and Lipschitz continuous trajectories,
a natural property from the economic point of view.

The last sections of the paper are devoted to contingent claim pricing.
We show how the theorems from the previous sections can be used to obtain
links between arbitrage pricing (in the spirit of Harrison and Kreps [2]) and
hedging (a super-replication cost). We prove that the upper limit of the
no-arbitrage interval of option prices is equal to the super-replication cost.
A paper by Napp ([5]) provides a much wider coverage of the pricing issues
in the model with flows, but with a different approach.

In Section 2 we define a model of the market. The next two sections are
devoted to designing a framework that enables us to define the notion of
arbitrage and free lunch. In Section 3 we introduce a Banach space M and
prove some of its properties. Section 4 is based on a seminar by Schwartz [7]
and defines a space L1

P(Ω,M) of integrable functions and its dual. Section 5
provides a representation of investments as elements of L1

P(Ω,M) and de-
fines conditions of no arbitrage and no free lunch. We prove a Fundamental
Theorem of Asset Pricing, i.e. existence of discount processes (our proof is
based on the proof by Jouini and Napp [3]). Contingent claim pricing and
hedging are addressed in Section 6.

2. A model. The model presented in this paper is a generalization of the
model proposed by Jouini and Napp in [3]. We are given a probability space
(Ω,F ,P) representing all states of the world. The probability distribution
P is the real world probability. The knowledge about the world is encoded
in the filtration (Ft)t∈R+ satisfying the usual conditions (completeness and
right continuity) with F0 being trivial (we have perfect knowledge of the
world at time zero). In this probabilistic framework we define investment
opportunities. Each investment opportunity is described by its cash flows.
Every cash flow occurs at a random moment defined by a bounded stopping
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time. A positive cash flow represents obtaining money, a negative flow means
paying.

Definition 2.1. An investment opportunity (Φt)t∈R+ is an (Ft)t∈R+-
adapted process that can be written in the form

Φt =

n∑

i=1

Φτi1τi(t)

for some n > 0 and a sequence of bounded stopping times τ1, . . . , τn such
that Φτi ∈ L1(Ω,Fτi ,P) for every i ∈ {1, . . . , n}. We denote by ∆ the set of
all investments.

The market is defined by available investment opportunities. We assume
that each investment is infinitely divisible, i.e. for any investment (Φt)t∈R+

there exists an investment (λΦt)t∈R+ for any non-negative λ. Moreover, if
there are two different investment opportunities (Φt)t∈R+ , (Ψt)t∈R+ then an
agent can submit to both of them at the same time, so there exists an
investment that is the sum of (Φt)t∈R+ and (Ψt)t∈R+ .

Definition 2.2. A market J is a positive convex cone of investment
opportunities, i.e.

1) Φ1, Φ2 ∈ J ⇒ Φ1 + Φ2 ∈ J ,

2) Φ ∈ J , a ∈ R+ ⇒ aΦ ∈ J .

Example 2.1. We will construct a cone J representing a perfect market
with N assets whose price processes are given by (Sit)t∈R+ , i = 1, . . . , N .
We require that for any i = 1, . . . , N and τ a bounded stopping time, Siτ ∈
L1(Ω,Fτ ,P). We assume that there are no short-sale constraints or any
other frictions. Define

(1) ΦΘ,τ,σ,St = Θ(t)(1τ(t)Sτ − 1σ(t)Sσ),

where τ , σ are bounded stopping times and Θ ∈ L∞(Ω,Fτ∧σ,P). Denote
by J the positive convex cone generated by all investments of the form (1).
The set J defines a market.

Because of the generality of our model we cannot use the classical ap-
proach to define the notion of free lunch. In the following sections we develop
a theory that enables us to formulate this definition.

3. A Banach space M. The aim of this section is to design a Banach
space M fulfilling a few crucial requirements. We list some of them:

• for every t ∈ R+ there exists an element δt ∈ M,
• ‖δs − δt‖M > 0 for s 6= t,
• the space M supports finite linear combinations of δt,
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• it is possible to decide “easily” whether all coefficients in a linear
combination of δt are positive,

• for tn → t, an → a we have anδtn → aδt.

We start with a definition of a normed linear space M . Let

M = {µ : R+ → R : suppµ is finite}.
It is easy to see that M is actually a linear space. We shall equip it with a
norm. First we denote by D the set of functions bounded by 1 and Lipschitz
continuous with constant 1, i.e.

D = {f : R+ → R : ∀t, s ∈ R+, |f(t)| ≤ 1, |f(t)− f(s)| ≤ |t− s|}.
Then we define a functional on M by

‖µ‖M = sup
{∣∣∣
∑

t∈R+

f(t)µ(t)
∣∣∣ : f ∈ D

}
.

Lemma 3.1. (M, ‖ · ‖M ) is a normed linear space.

