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ESTIMATION AND CONTROL
IN FINITE MARKOV DECISION PROCESSES
WITH THE AVERAGE REWARD CRITERION

Abstract. This work concerns Markov decision chains with finite state
and action sets. The transition law satisfies the simultaneous Doeblin con-
dition but is unknown to the controller, and the problem of determining
an optimal adaptive policy with respect to the average reward criterion is
addressed. A subset of policies is identified so that, when the system evolves
under a policy in that class, the frequency estimators of the transition law
are consistent on an essential set of admissible state-action pairs, and the
non-stationary value iteration scheme is used to select an optimal adaptive
policy within that family.

1. Introduction. This note is concerned with discrete-time Markov
decision processes (MDPs) with finite state and control spaces. The perfor-
mance of a control policy is measured by the (long-run expected) average
reward criterion, and the main structural assumption is that the simulta-
neous Doeblin condition (SDC) is satisfied by the transition law (Thomas,
1980), but it is otherwise unknown to the controller. In this context, to drive
the system in an optimal way, the decision maker must combine the control
task with an estimation procedure, so that the actions applied are adapted
to the available estimate at each decision time; the main problem considered
below is to build an optimal adaptive policy.

The adaptive control problem studied in this note has recently been ad-
dressed, for instance, in Borkar (1996), Duncan et al. (1998), Drabik and
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Stettner (2000), and Ren and Krogh (2001). In these papers the conditions
imposed on the transition law are such that, under the action of each sta-
tionary policy, the whole state space is a communicating class. The main
difference between the result in this work and those already available stems
from the conditions imposed on the model, since the SDC used in this note
is weaker than those used in the references above; particularly, the presence
of transient states is possible under SDC.

Roughly, the analysis performed in the following sections to construct
an optimal adaptive policy consists of two steps: First, a class of policies is
identified so that, if the system is driven by a policy in that family, then the
frequency (or empirical) estimators of the the transition law are consistent at
an “essential” set of state-action pairs; the key tool in this part is the strong
law of large numbers established in Loève (1977, p. 53), and the results in
this direction extend those established in Cavazos-Cadena (1991) concerning
completely communicating MDPs. Next, the non-stationary value iteration
algorithm, extensively studied in Hernández-Lerma (1988), is used to obtain
consistent estimates of a solution of the optimality equation on a subset of
“essential” states; the analysis in this part avoids the restrictions on the rate
of convergence of the estimators of the transition law imposed in Hernández-
Lerma (1988, p. 61).

After these steps, the approximate solution of the optimality equation is
used to select, at each time n, a stationary policy φn, and the optimal adap-
tive policy is constructed using a randomization mechanism under which the
probability of applying φn converges to 1 as n increases. In contrast with
the certainty-equivalence approach (Hernández-Lerma, 1988, p. 38, Ren and
Krogh, 2001), the implementation of this adaptive policy requires neither
a priori knowledge of an optimal stationary policy corresponding to each
available estimate of the transition law, nor computing such a policy on-line.

The presentation has been organized as follows: In Section 2 the decision
model is briefly described, and the sequence {Pn} of frequency estimators of
the transition law is introduced in Section 3. Next, the consistency of {Pn}
is studied in Section 4, and the results obtained in this direction are used to
analyze the non-stationary value iteration scheme in Section 5. Finally, the
optimal adaptive policy is constructed in Section 6.

Notation. Throughout the paper, N and R stand for the sets of non-
negative integer and real numbers, respectively. A finite set is always en-
dowed with the discrete topology, and the cartesian product of topological
spaces is endowed with the corresponding product topology. Let S and A
be finite sets. Given a function V : S → R,

‖V ‖ := max
x∈S
|V (x)|
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is the maximum norm of V , whereas P(S) denotes the set of all probability
measures on S, i.e., P(S) consists of all functions µ: S → [0, 1] satisfying∑
x∈S µ(x) = 1. Furthermore, P(S |A) denotes the class of all stochastic

kernels on S given A, that is, γ(· | ·) ∈ P(S |A) if and only if γ(· | a) ∈ P(S)
for each a ∈ A; notice that P(S) and P(S |A) are naturally identified with
(compact) subsets of finite-dimensional Euclidean spaces. The total variation
distance between µ, µ1 ∈ P(S) is defined by

‖µ− µ1‖ :=
∑

x∈S
|µ(x)− µ1(x)|.

