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EFFECTIVE WLLN, SLLN AND CLT
IN STATISTICAL MODELS

Abstract. Weak laws of large numbers (WLLN), strong laws of large
numbers (SLLN), and central limit theorems (CLT) in statistical models
differ from those in probability theory in that they should hold uniformly
in the family of distributions specified by the model. If a limit law states
that for every ε > 0 there exists N such that for all n > N the inequalities
|ξn| < ε are satisfied and N = N(ε) is explicitly given then we call the law
effective. It is trivial to obtain an effective statistical version of WLLN in
the Bernoulli scheme, to get SLLN takes a little while, but CLT does not
hold uniformly. Other statistical schemes are also considered.

1. The Bernoulli scheme. Let X,X1,X2, . . . ,Xn, . . . be iid random
variables with

Pθ{X = 1} = 1− Pθ{X = 0} = θ, θ ∈ (0, 1),

and let Sn =
∑n

i=1 Xi.
WLLN states that, for every fixed θ ∈ (0, 1), Sn/n → θ in probability,

which can be written in the form

∀θ ∈ (0, 1) ∀ε > 0 ∀η > 0 ∃N ∀n ≥ N Pθ

{∣∣∣∣
Sn
n
− θ
∣∣∣∣ ≥ ε

}
≤ η.

An appropriate N is given by the formula N = θ(1− θ)/ηε2.
In the related statistical model all we know about θ is that θ ∈ (0, 1) so

that the above result is of no use: the statistical version may be formulated
as follows:
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Proposition 1.

∀ε > 0 ∀η > 0 ∃N ∀n ≥ N ∀θ ∈ (0, 1) Pθ

{∣∣∣∣
Sn
n
− θ
∣∣∣∣ ≥ ε

}
≤ η;(A)

an appropriate N is N(ε, η) = −
1
2 + 2

3ε

ε2 log
η

2
.(B)

A better known but less exact formula in (B) is N(ε, η) = 1/4ηε2.

Proof. Remark A(i) in Serfling (1980, Sec. 2.5.4) gives us

Pθ

{∣∣∣∣
Sn
n
− θ
∣∣∣∣ ≥ ε

}
≤ 2ε

{
− ε2

1
2 + 2

3ε
n

}

for all n = 1, 2, . . .

Here and further on, Part (A) states the uniform convergence and Part
(B) makes the law effective.

SLLN states that, for every fixed θ ∈ (0, 1), Sn/n → θ a.s. If we use
the fact that ξn → 0 a.s. iff ∀ε > 0 limN→∞ P{⋃∞n=N{|ξn| > ε}} = 0 iff
∀ε > 0 ∀η > 0 ∃N P{⋃∞n=N{|ξn| > ε}} < η, an appropriate effective
statistical version of the law takes on the following form:

Proposition 2.

(A) ∀ε > 0 ∀η > 0 ∃N ∀θ ∈ (0, 1) Pθ

{ ∞⋃

n=N

{∣∣∣∣
Sn
n
− θ
∣∣∣∣ ≥ ε

}}
≤ η;

(B) an appropriate N is

N(ε, η) = min
{
− 1
χ

log
(
η

2
(1− e−χ)

)
,

1
4ηε2

}
,

where

χ =
ε2

1
2 + 2

3ε

.

Proof. By a rather crude estimation one obtains

Pθ

{ ∞⋃

n=N

{∣∣∣∣
Sn
n
− θ
∣∣∣∣ ≥ ε

}}
≤
∞∑

n=N

Pθ

{∣∣∣∣
Sn
n
− θ
∣∣∣∣ ≥ ε

}

By the inequality given in the proof of Proposition 1 the following estimate
holds:

Pθ

{ ∞⋃

n=N

{∣∣∣∣
Sn
n
− θ
∣∣∣∣ ≥ ε

}}
≤ 2

e−Nχ

1− e−χ ,

and

2
e−Nχ

1− e−χ ≤ η
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amounts to

N ≥ − 1
χ

log
(
η

2
(1− e−χ)

)
.

Table 1 (first line) exhibits N = N(ε, η) for some ε and η.
Another formula for N may be constructed as follows (Wesołowski 2002).

Define Yi = Xi − θ, Tk = k−1∑k
i=1 Yi, and Gk = σ(Tk, Tk+1, . . .). Then

(Tk,Gk)k=1,2,... is an inverse martingale:

E(Tk | Gk+1) = E(Tk |Tk+1) =
1
k

k∑

i=1

E(Yi |Tk+1) = Tk+1, k = 1, 2, . . .