Proof. First we show that ‖ · ‖M is well defined for all elements of M .
Fix µ ∈M . Then clearly

∑
t∈R+

|µ(t)| <∞ and ‖µ‖M ≤
∑

t∈R+
|µ(t)|.

We shall show that ‖ · ‖M is a norm:

(1) ‖µ‖M = 0 iff µ = 0,

(2) ‖λµ‖M = |λ| ‖µ‖M ,

(3) ‖µ+ ν‖M ≤ ‖µ‖M + ‖ν‖M .

In (1), one implication is clear. To show the other let µ 6= 0. Thus µ has

a representation µ =
∑K

k=1 αkδtk for some K, (αk) ⊂ R \ {0}, 0 ≤ t1 < . . .
< tK (we denote by δt(s) the function 1t−s). Put

f(t) =





(t2 − t1) ∧ 1, t ≤ t1,

(t2 − t) ∧ 1, t1 < t ≤ t2,

0, t > t2,

where a∧b = min(a, b). Then f ∈ D and |∑t∈R+
f(t)µ(t)| = |α1|[(t2−t1)∧1].

Thus ‖µ‖M ≥ |α1|[(t2− t1)∧1] > 0. Condition (2) results from the fact that
|∑t∈R+

f(t)λµ(t)| = |λ| |∑t∈R+
f(t)µ(t)|.

The proof of (3) is also simple. Fix f ∈ D. Then
∣∣∣
∑

t∈R+

f(t)(µ(t) + ν(t))
∣∣∣ ≤

∣∣∣
∑

t∈R+

f(t)µ(t)
∣∣∣+
∣∣∣
∑

t∈R+

f(t)ν(t)
∣∣∣

≤ sup
h∈D

∣∣∣
∑

t∈R+

h(t)µ(t)
∣∣∣+ sup

h∈D

∣∣∣
∑

t∈R+

h(t)ν(t)
∣∣∣

= ‖µ‖M + ‖ν‖M .
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Once we have defined the space M we shall calculate the norms of some
simple elements. We denote by δt the function in M which is null at all
points but t and equals 1 at t, so δt(s) = 1t=s.

Lemma 3.2. Let α, β ≥ 0, t, s ∈ R+, t 6= s. Then

(1) ‖αδt + βδs‖M = α+ β,

(2) ‖αδt − βδs‖M =

{ |α− β|+ |t− s|(α ∧ β), |t− s| ≤ 2,

α+ β, |t− s| > 2.

Proof. Part (1) is obvious by taking f = 1 ∈ D. Part (2) is more com-
plicated. Set ε = |t− s|. If ε > 2 then there exists f ∈ D such that f(t) = 1
and f(s) = −1. This function realizes the supremum in the definition of the
norm and yields ‖αδt − βδs‖M = α+ β.

Let ε ≤ 2. Assume that α ≥ β. We can give an equivalent characteriza-
tion of the norm ‖αδt − βδs‖M . We are only interested in possible values of

functions inD at the points s, t. Set D̃ = {(a, b) : |a| ≤ 1, |b| ≤ 1, |a−b| ≤ ε}.
Then ‖αδt − βδs‖M = sup

(a,b)∈D̃ |aα − bβ|. The function b 7→ a0α − bβ is

decreasing, so

F (a0) := sup
(a0,b)∈D̃

|a0α− bβ|

= max(|a0α− [(a0 − ε) ∨ −1]β|, |a0α− [(a0 + ε) ∧ 1]β|).
Hence ‖αδt − βδs‖M = supa∈[−1,1] F (a). Simple calculations lead to the con-
clusion that ‖αδt − βδs‖M = α− β + εβ.

Having the above lemma we can see that M is not complete. Consider
the sequence µn =

∑n
i=1 2−iδ2i. It is a Cauchy sequence: ‖µn − µm‖M =∑n

i=m 2−i for n > m. But it does not have a limit in M . A good candidate
for the limit would be µ∞, but it would need to have an infinite support.

Definition 3.3. Denote by (M, ‖ · ‖M) the completion of M with the
norm generated by ‖ · ‖M .

Now we shall study the spaceM′ of continuous linear functionals onM.
We will see that there exists a 1-1 correspondence between M′ and the set
of all Lipschitz continuous bounded functions.

Lemma 3.4. Let µ∗ ∈ M′. The function f(t) = 〈µ∗, δt〉 is bounded and
Lipschitz continuous, i.e. there exists a constant C such that |f(t)| ≤ C and
|f(t)− f(s)| ≤ C|t− s|. In particular , we can take C = ‖µ∗‖M′ .