Notice the multiple meanings of ‖·‖; the context will make it clear which one
is currently in use. Finally, the indicator function of an event W is denoted
by I[W ] and, as usual, all the relations involving conditional expectations
are supposed to hold almost everywhere with respect to the underlying prob-
ability measure.

2. Decision model. Let M = 〈S,A,R, P 〉 be a Markov decision chain,
where the finite sets S and A are the state and action spaces, respectively,
R: K→ R is the reward function, with the class K of admissible state-action
pairs given by K := S × A, and P = [P (y |x, ·)] is the controlled transition
law. This model M is interpreted as follows: At each time t ∈ N the state of a
dynamical system is observed, say Xt = x ∈ S, and an action At = a ∈ A is
chosen. Then a reward R(x, a) is earned and, regardless of the previous states
and actions, the state of the system at time t+ 1 will be Xt+1 = y ∈ S with
probability P (y |x, a); this is the Markov property of the decision model.
Notice that it is assumed that every a ∈ A is an admissible action at each
state; as noted in Borkar (1984), this latter condition does not imply any
loss of generality.

Policies. Given t ∈ N, let Ht be the set of possible trajectories (histories)
of the state-action process {(Xi, Ai)} up to time t, where H0 = S, and Ht =
K×Ht−1; a generic element of Ht is denoted by ht = (x0, a0, x1, a1, . . . , xt−1,
at−1, xt). A control policy π = {πt(· | ·)} is a sequence of stochastic kernels,
where πt ∈ P(A |Ht); if t ∈ N and B ⊂ A, then πt(B | ht) is the probability of
choosing At ∈ B when the observed history is ht. A policy π is randomized
stationary if there exists γ ∈ P(A |S) such that the equality πt(· | ht) =
γ(· |xt) always holds. In this case π and γ are naturally identified, and with
this convention P(A |S) ⊂ P. Under the action of policy γ ∈ P(A |S) the
state process {Xt} is a Markov chain with transition probability matrix P γ

determined by

(2.1) P γxy =
∑

a∈A
P (y |x, a)γ(a |x), x, y ∈ S, γ ∈ P(A |S).
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Set F :=
∏
x∈S A, so that F consists of all functions f : S → A. A policy

π is (non-randomized) stationary if there exists f ∈ F such that πt(· | ht) is
always concentrated at f(xt), so that, under π, the action applied at time t
is simply determined by At = f(Xt). The class of stationary policies is
identified with F; thus, F ⊂ P, and policy f ∈ F corresponds to the stochastic
kernel γf ∈ P(A |S) determined by γf (f(x) |x) = 1, x ∈ S. Given π ∈ P
and x ∈ S, a unique probability measure is determined on the Borel σ-field
of H∞ := K∞; this is the distribution of the state-action process {(Xt, At)}
under the action of π when X0 = x, and it is denoted by P πx , whereas
Eπx stands for the corresponding expectation operator. For details on this
construction see, for instance, Hernández-Lerma (1988), Arapostathis et al.
(1993), or Puterman (1994).

Performance index. Let π ∈ P and x ∈ S be arbitrary. Under policy π
the (long-run) expected average reward at state x is defined by

(2.2) J(π, x) := lim sup
n→∞

1
n+ 1

Eπx

[ n∑

t=0

R(Xt, At)
]
,

whereas

(2.3) J∗(x) := sup
π∈P

J(π, x)

is the optimal average reward at x; a policy π∗ is optimal if J(π∗, x) = J∗(x)
for every x ∈ S. This work focuses on the case of a constant optimal value
function, result that is ensured under the following simultaneous Doeblin
condition (Thomas, 1980).

Assumption 2.1. There exist z ∈ S such that maxx∈S, f∈F Efx [T ] <∞,
where the first passage time T is given by T := min{n > 0 | Xn = z}.

Lemma 2.1. (i) Under Assumption 2.1, there exist g ∈ R and h: S → R
satisfying the average reward optimality equation (AROE ):

(2.4) g + h(x) = max
a∈A

[
R(x, a) +

∑

y∈S
P (y |x, a)h(y)

]
, x ∈ S.