The maximal inequality for inverse martingales gives us

P{ max
N≤k≤m

|Tk| ≥ a} ≤
Var(TN )

a2 =
θ(1− θ)
Na2 ≤ 1

4Na2

and in consequence

Pθ

{ ∞⋃

n=N

{∣∣∣∣
Sn
n
− θ
∣∣∣∣ ≥ ε

}}
= P{ sup

k≥N
|Tk| ≥ ε}

= lim
m→∞

P{ max
N≤k≤m

|Tk| ≥ ε}

≤ lim
m→∞

1
4Nε2 =

1
4Nε2 .

Now Proposition 2(A) holds for any N ≥ 1/4ε2η (second line in Table 1).

Table 1. N(ε, η)

η
ε

0.1 0.01 0.001
0.1 400 530 660

250 2 500 25 000

0.01 58 400 70 067 81 733
25 000 250 000 2 500 000

0.001 0.81 · 107 0.93 · 107 1.04 · 107

0.25 · 107 2.50 · 107 25 · 107

CLT for the Bernoulli scheme holds for every θ ∈ (0, 1) separately, even
in a stronger version (“uniformly in x”):

∀θ ∈ (0, 1) sup
x

∣∣∣∣Pθ{Sn ≤ x} − Φ
(

x− nθ√
nθ(1− θ)

)∣∣∣∣→ 0 as n→∞.

The classical CLT for the Bernoulli scheme may be written in the form

∀θ ∀x ∀ε ∃N = N(θ, x, ε) ∀n ≥ N
∣∣∣∣Pθ
{

Sn − nθ√
nθ(1− θ)

≤ x
}
− Φ(x)

∣∣∣∣ ≤ ε.
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What statisticians need, however, is

∀x ∀ε ∃N = N(x, ε) ∀n ≥ N ∀θ
∣∣∣∣Pθ
{

Sn − nθ√
nθ(1− θ)

≤ x
}
− Φ(x)

∣∣∣∣ ≤ ε

or even in a stronger form: “uniformly in x”.
The latter, however, is not true. To see this one should prove that

∃x ∃ε ∀N ∃n ≥ N ∃θ
∣∣∣∣Pθ
{

Sn − nθ√
nθ(1− θ)

≤ x
}
− Φ(x)

∣∣∣∣ > ε.

It is sufficient to prove that

∃x ∃ε ∀n ∃θ
∣∣∣∣Pθ
{

Sn − nθ√
nθ(1− θ)

≤ x
}
− Φ(x)

∣∣∣∣ > ε.

To this end take x = 0 and ε = 1/4. Then LHS = |Pθ{Sn ≤ nθ} − 1/2|.
If for any fixed n one takes θ such that nθ < 1 and (1 − θ)n > 3/4, then
Pθ{Sn ≤ nθ} = Pθ{Sn = 0} = (1− θ)n > 3/4 and LHS > ε. It follows that
CLT does not hold uniformly in the statistical model with θ ∈ (0, 1).

It is interesting to observe that a similar result holds in the inverse
Binomial scheme (negative Binomial distribution). Let Y be the number of
experiments needed to observe a first success:

Pθ{Y = y} = (1− θ)y−1θ, EθY =
1
θ
, VarθY =

1− θ
θ2 .

If Y, Y1, Y2, . . . are iid and Tn =
∑n

i=1 Yi then

Pθ

{
Tn − n/θ√
n(1− θ)/θ2

≤ x
}
− Φ(x)

∣∣∣∣
x=0

= Pθ{Tn ≤ n/θ} − Φ(0)

> Pθ{Tn ≤ n} − Φ(0)

= θn − 1/2,

which tends to 1/2 as θ → 1.
One may conclude that typical difficulties in constructing confidence

intervals for θ (e.g. Brown et al. 2001), based on normal approximation,
arise from the fact that CLT does not hold uniformly.