Proof. To prove the boundedness we exploit the continuity of µ∗. For
t ∈ R+,

|f(t)| = |〈µ∗, δt〉| ≤ ‖µ∗‖M′‖δt‖M = ‖µ∗‖M′ .
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Now fix t, s ∈ R+. In a similar way we obtain

|f(t)− f(s)| = |〈µ∗, δt − δs〉| ≤ ‖µ∗‖M′‖δt − δs‖M.
From Lemma 3.2 we get ‖δt− δs‖M = |t− s| ∧ 2 ≤ |t− s|, which finishes the
proof with C = ‖µ∗‖M′ .

Lemma 3.5. Let f : R+ → R be a bounded and Lipschitz continuous
function, i.e. |f(t)| ≤ C and |f(t)− f(s)| ≤ C|t − s| for some constant C.
Then there exists exactly one continuous linear functional µ∗ on M such
that 〈µ∗, δt〉 = f(t). Moreover , ‖µ∗‖M′ ≤ C.

Proof. We can restrict ourselves to the case C = 1. To see this, consider
the function f̃(t) = f(t)/C that is bounded by 1 and Lipschitz continuous

with constant 1. Let µ̃∗ be the linear functional associated to f̃(t). Then
µ∗ = Cµ̃∗ is a linear functional such that 〈µ∗, δt〉 = f(t) and ‖µ∗‖M′ ≤ C.
From the uniqueness of µ̃∗ we get the uniqueness of µ∗.

Now we assume that C = 1. We define µ∗ on the space spanned by
(δt)t∈R+ (the space M) as 〈µ∗, δt〉 = f(t). We shall prove that µ∗ is indeed
a continuous linear functional on M . Linearity is obvious. Since f ∈ D, for
any µ ∈M we have

|〈µ∗, µ〉| =
∣∣∣
∑

t∈R+

µ(t)f(t)
∣∣∣ ≤ sup

h∈D

∣∣∣
∑

t∈R+

µ(t)h(t)
∣∣∣ = ‖µ‖M .

Hence ‖µ∗‖M ′ ≤ 1. We can extend µ∗ to the whole of M as a continuous
linear functional of norm 1. This extension is unique sinceM is a completion
of M .

4. Random variables onM. Let (Ω,F ,P) be a probability space and
X a mapping defined on Ω with values in the Banach space M. Then X
is a simple random variable if it is measurable and admits a finite num-
ber of values, i.e. there exists N ∈ N, a sequence (µn)Nn=1 ⊂ M and N

disjoint measurable sets (An)Nn=1 such that An ∈ F ,
⋃N
n=1An = Ω and

X =
∑N

n=1 µn1An . A mapping X is strongly measurable if there exists a se-
quence of simple random variables converging to X a.s. in the norm of M.

Definition 4.1. The space L1
P(Ω,M) consists of all strongly measur-

able random variables X for which

‖X‖L1
P(Ω,M) = E ‖X‖M <∞.

Lemma 4.2 ([8]). L1
P(Ω,M) with the norm ‖ · ‖L1

P(Ω,M) is a Banach
space.

Following Schwartz ([7]) we construct the dual space to L1
P(Ω,M).

A mapping Φ : Ω → M′, where M′ is dual to M, is called *-weakly mea-
surable if for any x ∈ M the function ω 7→ 〈Φ(ω), x〉 is measurable. Let
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L∞(Ω,M′) be the set of all *-weakly measurable mappings for which the
function Φ 7→ inf{K ≥ 0 : ‖Φ‖M′ ≤ K a.s.} is finite. We define an equiva-
lence relation in L∞(Ω,M′) by Φ ∼ Ψ if ∀x ∈ M, 〈Φ, x〉 = 〈Ψ, x〉 a.s.

Definition 4.3. We define

L∞∗ (Ω,M′) = L∞(Ω,M′)/∼
and

‖Φ‖L∞∗ (Ω,M′) = inf
φ∼Φ
‖φ‖L∞(Ω,M′) = inf{K ≥ 0 : ‖Φ‖M′ ≤ K a.s.}.

Theorem 4.4 ([7]). L∞∗ (Ω,M′) with the norm ‖ · ‖L∞∗ (Ω,M′) is a Ba-

nach space. Moreover , it is dual to L1
P(Ω,M). Every Ψ ∈ L∞∗ (Ω,M′) defines

a linear functional on L1
P(Ω,M) by

L1
P(Ω,M) 3 X 7→ 〈Ψ,X〉〈L∞∗ (Ω,M′),L1

P(Ω,M)〉 = E〈Ψ,X〉〈M′,M〉.
As a final result we will prove a simple technical lemma.

Lemma 4.5. Let τ be a non-negative bounded random variable (τ < K
a.s. for some K ∈ R) and Y ∈ L1(Ω,F ,P). Then Y δτ ∈ L1

P(Ω,M).