(ii) J∗(·) = g, so that g is uniquely determined.
(iii) If h(·) is normalized to satisfy h(z) = 0, then h(·) is also unique.
(iv) If for each x ∈ S the term within brackets in (2.4) is maximized at

a = f(x) ∈ A, then the stationary policy f is optimal.

A proof of this lemma can be found, for instance, in Hernández-Lerma
(1988), Arapostathis et al. (1993) or Puterman (1994).

The problem. Throughout the remainder it is assumed that the transi-
tion law of the model satisfies Assumption 2.1, but is otherwise unknown
to the controller and, in this sense, the working context is non-parametric,
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since no other special structure is assumed on P . Within this framework,
to drive the system optimally, the decision maker must combine the control
task with an estimation scheme to approximate the unknown transition law,
and at each decision time n ∈ N the selection of the action to be applied
can be visualized as a two-step procedure: First, at each n ∈ N, the history
of the process up to time n is used to build an estimation Pn = [Pn(· | ·, ·)]
of P , and then the action An is (appropriately) chosen based on Pn; a pol-
icy combining the control task and an estimation procedure is referred to
as an adaptive policy, so that the main problem of the decision maker is to
determine an optimal adaptive policy. After analyzing the two steps men-
tioned above, an adaptive policy solving the controller’s problem will be
formulated.

The following consequence of Assumption 2.1 will be useful.

Lemma 2.2. For each policy γ ∈ P(A |S), the Markov chain associated
to γ has a unique invariant distribution µγ ∈ P(S) which satisfies µγ(z) > 0,
where z is as in Assumption 2.1.

Proof. Given γ ∈ P(A |S), for each x ∈ S select ax ∈ A such that
γ(ax |x) > 0 and set f(x) := ax, x ∈ S, whereas c := minx∈S γ(ax |x),
so that c > 0. With this notation, (2.1) implies that P γ ≥ cP f and then
P γx [Xn = z] ≥ cnP fx [Xn = z] for each state x and n ∈ N. Next, for each x ∈
S, Assumption 2.1 implies that there exists nx ∈ N satisfying P fx [Xnx = z]
> 0 and in this case P γx [Xnx = z] > 0. Thus, under the action of policy
γ ∈ P(S |A), state z is accessible from every state x ∈ S, and then P γ has a
single recurrent class, which contains z, and consequently, a unique invariant
distribution µγ ∈ P(S) that necessarily satisfies µγ(z) > 0.

3. Estimation of the transition law. In this section the frequency
estimators of the transition law are introduced. These estimators have previ-
ously been studied under the assumption that the whole state space is a com-
municating class under the action of each stationary policy; see, for instance,
Borkar (1984), where they were used to establish the existence of optimal
(non-adaptive) stationary policies for MDPs with denumerable state space
and “norm-like” cost function, or Cavazos-Cadena (1991), where estimators
Pn below were applied to build an adaptive policy which is asymptotically
optimal with respect to the discounted criterion.

Definition 3.1. Let ν̃ ∈ P(K) be arbitrary but fixed.

(i) The sequence {νn} of frequency distributions on K is defined by
ν0 = ν̃ and

νn(k): =
1
n

n−1∑

t=0

I[(Xt, At) = k], k ∈ K, n = 1, 2, . . . .
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(ii) For each n ∈ N, µn ∈ P(S) is the marginal distribution of νn on S;
in particular,

µn(x) =
1
n

n−1∑

t=0

I[Xt = x], x ∈ S, n = 1, 2, . . . .

(iii) The conditional distribution mn ∈ P(A |S) is given by

mn(b | y) :=





vn(y, b)
µn(y)

if µn(y) 6= 0,

m̃(b | y) otherwise,

where m̃ ∈ P(A |S) is arbitrary but fixed.
(iv) Let P̃ ∈ P(S |K) be fixed. The sequence {Pn} ⊂ P(S |K) of empirical

transition laws is defined by P0 = P̃ , whereas for each x ∈ S, k ∈ K
and n = 1, 2, . . . ,

(3.1) Pn(x | k) :=





∑n
t=1 I[Xt = x, (Xt−1, At−1) = k]

nνn(k)
if νn(k) > 0,

P̃ (x | k) otherwise.