2. Exponential distribution. If X1,X2, . . . are iid random variables
with probability density function λ−1e−x/λ, x > 0, λ > 0, and Sn =∑n

i=1 Xi, then the SLLN

Sn/n→ λ a.s.

does not hold uniformly in λ > 0, and the CLT

∀x
∣∣∣∣Pλ
{
Sn/n− λ

λ

√
n ≤ x

}
− Φ(x)

∣∣∣∣→ 0

holds uniformly.
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To prove the former it is enough to observe that for some fixed ε > 0,
η > 0, and for each n, one can find λ > 0 such that

Pλ

{∣∣∣∣
Sn
n
− λ

∣∣∣∣ < ε

}
< η,

which, by the fact that Sn/n has gamma distribution Γ (n, λ/n) with the
shape parameter n and scale parameter λ/n, easily follows from the estimate

Pλ

{∣∣∣∣
Sn
n
− λ
∣∣∣∣ < ε

}
=

1
Γ (n)

n(1+ε/λ)�

n(1−ε/λ)

tn−1e−t dt <
2nε
λ

1√
2πn

.

A stronger version of the second statement may be formulated as the fol-
lowing effective Proposition 3. Define

R(x, n) =





1
Γ (n)

n+x
√
n�

0

tn−1e−t dt− Φ(x) if x > −√n,

0 elsewhere.

Proposition 3. If X1,X2, . . . are iid random variables with probability
density function λ−1e−x/λ and Sn =

∑n
i=1 Xi then

(A) ∀ε > 0 ∃N = N(ε) ∀n ≥ N ∀λ > 0

sup
x

∣∣∣∣Pλ
{
Sn/n− λ

λ

√
n ≤ x

}
− Φ(x)

∣∣∣∣ < ε;

(B) an appropriate N = N(ε) is given numerically as one such that

max
x
|R(x,N)| ≤ ε.

Proof. To prove (A) it is enough to observe that

Pλ

{
Sn/n− λ

λ

√
n ≤ x

}
= Pλ

{
1
λ

Sn
n
≤ 1 +

x√
n

}
,

which, due to the fact that (1/λ)(Sn/n) is distributed as Γ (n, 1/n), does
not depend on λ:

Pλ

{
Sn/n− λ

λ

√
n ≤ x

}
=

1
Γ (n)

n+x
√
n�

0

tn−1e−t dt.

To prove (B) observe that

R(x, n) = Pλ

{
Sn/n− λ

λ

√
n ≤ x

}
− Φ(x).

The function R(x, n) is continuous and bounded; two examples are exhibited
in Fig. 1.
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� � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � ��
� � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � �
� � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � �
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� � � � �� � � � � �� � � �
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� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � �� � � � � � � �� � � � � �� � � � � � � � �� � � � � �� � � � � �� � � �� � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �



��� ������

��� ���
�

��� �
�

Fig. 1. The function R(x, n)

Some values of R(x, n) presented in Table 2 below enable us to choose a
proper N for typical values of ε; here xn = arg maxxR(x, n).

Table 2. R(x, n)

n R(xn, n) xn

7 0.050363 −0.931299
8 0.047100 −0.029303

176 0.010025 −0.006282
177 0.009996 −0.006265
707 0.005001 −0.003135
708 0.004998 −0.003132

17 683 0.001000 −0.000540
70 735 0.000500 −0.000224

Explicit formulas neither for xn nor for R(xn, n) are known to the author.

3. Quantiles. It is well known (e.g. Serfling 1980) that if xq = xq(F )
is the unique quantile of order q of the distribution F and k(n)/n → q,
then Xk(n):n → xq a.s. Here Xk:n is the kth order statistic from the sample
X1, . . . ,Xn. The convergence, however, is not uniform: for each ε, each η,
and every n one can find a distribution F with the unique quantile xq such
that

PF {|Xk(n):n − xq| > ε} ≥ 1− η.
A necessary and sufficient condition for uniform convergence has been given
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in Zieliński (1998). An effective uniform asymptotic theorem for a smaller
class of model distributions may be stated as follows. For a fixed q ∈ (0, 1),
consider the class F(q, ϑ) of all locally (at the qth quantile xq) continuous
and strictly increasing distributions F such that the densities f at the qth
quantile xq satisfy f(xq) ≥ ϑ > 0.

Proposition 4.

(A) ∀ε > 0 ∀η > 0 ∃N = N(ε, η) ∀F ∈ F(q, ϑ)

PF { sup
n≥N
|Xk(n):n − xq| > ε} < η;

N(ϑ, ε, η) ≥ −8 log
(

1
2

(
1− exp

{
− 1

8ϑ
2ε2
})
η
)

ϑ2ε2 .(B)

Proof. If

δ = inf
F∈F

min{q − F (xq − ε), F (xq + ε)− q}

for a class F of distributions, then for every F ∈ F ,

PF { sup
n≥N
|Xk(n):n − xq| > ε} < 2τN

1− τ

with τ = exp{−δ2/2} (Serfling 1980). In the class F(q, ϑ) we have

lim
0<t→0

F (xq + t)− q
t

= lim
0<t→0

q − F (xq − t)
t

≥ ϑ

so that there exists t0 > 0 such that for all t < t0,

F (xq + t)− q ≥ 1
2ϑt, q − F (xq − t) ≥ 1

2ϑt,

and in consequence, for all sufficiently small ε (for ε < t0),

δ = min{q − F (xq − ε), F (xq + ε)− q} ≥ 1
2ϑε.