Proof. We will construct a sequence of simple random variables Xn ∈
L1
P(Ω,M) with limit Y δτ . Let Yn be a sequence of simple random variables

converging to Y a.s. Fix n ∈ N. Set Ak = {τ ∈ [kK/n, (k + 1)K/n)} for
k = 0, . . . , n− 1. Put

Xn =
n−1∑

k=0

Yn1AkδkK/n.

Then the pointwise convergence of Xn to Y δτ follows from Lemma 3.2.

5. Absence of free lunch and its equivalent characterization. In
this Section we will establish a definition of no free lunch for the model pre-
sented in Section 2. Moreover, we will derive an analog of the Fundamental
Theorem of Asset Pricing—an equivalent characterization of the absence of
free lunch. It will be done in the spirit of Jouini and Napp’s paper [3].

First, we will find a representation of any investment as an element of
the space L1

P(Ω,M). We denote by Λ the subset of L1
P(Ω,M) of all random

variables that can be written in the form

γ1δτ1 + . . .+ γmδτm

for some m ∈ N, a sequence τ1, . . . , τm of bounded stopping times and
γi ∈ L1(Ω,Fτi ,R), i = 1, . . . ,m. The subset of all non-negative elements
in Λ will be denoted by Λ+:

Λ+ =
{
γ ∈ Λ : γ =

m∑

i=1

γiδτi , γi ≥ 0 a.s.
}
.
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Lemma 5.1. For any γ ∈ Λ with representation γ =
∑m

i=1 γiδτi ,

‖γ‖L1
P(Ω,M) ≤

m∑

i=1

E |γi|.

Proof. It suffices to prove the lemma for γ of the form γ = γ1δτ1 +γ2δτ2 :

‖γ‖L1
P(Ω,M) = E ‖γ‖M ≤ E(|γ1| ‖δτ1‖M + |γ2| ‖δτ2‖M)

= E |γ1| ‖δτ1‖M + E |γ2| ‖δτ2‖M = E |γ1|+ E |γ2|.
Having all necessary tools we establish an isomorphism between Λ and

the set ∆ of all investments:

∆ 3
m∑

i=1

φτi1τi=t ↔
m∑

i=1

φτiδτi ∈ Λ.

Note that the representations in Λ and in ∆ are not unique. From now on
we will treat both representations equivalently; an investment is a stochastic
process or an element of L1

P(Ω,M) depending on the context.
In the future considerations we will also need the following notation. Let

(ht)t∈R+ be a stochastic process and Φ =
∑m

i=1 φτi1τi=t an element of ∆.
Then by E[

∑
t Φtht] we mean the number

∑m
i=1 E[φτihτi ].

We now come to the notion of absence of arbitrage and free lunch. The
first one is proper for simplest models. In the more complicated framework
one has to introduce a stronger condition which is usually called “no free
lunch”. It will be crucial to obtain a reasonable characterization of markets
without the possibility of getting free lunch.

Definition 5.2. There is no arbitrage on the market J iff J∩Λ+ = {0}.
Definition 5.3. There is no free lunch on the market J iff J − Λ+ ∩

Λ+ = {0}, where the closure is taken in the norm of L1
P(Ω,M).

Let (ht)t∈R+ be a measurable process. By (ho
t )t∈R+ we will denote its

optional projection.

Theorem 5.4. Let J ⊂ Λ be a positive convex cone and µ be a non-null
element of Λ. If µ /∈ J − Λ+ (the closure in the norm of L1

P(Ω,M)), then
there exists a (not necessarily adapted) measurable process (ht)t∈R+ such
that

(i) P(ho
t ≥ 0, |ht| ≤Mh ∀t ∈ R+) = 1 (boundedness),

(ii) P(|ht − hs| ≤Mh|t− s| ∀t, s ∈ R+) = 1 (Lipschitz continuity),
(iii) E[

∑
t µtht] > 1,

(iv) E[
∑

t Φtht] ≤ 0 for every Φ ∈ J .

The constant Mh depends on µ and J .

Proof. Let C = J−Λ+. We apply the Hahn–Banach separation theorem
(see Theorem IV.6.3 in Yosida [8]) in the space L1

P(Ω,M) to the element
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µ and the closed convex set C (0 ∈ C). We find a linear functional f ∈
L∞∗ (Ω,M′) such that f(µ) > 1 and f ≤ 1 on C. We recall the properties of
f (see Section 4):

(a) 〈f, ν〉〈M′,M〉 is measurable for any element ν ∈M,

(b) ‖f‖L∞∗ (Ω,M′) = inf{K ≥ 0 : ‖f‖M′ ≤ K a.s.}.
We have f ≤ 0 on C since C is a positive cone.