Remark 3.1. (i) Throughout the remainder the information vector up
to time t is denoted by It = (X0, A0, . . . ,Xt−1, At−1,Xt) for t ≥ 1
and I0 = X0. The σ-fields Ft are determined by

Ft = σ(It−1, At−1), t ≥ 1,

whereas F0 is the minimum σ-algebra on H∞. Each field Ft repre-
sents all the information available before observing stateXt, whereas
σ(It) contains the information available immediately after Xt is ob-
served, and Ft ⊂ σ(It) ⊂ Ft+1 for every t ∈ N.

(ii) Notice that for each x, y ∈ S and a ∈ A, Pn(y |x, a) is a random
variable depending on In so that, formally, it should be denoted by
Pn(y |x, a; In). However, to ease the notational burden, the expres-
sion in Definition 3.1 will be used consistently. Similarly, νn(k), µn(x)
and mn(b | y) always depend on In−1 and An−1, so that they all are
Fn-measurable random variables.

From Definition 3.1 it follows that νn can be factored as

(3.2) νn(y, b) = µn(y)mn(b | y), (y, b) ∈ K, n ∈ N;

indeed, when µn(y) 6= 0, the equality follows from the definition of the
conditional distribution mn, whereas if µn(y) = 0, Definition 3.1(ii) implies
that νn(y, b) = 0, so that both sides of (3.2) are zero. The analysis of the
sequence {Pn} relies on the following version of the strong law of large
numbers, whose proof can be found in Loève (1977, p. 53).
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Lemma 3.1. Let {Yn} be a sequence of random variables on a probability
space (Ω,G,P), and suppose that conditions (a) and (b) below hold :

(a) For some finite constant C, P[|Yn| ≤ C] = 1 for each n ∈ N.
(b) Gk ⊂ Gk+1 ⊂ G, k ∈ N, and each Yn is Gn+1-measurable.

In this case, if {bn} is an increasing sequence of positive numbers satisfying
bn ↗∞ and

∑
n 1/b2n <∞, then

lim
n→∞

1
bn

n∑

t=0

(Yn − E[Yn | Gn]) = 0

with probability 1.

Remark 3.2. Throughout the subsequent development N denotes the
number of states, whereas {dn} and {cn} are two sequences of positive num-
bers satisfying the following properties (a)–(d):

(a) {dn} ⊂ (0, 1], and dn ↘ 0.
(b) n/cn ≥ 1 for each positive integer n.
(c) For each j = 0, 1, . . . , N , djncn ↗∞ as n↗∞.
(d)

∑∞
n=0 1/(dNn cn)2 <∞.

These conditions are satisfied, for instance, if we set c0 = d0 = 1, cn = n
and dn = n−1/(2N+1) for n ≥ 1. Notice that (a) and (d) together imply that

(e)
∑∞
n=0 1/(djncn)2 ≤∑∞n=1 1/(dNn cn)2 <∞, j = 0, 1, . . . , N .

The key tool to analyze the consistency of the sequence {Pn} of frequency
estimators is the following consequence of Lemma 3.1; it is an extension of
Theorem 5.1 in Cavazos-Cadena (1991), which was derived under conditions
stronger than Assumption 2.1.

Lemma 3.2. For each w ∈ S and π ∈ P the following assertions (i)
and (ii) hold P πw-a.s.:

(i) lim infn→∞ µn(z) > 0, where z ∈ S is as in Assumption 2.1.
(ii) For each x ∈ S and k ∈ K,

lim
n→∞

nνn(k)
dNn cn

[Pn(x | k)− P (x | k)] = 0.

Proof. (i) Let the σ-fields Ft be as in Remark 3.1 and let x ∈ S be
arbitrary but fixed. From Definition 3.1(ii) it follows that for each integer
n > 1,

(3.3) (1 + n)µn+1(x) =
n∑

t=0

I[Xt = x] = Wn(x) +
n∑

t=1

Eπw[I[Xt = x] | Ft],
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where the random variable Wn(x) is given by

(3.4) Wn(x) = I[X0 = x] +
n∑

t=1

(I[Xt = x]− Eπw[I[Xt = x] | Ft]).

