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INTEGRATION OF POLYNOMIALS

Abstract. We prove that the only functions for which certain standard
numerical integration formulas are exact are polynomials.

For a set (τ) = (0 ≤ τ0 < τ1 < . . . < τN ≤ 1) we consider the numerical
integration formula

(1)
b�

a

f(t) dt ≈ (b− a)
N∑

l=0

αlf(a+ τl(b− a)).

If we require that the formula be exact, i.e., the ≈ sign can be replaced
by the = sign, for all polynomials of degree at most m and for all intervals
[a, b], then letting a = 0, b = x and f(t) = tl, we get

(2)
N∑

k=0

αkτ
l
k =

1
l + 1

, l = 0, . . . ,m.

For m = N this is an (N + 1)× (N + 1) system of linear equations and
(α) = (αk) are uniquely determined in the case when m = N . It may but
need not happen that (2) remains valid for integers l > N ; we denote by m(τ)

the largest integer with this property, i.e., (1) is exact for all polynomials of
degrees at most m(τ) but not for polynomials of higher degree. The integer
m(τ) is referred to as the degree of precision of (1). It is known, e.g., by
counting degrees of freedom, that m(τ) < 2N + 2 and that m(τ) = 2N + 1
is attained if (τ) are roots of the Legendre polynomial on the interval [0, 1].
This choice of (τ) gives rise to the Gaussian rule.

Various choices of the set (τ) and the corresponding coefficients (α) can
be found in texts on numerical analysis, e.g., [2]. Here are two of them.
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For τk =k/N , k=0, . . . , N , we get the well known Newton–Cotes form-
ula. In this case m(τ) =mN =N or N+1 depending on whether N is odd or
even. We note in passing that for N = 8 the coefficients (α) change sign giv-
ing rise to (numerical) instability of the corresponding integration formula.

Note that the coefficients (α) can also be written explicitly in the form
of integrals of Lagrange polynomials for the points (τ).

Our aim in this note is to prove the following theorem.

Theorem. If f : R→ R is continuous and for some (τ) satisfies

(3)
b�

a

f(t) dt = (b− a)
N∑

l=0

αlf(a+ τl(b− a))

for all intervals [a, b], then f is a polynomial of degree at most m(τ).

The corresponding result in the case of some of the examples mentioned
above was addressed in [1], but already in the case of the Newton–Cotes
formula for N = 3 it was obtained under differentiability assumptions on f
which, as it turns out, are unnecessary, even though useful.

We now give the proof of the theorem. First, as in the preceding work
quoted above, we assume that f is sufficiently, at least m(τ) + 1 times,
continuously differentiable. We will show that the derivative f (m(τ)+1) is
zero. Since the assumption on f is translation invariant, i.e., together with
f it is satisfied by every function fx(t) = f(t + x), it is sufficient to show
that f (m(τ)+1)(0) = 0. Subtracting from f a polynomial of degree m(τ)
changes neither the hypotheses on f nor the desired conclusion; taking this
polynomial to be the Taylor polynomial of f at zero, we may assume that
f (m(τ))(0) = 0. With a = 0, b = x, from (3) we get

x�

a

f(t) dt = x
N∑

k=0

αkf(τkx).

Differentiating m(τ) + 1 times we get

f (m(τ))(x) = x
N∑

k=0

αkτ
m(τ)+1
k f (m(τ)+1)(τkx)

+ (m(τ) + 1)
N∑

k=0

αkτ
m(τ)
k f (m(τ))(τkx).

We now divide the last equality by x and let x→ 0 to conclude that

f (m(τ)+1)(0)
(

1− (mτ + 2)
N∑

k=0

αkτ
m(τ)+1
k

)
= 0.

This yields the conclusion, since (2) does not hold for l = m(τ) + 1.
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We proceed now to the proof in the general case when the function f is
merely continuous. The crucial observation here is that the (vector) space
Vpol of all polynomials of degree at most m(τ) is complete in any vector
topology. We can for instance consider the following concepts of convergence:

• Convergence of all (m(τ) + 1) coefficients of a sequence of polynomials
in Vpol.
• Uniform convergence on every (finite) interval (almost uniform conver-

gence).

• Convergence in each of the norms ‖f‖p,−T,T = ( � T−T |f(t)|p dt)1/p,
1 ≤ p <∞.

The limit of a sequence in Vpol convergent in any of the modes indicated
above is again in Vpol.

Consider now the set V = V(τ) of all continuous functions f satisfying
(3) for all intervals [a, b], where the coefficients (α) are determined from (2)
with m = N .

V is a vector space containing Vpol as a subspace. Moreover, V is closed
with respect to almost uniform convergence (i.e., uniform convergence on
all finite intervals) and is translation invariant in the sense explained above.
These two properties imply that if ϕ is a continuous function vanishing
outside an interval, [−1, 1] say, then the convolution

ϕ ∗ f(t) =
�
ϕ(s)f(t− s) ds

belongs to V whenever f does. Also, if ϕ is differentiable, then ϕ ∗ f is as
many times differentiable as ϕ is. It follows then from the first part of the
proof that for sufficiently differentiable ϕ, and for every f ∈ V , ϕ∗ f ∈ Vpol.
We choose now a smooth ϕ so that ϕ = 0 outside [−1, 1], � ϕdt = 1 and
let ϕn(t) = nϕ(nt). Then it is well known and easy to prove that for every
continuous f the sequence fn = ϕn ∗ f converges to f almost uniformly.
Hence, every f ∈ V is a limit of a sequence (fn) ⊂ Vpol and V ⊂ Vpol. It
follows that V = Vpol and the proof is complete.

A question may be asked as to the minimal natural hypotheses for va-
lidity of the theorem. The left hand side of (3) makes sense for f Lebesgue
integrable on any finite interval but the right hand side may not be defined
if f is not defined everywhere. However, both sides of (3) make sense if f is
Riemann integrable on every finite interval. The theorem remains valid also
in this case and the proof remains the same except that instead of the almost
uniform convergence of the sequence (fn) above, we use its convergence in
the sense of the family of the norms ‖ ‖p for some fixed p, e.g., p = 1.

The author would like to thank Ralph Byers and Weizhang Huang for
their useful comments.
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