Let ht = 〈f, δt〉〈M′,M〉 for t ∈ R+. Then by (a), ht is a random variable

for all t ∈ R+. From Lemma 3.4 and (b) we deduce that all trajectories of
(ht)t∈R+ are Lipschitz continuous and bounded with constant independent
of ω ∈ Ω, i.e. ∀t, s ∈ R+, |ht(ω) − hs(ω)| ≤ Mh|t − s| and |ht(ω)| ≤ Mh

for almost all ω ∈ Ω. Then a simple argument shows that (ht)t∈R+ is a
measurable process (see for example Remark 1.14 in Karatzas–Shreve [4]).

We claim that for t ∈ R+, ho
t ≥ 0 a.s. Assume the contrary. Thus there

exists s ∈ R+ such that P(ho
s < 0) > 0. Let V = {ho

s < 0} and L1
P(Ω,M) 3

Ψ : ω 7→ −1V (ω)δs. Obviously Ψ ∈ −Λ+, so Ψ ∈ C. Hence

〈f, Ψ〉〈L∞∗ (Ω,M′),L1
P(Ω,M)〉 = E[〈f, Ψ〉〈M′,M〉] ≤ 0.

But

E[〈f, Ψ〉〈M′,M〉] = E[−1V 〈f, δs〉〈M′,M〉] = E(−1V h
o
s) > 0.

This is a contradiction. The right continuity of trajectories of ho
t (see The-

orem VI.7.10 of Rogers–Williams [6]) shows that P(ho
t ≥ 0 ∀t ∈ R+) = 1.

For the proof of (iv) we recall the definition

E
[∑

t

Φtht

]
= E〈f, Φ〉(M′,M).

Now we come to the main part of this section—the analog of the Fun-
damental Theorem of Asset Pricing. To establish it we will need a technical
assumption which is satisfied by most of the models. It assures that we
can always find an investment that enables us to transfer some money from
any moment to one of the specified moments in the future with positive
probability. It is a kind of roulette or lottery condition.

Definition 5.5. A market J satisfies the roulette condition if there
exists a sequence (σn)n∈N of bounded stopping times such that for each
bounded stopping time τ and each subset A ∈ Fτ with positive probability
we can find an investment Φ in J such that

• P(Φs = 0 ∀s < τ) = 1,
• Φτ = 0 a.s. on Ac,
• P(Φs ≥ 0 ∀s > τ) = 1,
• there exists n ∈ N with P(Φσn > 0) > 0.
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Theorem 5.6. Assume that the market J satisfies the roulette condition.
There is no free lunch in J iff there exists a measurable process (gt)t∈R+ such
that

(i) P(|gt| ≤M g ∀t ∈ R+) = 1 (boundedness),

(ii) P(|gt − gs| ≤M g|t− s| ∀t, s ∈ R+) = 1 (Lipschitz continuity),

(iii) E[gτ | Fτ ] > 0 a.s. for any bounded stopping time τ ,

(iv) E[
∑

t Φtgt] ≤ 0 for Φ ∈ J .

Every process gt satisfying the above conditions is called a discount process
for J .

Proof. Assume that there exists a discount process gt for J . We have to
show that J − Λ+ ∩ Λ+ = {0}. Let Xn ∈ J − Λ+ be a sequence converging
to X ∈ Λ+ in the norm of L1

P(Ω,M).

First we construct a linear functional Ψ such that Ψ(Φ) = E
∑

t Φtgt
for any Φ ∈ Λ. Let H be the linear subspace of L1

P(Ω,M) spanned by the
random variables 1Aδt for A ∈ Ft, t ∈ R+. On H we set Ψ(1Aδt) = E 1Agt.
Linearity of this function is clear. We only have to show that Ψ is continuous.
Let Y ∈ H. We can write Y =

∑K
k=1 αk1Akδtk for some K, Ak ∈ Ftk ,

tk ∈ R+, αk ∈ R, k = 1, . . . ,K. Hence

Ψ(Y ) =
K∑

k=1

αkΨ(1Akδtk) =
K∑

k=1

αk E[1Akgtk ]

= E
K∑

k=1

αk1Akgtk =
�

Ω

K∑

k=1

αk1Ak(ω)gtk(ω) dP(ω).

For almost all ω ∈ Ω, the function t 7→ gt(ω) is Lipschitz continuous with
constant M g and is bounded by M g. Fix ω ∈ Ω. Then by Lemma 3.5, gt(ω)
defines a continuous linear functional on M with norm bounded by M g.
Since

∑K
k=1 αk1Ak(ω)δtk ∈ M we obtain

∣∣∣
K∑

k=1

αk1Ak(ω)gtk(ω)
∣∣∣ ≤M g

∥∥∥
K∑

k=1

αk1Ak(ω)δtk

∥∥∥
M

= M g‖Y (ω)‖M.