Observe now that the Markov property implies that Eπw[I[Xt = x] | Ft] =
P (x |Xt−1, At−1) for each t ≥ 1, so that

n∑

t=1

Eπw[I[Xt = x] | Ft] =
n∑

t=1

P (x |Xt−1, At−1) =
n−1∑

t=0

P (x |Xt, At);

from this, Definition 3.1 and (3.2) yield
n∑

t=1

Eπw[I[Xt = x] | Ft] = n
∑

(y,b)∈K
P (x | y, b)νn(y, b)

= n
∑

y∈S

{∑

b∈A
P (x | y, b)mn(b | y)

}
µn(y)

= n
∑

y

µn(y)Pmnyx ,

where formula (2.1) was used to obtain the last equality. Together with (3.3)
this implies

(1 + n)µn+1(x) = Wn(x) + n
∑

y

µn(y)Pmnyx .

Now let Ωx be the subset of trajectories for which limn→∞Wn(x)/n = 0.
Applying Lemma 3.1 with n, I[Xn = x] and Fn instead of bn, Yn and Gn,
respectively, we deduce that P πw [Ωx] = 1. Therefore Ω̃ =

⋂
x∈S Ωx satisfies

Pπw [Ω̃] = 1, since S is finite, and the above displayed equation yields

(3.5) On the event Ω̃, lim
n→∞

[
µn+1(x)−

∑

y

µn(y)Pmnyx

]
= 0, x ∈ S.

Next, consider a fixed trajectory in Ω̃, and let ` be the lower limit of the
sequence {µn(z)} along such a trajectory. In this case there exists a sequence
{nk} such that limk→∞ µnk(z) = `; moreover, since S and A are finite sets,
taking a subsequence if necessary, it can be assumed that for some µ ∈ P(S)
and m ∈ P(A |S) the following convergences hold:

lim
k→∞

µnk(y) = µ(y), lim
k→∞

mnk(b | y) = m(b | y), y ∈ S, b ∈ A.

Since µnk+1(x) = [nk/(nk + 1)]µnk(x) + I[Xnk = x]/(nk + 1), it follows that
limk→∞ µnk+1(·) = µ(·), whereas (2.1) shows that limk→∞ P

mnk
yx = Pmyx

for all x, y ∈ S. Therefore, the convergence in (3.5) implies that µ(x) =∑
y µ(y)Pmyx for every x ∈ S, so that µ(·) is the invariant distribution of ma-

trix Pm, and then ` = µ(z) > 0, by Lemma 2.2. In short, it has been shown
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that lim infn→∞ µn(z) > 0 along each trajectory in Ω̃, and the conclusion
follows since, as already noted, P πw [Ω̃] = 1.

(ii) Let x ∈ S, k ∈ K and the positive integer n be fixed, and notice that

nνn(k)Pn(x | k) =
n∑

t=1

I[Xt = x, (Xt−1, At−1) = k].

Indeed, the right hand side of this equality is bounded above by nνn(k),
by Definition 3.1(i), so that both sides of the above equation are null if
νn(k) = 0, whereas the equality follows from Definition 3.1(iv) if νn(k) > 0.
Thus,

(3.6) nνn(k)Pn(x | k) = W̃n +
n∑

t=1

Eπw[I[Xt = x, (Xt−1, At−1) = k] | Ft],

where the random variable W̃n is given by

W̃n =
n∑

t=1

(I[Xt = x, (Xt−1, At−1) = k](3.7)

− Eπw[I[Xt = x, (Xt−1, At−1) = k] | Ft])
Since the event [(Xt−1, At−1) = k] belongs to Ft, the Markov property im-
plies that Eπw[I[Xt = x, (Xt−1, At−1) = k] | Ft] =P (x | k)I[(Xt−1, At−1) = k],
and then
n∑

t=1

Eπw[I[Xt = x, (Xt−1, At−1) = k] | Ft] =
n∑

t=1

P (x | k)I[(Xt−1, At−1) = k]

= P (x | k)
n−1∑

t=0

I[(Xt, At) = k]

= nνn(k)P (x | k),

by Definition 3.1(i). Together with (3.6), this implies that nνn(k)[Pn(x | k)−
P (x | k)] = W̃n, so that

lim
n→∞

nνn(k)
dNn cn

[Pn(x | k)− P (x | k)] = lim
n→∞

W̃n

dNn cn
= 0 Pπw -a.s.,

where the second equality follows from Lemma 3.1 applied, with bt = dNt ct
and Gt = Ft, to the variables Yt = I[Xt = x, (Xt−1, At−1) = k]; see (3.7)
and Remarks 3.1 and 3.2.