Now

τ = exp{−δ2/2} ≤ exp
{
− 1

8ϑ
2ε2}.

Solving, with respect to N , the equation

2τN

1− τ = η

we obtain the result.

Table 3 below gives us an insight into how large samples are needed to
get the prescribed accuracy of the asymptotics.
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Table 3. N(ϑ, ε, η)

ε

η ϑ 0.05 0.10
0.1 0.5 159 398 35 414

1.0 35 414 7 745
2.0 7 745 1 660

0.01 0.5 188 871 42 782
1.0 42 782 9 587
2.0 9 587 2 120

4. Some ineffective uniform asymptotic results. Consider the
problem of the previous section. As an ineffective asymptotic theorem we
have the following corollary (Zieliński 1998): if F is a continuous and strictly
increasing distribution function and k(n)/n→ q then Xk(n):n → xq a.s. uni-
formly in the family of distributions {Fθ(x) = F (x− θ),−∞ < θ <∞}.

Two more general theorems concerning the convergence of

sn(θ) =
∑

a(Xi, θ),

where a(X, θ) =
(
a1(X, θ), . . . , am(X, θ)

)
is a given vector-valued function,

are taken from Borovkov (1998). To state the theorems recall that an integral�
ψ(x, θ)Pθ(dx) is said to be convergent uniformly in θ ∈ Θ if

sup
θ∈Θ

�

|ψ(x,θ)|>N
|ψ(x, θ)|Pθ(dx)→ 0 as N →∞.

Theorem 1 (Uniform law of large numbers). If a(θ) =
�
a(x, θ)Pθ(dx)

converges uniformly in θ ∈ Θ, then

Pθ

{∣∣∣∣
sn(θ)
n
− a(θ)

∣∣∣∣ > ε

}
→ 0 as n→∞

uniformly in θ.

To state the central limit theorem assume that a(θ) = 0 (or take a′(X, θ)
= a(X, θ)− a(θ) instead of a(X, θ)).

Theorem 2 (Uniform central limit theorem). If
�
a2
j (x, θ)Pθ(dx), j =

1, . . . ,m, converges uniformly in θ, then sn(θ)/
√
n converges to a normal

random variable N(0, σ2(θ)) uniformly with respect to θ, where σ2(θ) =
Eθ(aT (X, θ)a(X, θ)).

5. Comments. Though of great importance for statistical inference,
the literature on uniform asymptotic theorems in statistical models, and
especially on effective limit laws, is extremely scarce. Perhaps the only two
examples of specific theorems for statistical models are the above result
on sample quantiles and a general result on uniform consistency of maxi-
mum likelihood estimators (Borovkow 1998, Ibragimov et al. 1981). Other
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uniform versions of asymptotic theorems are mostly constructed as follows:
take a probability asymptotic theorem which states that if a distribution
under consideration satisfies a condition C then WLLN (or SLLN, CLT)
holds. Then formulate the statistical theorem: if the condition C is satisfied
uniformly in a given statistical model then WLLN (or, respectively, SLLN,
CLT) holds uniformly (Ibragimov et al. 1981).

If a distribution-free statistic in a model under consideration is avail-
able, the problem of uniform limit laws is automatically solved, but con-
structing an effective limit law may be difficult. As an example consider
the Kolmogorov statistic Dn = supx |Fn(x) − F (x)| in a statistical model
with F continuous; here Fn(x) is the empirical distribution function. It is
well known that the distribution of Dn does not depend on the specific dis-
tribution F so that the stochastic convergence P{Dn > ε} → 0 for every
ε > 0 holds uniformly. That means that for every ε > 0 and every η > 0
there exists N = N(ε, η) such that for all F continuous and for all n > N ,
P{Dn > ε} < η. In Birnbaum (1952) one finds that N(0.15, 0.1) = 65 and
N(0.05, 0.01) = 1,060. The values were obtained numerically and no explicit
formula for N(ε, η) is known.
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