Thus

|Ψ(Y )| =
∣∣∣

�

Ω

K∑

k=1

αk1Ak(ω)gtk(ω) dP(ω)
∣∣∣ ≤

�

Ω

∣∣∣
K∑

k=1

αk1Ak(ω)gtk(ω)
∣∣∣ dP(ω)

≤
�

Ω

Mg‖Y (ω)‖M dP(ω) = M g‖Y ‖L1
P(Ω,M).

We extend Ψ to the whole of L1
P(Ω,M) as a continuous linear functional

(see Yosida [8, IV.5.1]). Observe that Ψ(1Aδτ ) = E 1Agτ for any bounded
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stopping time τ and A ∈ Fτ . Let τn be a sequence of stopping times ad-
mitting a finite number of values and converging to τ almost surely. By

Lemma 3.2, 1Aδτn
M−→ 1Aδτ a.s. and from the dominated convergence the-

orem 1Aδτn → 1Aδτ in L1
P(Ω,M). Thus Ψ(1Aδτn) → Ψ(1Aδτ ). On the

other hand, E 1Agτn → E 1Agτ by the dominated convergence theorem (gt is
bounded by M g). Then Ψ(1Aδτ ) = E 1Agτ . A similar argument shows that
Ψ(Θ δτ ) = EΘgτ for any Θ ∈ L1(Ω,Fτ ,P).

Hence it is clear that Ψ(Xn) = E[
∑

tX
n
t gt] and Ψ(X) = E[

∑
tXtgt].

By continuity of Ψ we obtain Ψ(Xn) → Ψ(X). Therefore Ψ(X) ≤ 0 since
Ψ(Xn) ≤ 0. However, X ∈ Λ+, so Ψ(X) ≥ 0 (from the condition E[gτ | Fτ ]
> 0 a.s. for any bounded stopping time τ). This implies that X = 0.

Suppose now that there is no free lunch in J . Let G be the set of equiva-
lence classes of measurable processes gt with P(|gt− gs| ≤M g|t− s|, go

t ≥ 0,
|gt| ≤M g ∀t, s ∈ R+) = 1 and E

∑
t Φtgt ≤ 0 for Φ ∈ J . Notice that the null

process is contained in G.

We will show that for any bounded stopping time τ there exists a pro-
cess gτ ∈ G such that E[gττ | Fτ ] > 0 a.s. Let H be the following family of
equivalence classes of subsets of Ω:

H = {A ∈ F : ∃h ∈ G {E[hτ | Fτ ] 6= 0} = A a.s.}.
We claim that there exists a set of positive measure in H. Fix µ = δτ ∈
Λ+ \{0}. We apply Theorem 5.4 with µ = δτ to obtain a process h ∈ G such
that Ehτ > 1. Hence the set {E[hτ | Fτ ] 6= 0} must have a positive measure.
A simple argument shows that the family H is closed under countable sums.
Let An ∈ H be a sequence of sets. Let gn be a process for which An =
{E[gnτ | Fτ ] 6= 0}. Put h =

∑∞
n=1(2nMgn)−1gn. Then h ∈ G and {E[hτ | Fτ ]

6= 0} =
⋃
An a.s. Hence there exists S∗ ∈ H such that P(S∗) = sup{P(S) :

S ∈ H}. If P(S∗) < 1 then by Theorem 5.4 applied to µ = 1Ω\S∗δτ we obtain
a process h′ ∈ G with E 1Ω\S∗h′τ > 1. Considering the process h + h′ ∈ G
yields a contradiction.

Using the above results we can find a process g ∈ G such that E[gσn | Fσn]
> 0 a.s. for every n ∈ N and

g =

∞∑

i=1

1

2iMgσn
gσn.

We now prove that E[gτ | Fτ ] > 0 a.s. for any bounded stopping time τ .
Assume that this is not true, so there exists τ such that P(E[gτ | Fτ ] = 0)
> 0. Let B = {E[gτ | Fτ ] = 0}. By the roulette condition we can find an
investment Φ ∈ J null before τ , non-negative after τ , null on Bc and such
that P(Φσn > 0) > 0 for some n. We have Φ =

∑m
i=1 Φτi1τi +Φτ1τ +Φσn1σn

for some m and Φτi ≥ 0 a.s. i = 1, . . . ,m. Then
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E
[∑

t

Φtgt

]
= E

[ m∑

i=1

Φτigτi + Φτgτ + Φσngσn

]

= E
[ m∑

i=1

Φτigτi + ΦτE[gτ | Fτ ] + Φσngσn

]
≥ E gσnΦσn > 0,

since Φτ is Fτ -measurable by definition. This yields a contradiction.

Remark. Notice that the roulette condition was required only to obtain
the “only if” part, i.e. to construct a discount process for the market J .