4. Consistency. This section analyzes the consistency of the estimators
of the transition law introduced in Definition 3.1. The result in this direction
is stated after introducing subsets of the state space and the set of admissible
state-action pairs, as well as a subfamily of the class P of all policies.
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Definition 4.1. (i) For each n ∈ N, the set Sn ⊂ S is recursively defined
as follows: S0 = {z}, where z is the fixed state in Assumption 2.1,
and for n ≥ 1,

Sn =Sn−1 ∪ {y ∈ S | P (y |x, a)> 0 for some (x, a)∈Sn−1×A}.
(ii) The set S∗ of essential states is defined by S∗ =

⋃∞
n=0 Sn, whereas

the class K∗ of essential state-action pairs is given by K∗ = S∗ ×A.
(iii) If M = [Mxy] is a matrix whose components are indexed by the

elements of S, define

(4.1) ‖M‖∗ = max
x∈S∗

∑

y∈S∗
|Mxy|.

The properties of the sets S∗ and K∗ stated in the next lemma will be
useful.

Lemma 4.1. (i) The set S∗ is closed , i.e., P (S∗ | k) = 1 for each k ∈ K∗.
(ii) S∗ =

⋃N−1
n=0 Sn; recall that N is the number of states.

(iii) Let w ∈ S and π ∈ P be arbitrary , and for each k ∈ K∗ define the
hitting time Tk by

(4.2) Tk = min{n ≥ 0 | (Xn, An) = k}.
With this notation, for each k ∈ K∗,

Pn(S∗ | k) = 1 P πw-a.s. on the event [Tk < n],

i.e., Pπw [Tk < n] = Pπw [[Tk < n] ∩ [Pn(S∗ | k) = 1]].
(iv) Pπw [Xn 6∈ S∗] ≤ Pπw [T > n] → 0 as n → ∞, where T is the hitting

time in Assumption 2.1.

Proof. (i) Let (x, a) ∈ S∗ × A = K∗ be fixed. In this case there exists i
such that x ∈ Si, and then P (y |x, a) > 0 implies that y ∈ Si+1 ⊂ S∗.

(ii) Notice that {z} = S0 ⊂ S1 ⊂ · · · ⊂ SN−1 ⊂ SN . Since the state
space S has N elements, at least one of these inclusions is not strict, so
that Sk = Sk+1 for some k < N . From this, an induction argument using
Definition 4.1 shows that Sk = Sk+r for every r ∈ N. Therefore, S∗ =⋃k
t=0 St =

⋃N−1
t=0 St, since k < N .

(iii) Let k ∈ K∗ be arbitrary but fixed. From Definition 3.1 and (4.2),
it follows that [Tk < n] = [νn(k) > 0] and this implies, via (3.1), that for
each y ∈ S,

[Tk < n] ∩ [Pn(y | k) > 0] = [νn(k) > 0] ∩ [Pn(y | k) > 0]

⊂
n−1⋃

t=0

[Xt = y, (Xt−1, At−1) = k].
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Suppose now that y ∈ S \ S∗ = S∗c. Since I[(Xt−1, At−1) = k] is Ft-meas-
urable, the Markov property yields P πw [Xt = y, (Xt−1, At−1) = k | Ft] =
P (y | k)I[(Xt−1, At−1) = k] = 0, where part (i) was used to establish the
last equality. Therefore, P πw [Xt = y, (Xt−1, At−1) = k] = 0, and the above
displayed inclusion leads to P πw [[Tk < n] ∩ [Pn(y | k) > 0]] = 0 for each
y ∈ S∗c. Consequently,

Pπw [[Tk < n] ∩ [Pn(S∗c | k) > 0]] = P πw

[
[Tk < n] ∩

⋃

y∈S∗c
[Pn(y | k) > 0]

]

≤
∑

y∈S∗c
Pπw [[Tk < n] ∩ [Pn(y | k) > 0]] = 0,

and then P πw [Tk < n] = Pπw [[Tk < n] ∩ [Pn(S∗c | k) = 0]] = P πw [[Tk < n]
∩ [Pn(S∗ | k) = 1]].