Discount processes do not have to be adapted. A mild discount process
(Lipschitz continuous) must incorporate the knowledge of the future (one
can construct a simple example). However, from the economic point of view,
discount factors should be known at each moment, thus they should be
adapted. If we ease our requirements for mildness of the discount process
we can construct a continuous and adapted discount process.

Corollary 5.7. Assume that the market J satisfies the roulette condi-
tion. If there is no free lunch in J then there exists an RCLL adapted process
gt such that E[

∑
t Φtgt] ≤ 0 for Φ ∈ J and P(0 < gt ≤ M g ∀t ∈ R+) = 1.

If , in addition, the filtration is quasi-left continuous (Fτ− = Fτ for any
previsible stopping time τ), then there exists a continuous process gt with
the above properties.

Proof. Let ft be a discount process for the market J obtained in Theo-
rem 5.6.

We define gt as an optional projection of ft. Notice that gt satisfies
condition (iv) of Theorem 5.6. By Theorem VI.7.10 in Rogers–Williams [6],
gt has RCLL trajectories. Since gt = E[ft | Ft] we obtain 0 < gt ≤ M g

a.s. for t ∈ R+. By the right continuity of the trajectories of gt we have
P(0 ≤ gt ≤M g ∀t ∈ R+) = 1.

We only have to prove that P(0 < gt ∀t ∈ R+) = 1. Let γn = inf{t ∈
[0, n] : gt = 0}∧n (with the convention inf ∅ =∞). The random variables γn
are stopping times. Then gγn = E[fγn | Fγn ] > 0 a.s., since gt is an optional
projection and ft is a discount process. So P(∃t ∈ [0, n] : gt = 0) = 0.
Consequently, P(∃t ∈ R+ : gt = 0) = 0, which completes the proof.

Assume now that the filtration is quasi-left continuous. Let zt be a pre-
visible projection of ft. Then zt is LCRL (left continuous with right limits).
Observe that for any previsible stopping time τ ,

gτ1τ<∞ = E[fτ1τ<∞ | Fτ ] = E[fτ1τ<∞ | Fτ−]

since the filtration Ft is quasi-left continuous. Then gt is also a previsible
projection. So it is indistinguishable from zt. Thus gt is continuous (it is
indistinguishable from a continuous process).
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6. Pricing and hedging. In this section we take up a problem of option
pricing and hedging. We shall place ourselves in the context of the model of
Section 2. The market is described by a positive convex cone J of investment
opportunities. Each investment is an adapted process. We assume that the
market satisfies the roulette condition and there is no free lunch on it. Thus
we are given a set GJ of discount processes for J , i.e. for any g ∈ GJ ,

• P(|gt| ≤M g ∀t ∈ R+) = 1,
• P(|gt − gs| ≤M g|t− s| ∀t, s ∈ R+) = 1,
• E[gτ | Fτ ] > 0 a.s. for any bounded stopping time τ ,
• E[

∑
t Φtgt] ≤ 0 for Φ ∈ J .

Throughout this section we will use the following definition of contingent
claim:

Definition 6.1. A contingent claim is a pair (τ, Y ), where τ is a bound-
ed stopping time and Y is a non-negative random variable in L1(Ω,Fτ ,R+).

It is a slight generalization of a widely used notion. We allow a claim
to be executed at a random moment. From further results it will be clear
that we can also consider contingent claims of the form of investments with
non-negative cash flows, i.e. finite sums of contingent claims from Defini-
tion 6.1. This enables us to model, apart from classical European options,
corporate bonds and more complicated contracts. However, we cannot deal
with American options.

There are plenty of methods for determining a price of the contingent
claim. We will concentrate on two of them:

• which prices of the option do not lead to arbitrage?
• what is the minimal price that enables hedging of the option?

Arbitrage pricing. A very natural approach to option pricing is based on
the notion of no free lunch. A fair price is a price that does not generate free
lunch. No one, neither buyer nor seller, gets profit without risk. As we will
see later, the set of such prices is an interval, a common result in financial
mathematics.

To consider options we have to define an investment representing buying
and selling of the option. Let

Ψ
(ξ,C,τ,Y )
t = ξ(C1t=0 − Y 1t=τ ),

where ξ, C ∈ R. Then Ψ (−1,C,τ,Y ) denotes the investment consisting of buying
the option (τ, Y ) at time 0 for the price C. A claim Y is paid back at the
random time τ . In a natural way, selling is opposite to buying, thus it is
represented by Ψ (1,C,τ,Y ).

Definition 6.2. An option price C is called fair if the market Jopc

generated by J and the investments Ψ (±1,C,τ,Y ) does not admit free lunch.
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Hence, the set of discount processes GJopc is not empty. It is clear that
GJopc ⊂ GJ . Let g ∈ GJopc . The inequality

E
∑

t∈R+

Ψ
(±1,C,τ,Y )
t = ±(C E g0 − E[gτY ]) ≤ 0

results in C E g0 − E[gτY ] = 0. Thus C is a fair price if and only if there
exists g ∈ GJ such that C = E[gτY ]/E g0.