(iv) Since z ∈ S∗, using part (i) it is not difficult to see that, for each
n ∈ N, Pπz [Xn 6∈ S∗] = 0. Observe now that [T = r] ∈ σ(Ir), so that for
each n ≥ r, the Markov property implies that

Pπw [T = r,Xn 6∈ S∗ | Ir] = I[T = r]P π
′

z [Xn−r 6∈ S∗] = 0,

where the shifted policy π′ is determined by π′0(· |x) = πr(· |x) and π′t(· | ht)
= πt+r(· | Ir, ht) for t > 0. Therefore, P πw [T = r,Xn 6∈ S∗] = 0 when r ≤ n,
and thus P πw [Xn 6∈ S∗] = Pπw [Xn 6∈ S∗, T > n] ≤ P πw [T > n] → 0 as
n → ∞, where the convergence follows from Assumption 2.1 via Markov’s
inequality.

The following class of policies was used in Cavazos-Cadena (1991) to
study communicating MDPs with the discounted criterion.

Definition 4.2. Let %(·) be a fixed probability distribution on A satis-
fying %(a) > 0 for all a ∈ A. The family P∗ ⊂ P consists of all policies π
satisfying

πt(· | ht) ≥ dt%(·), t ∈ N, ht ∈ Ht.
Let It be the information vector up to time t introduced in Remark 3.1,

and notice that the equality P πx [At = a | It] = πt(a | It) always holds, so that

(4.3) Eπx [I[At = a] | It] = Pπx [At = a | It] ≥ dt%(a),

π ∈ P∗, (x, a) ∈ K, t ∈ N.
The main result of this section can now be stated.

Theorem 4.1. Let {Pn} be the sequence of frequency estimators of the
transition law in Definition 3.1. For each π ∈ P∗, w ∈ S and k ∈ K∗,

Pπw [ lim
n→∞

‖Pn(· | k)− P (· | k)‖ = 0] = 1.
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The proof of this theorem is based on the following auxiliary result.

Lemma 4.2. Let π ∈ P∗ and w ∈ S be arbitrary.

(i) For any i = 0, 1 . . . , N − 1 and k ∈ Si × A,

(4.4) lim inf
n→∞

nνn(k)

di+1
n cn

> 0 Pπw-a.s.

(ii) For each k ∈ K∗, Pπw [Tk <∞] = 1; see (4.2).

Proof. (i) [By induction on i.] Let π ∈ P∗ and w ∈ S be fixed. To
establish the case i = 0 of (4.4), let (z, b) ∈ S0 × A = {z} × A be fixed and
observe that for each positive integer n,

nνn(z, b) =
n−1∑

t=0

I[Xt = z,At = b] = W̃n +
n−1∑

t=0

Eπw[I[Xt = z,At = b] | It],

where

(4.5) W̃n: =
n−1∑

t=0

(I[Xt = z,At = b]−Eπw[I[Xt = z,At = b] | It]).

Since I[Xt = z] is σ(It)-measurable, (4.3) yields

Eπw[I[Xt = z,At = b] | It] = I[Xt = z]Eπw[I[At = b] | It] ≥ I[Xt = z]dt%(a)

and thus

nνn(z, b) ≥ W̃n +
n−1∑

t=0

I[Xt = z]dt%(a)

≥ W̃n + dn%(a)
n−1∑

t=0

I[Xt = z] = W̃n + ndn%(a)µn(z),

where the second inequality used the fact that {dt} is a decreasing sequence,
and the equality is due to Definition 3.1. Therefore,

nνn(z, b)
dncn

≥ W̃n

dncn
+

n

cn
%(a)µn(z).

Set Yt = I[Xt = z,At = a] and bt = dtct; then parts (c) and (e) of Re-
mark 3.2 and (4.5) together allow one to apply Lemma 3.1 with Gt = σ(It)
to obtain

W̃n

dncn
→ 0 Pπw -a.s.

Also, since n/cn ≥ 1 and %(a) > 0 (see Remark 3.2 and Definition 4.2),
Lemma 3.2(i) leads to

lim inf
n→∞

n

cn
%(a)µn(z) > 0 P πw -a.s.,

Combining the last three displayed relations yields
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lim inf
n→∞

nνn(z, b)
dncn

> 0 Pπw -a.s.,

establishing the case i = 0 of (4.4).
Assume now that (4.4) holds for some non-negative integer i = j − 1 <

N − 1 and let (y, b) ∈ Sj ×A be arbitrary. In this case, by Definition 4.1(i),
there exists (x, a) ∈ Sj−1 × A such that

(4.6) P (y |x, a) > 0.