Lemma 6.3. Let C1 ≤ C2 be fair prices of the contingent claim (τ, Y ).
Then any price from the interval [C1, C2] is fair.

Proof. Let g1, g2 be discount processes for the prices C1, C2. Take any
C ∈ [C1, C2]. We can find a ∈ [0, 1] such that C = aC1 + (1− a)C2. Define

gt = a
g1
t

E g1
0

+ (1− a)
g2
t

E g2
0

.

Then C = E[gτY ]/E g0. It is clear that g ∈ GJ .

The above lemma yields a remarkable characterization of the interval of
fair prices. However, it is unspecific about the ends of the interval. We do
not know if these prices lead to arbitrage or not.

Corollary 6.4. Let

Ch = sup
g∈GJ

E[gτY ]

E g0
, C l = inf

g∈GJ

E[gτY ]

E g0
.

Any price from the open interval (C l, Ch) is fair. Moreover , any price out-
side the closed interval [C l, Ch] leads to free lunch.

Proof. For any C ∈ (C l, Ch) we can find fair prices C1 ≤ C2 such that
C ∈ [C1, C2]. By Lemma 6.3, C is a fair price. The second assertion is
obvious.

Hedging. An agent selling the option wants to know if it is possible
to hedge it and what is the minimal amount of money that would enable
hedging. Does it have anything to do with fair prices? To address these
questions we have to specify what is meant by hedging a contingent claim.
At time zero we obtain a certain amount of money. Then we invest the money
(we subscribe to investment opportunities available on the market) to get
a cash flow at time τ that covers our obligation Y . This intuitive notion
is specified in the following definition. We denote by ΨC the investment
Ψ (−1,C,τ,Y ), buying the option.

Definition 6.5. A price C is a hedging price for (τ, Y ) if ΨC ∈ J − Λ+.
A minimal hedging price is denoted by Cs and called the seller price.

If C is a hedging price, then there exists a sequence of investments that in
the limit gives ΨC and some positive cash flows, an available consumption.
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It is still an open question if a seller price exists. Let

h = inf{b ≥ 0 : b is a hedging price}.
We will show that h is in fact a minimal hedging price. Obviously if C is a
hedging price then C ≥ h. We prove that h is a hedging price. Let bn be a
sequence of hedging prices converging to h. Then Ψ bn is a Cauchy sequence
in L1

P(Ω,M) with limit Ψh. From Ψ bn ∈ J − Λ+ we obtain Ψh ∈ J − Λ+.

Theorem 6.6. Let Cs be a minimal hedging price and Ch the upper
limit of the fair price interval from Corollary 6.4. Then Cs = Ch.

Proof. First we will prove Cs ≥ Ch. We have shown that ΨC
s ∈ J − Λ+.

Thus for all discount processes g ∈ GJ we have E[Y gτ ]−Cs E g0 ≤ 0. Hence

Cs ≥ E[Y gτ ]

E g0
for every g ∈ GJ

and finally

Cs ≥ sup
g∈GJ

E[Y gτ ]

E g0
= Ch.

If Ch = ∞ then Cs = ∞. Let Ch < ∞. We will show that Ch is a
hedging price. Assume otherwise. Thus ΨC

h
/∈ J − Λ+. By Theorem 5.4

there exists a process h satisfying conditions (i)–(iii) for a discount process
(see Theorem 5.6) and such that

(2) E[Y hτ ]− Ch Eh0 > 1.

The definition of Ch grants the existence of a discount processes g ∈ GJ
such that

Ch − 1

2
=
E[Y gτ ]

E g0
.

Let g̃ = g/E g0 + h. We can easily check that g̃ satisfies conditions (i), (ii),
(iv) for a discount process since both h and g do. Condition (iii) results
from the fact that E[hτ | Fτ ] ≥ 0 a.s. and E[gτ | Fτ ] > 0 a.s. for any bounded
stopping time τ . Thus g̃ ∈ GJ and

Ch ≥ E[Y g̃τ ]

E g̃0
.

On the other hand, from (2) we obtain

Ch E g̃0 = Ch + Ch Eh0 =

(
Ch − 1

2

)
+

1

2
+ Ch Eh0

=
E[Y gτ ]

E g0
+

1

2
+ Ch Eh0 <

E[Y gτ ]

E g0
+

1

2
+ E[Y hτ ]− 1

= E[Y g̃τ ] +
1

2
− 1 < E[Y g̃τ ]−

1

2
.
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Combining the last two results yields a contradiction:

E[Y g̃τ ] ≤ Ch E g̃0 < E[Y g̃τ ]−
1

2
.
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