Next, since the event [Xt = y, (Xt−1, At−1) = (x, a)] belongs to σ(It) for
each t > 0,

Eπw[I[(Xt, At) = (y, b), (Xt−1, At−1) = (x, a)] | It]
= I[Xt = y, (Xt−1, At−1) = (x, a)]Eπw[I[At = b] | It]
≥ I[Xt = y, (Xt−1, At−1) = (x, a)]dt%(b)

where (4.3) was used in the last step; if we recall that Ft ⊂ σ(It), this
inequality and the inclusion [(Xt−1, At−1) = (x, a)] ∈ Ft together imply

Eπw[I[(Xt, At) = (y, b), (Xt−1, At−1) = (x, a)] | Ft]
≥ dt%(b)Eπw[I[Xt = y, (Xt−1, At−1) = (x, a)] | Ft]
= dt%(b)I[(Xt−1, At−1) = (x, a)]Eπw[I[Xt = y] | Ft]
= dt%(b)I[(Xt−1, At−1) = (x, a)]P (y |Xt−1, At−1),

where the second equality is due to the Markov property and the definition
of the σ-field Ft; see Remark 3.1. Thus,

(4.7) Eπw[I[(Xt, At) = (y, b), (Xt−1, At−1) = (x, a)] | Ft]
≥ dtP (y |x, a)%(b)I[(Xt−1, At−1) = (x, a)].

To continue, notice that Definition 3.1(i) shows that for each n > 0,

nνn(y, b) ≥
n−1∑

t=1

I[Xt = y,At = b](4.8)

= Ŵn +
n−1∑

t=1

Eπw[I[Xt = y,At = b] | Ft],

where

(4.9) Ŵn: =
n−1∑

t=1

(I[Xt = y,At = b]− Eπw[I[Xt = y,At = b] | Ft]).

Since

Eπw[I[(Xt, At) = (y, b) | Ft]
≥ Eπw[I[(Xt, At) = (y, b), (Xt−1, At−1) = (x, a)] | Ft],
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from (4.7) and Definition 3.1 it follows that for n > 1,
n−1∑

t=1

Eπw[I[(Xt, At) = (y, b)] | Ft]

≥ P (y |x, a)%(b)
n−1∑

t=1

dtI[(Xt−1, At−1) = (x, a)]

≥ P (y |x, a)%(b)dn
n−2∑

t=0

I[(Xt, At) = (x, a)]

= P (y |x, a)%(b)dn{nνn(x, a)− I[(Xn−1, An−1) = (x, a)]}
≥ P (y |x, a)%(b)dnnνn(x, a)− 1,

where the second inequality used the fact that {dn} is a decreasing sequence.
Together with (4.8) this implies that

(4.10)
nνn(y, b)

dj+1
n cn

≥ Ŵn − 1

dj+1
n cn

+ P (y |x, a)%(b)
nνn(x, a)

djncn
.

Since dj+1
n cn ↗ ∞ and

∑
n 1/(dj+1

n cn)2 < ∞ (see Remark 3.2), from the

definition of Ŵn in (4.9), an application of Lemma 3.1 yields

lim
n→∞

Ŵn − 1

dj+1
n cn

= 0 Pπw-a.s.,

whereas the inclusion (x, a) ∈ Sj−1 × A implies

lim inf
n→∞

nνn(x, a)

djncn
> 0 Pπw -a.s.,

by the induction hypothesis. Since %(·) > 0, these last two statements, (4.6),
and inequality (4.10) imply that

lim inf
n→∞

nνn(y, b)

dj+1
n cn

> 0 Pπw -a.s.;

since (y, b) ∈ Sj ×A is arbitrary, this establishes the case i = j of (4.4) and
completes the induction argument.

(ii) Let k ∈ K∗ be arbitrary so that k ∈ Si × A for some i < N , by
Lemma 4.1(ii). From (4.2) and Definition 3.1(i) it follows that

Pπw [Tk =∞] = Pπw [(Xt, At) 6= k for all t ∈ N]

= Pπw [νt(k) = 0 for all t = 1, 2, . . .] = 0,

where the last equality is due to part (i).

Proof of Theorem 4.1. Let π ∈ P∗ and w ∈ S be arbitrary. Since dn ∈
(0, 1] it follows that 1/(dNn cn) ≥ 1/(di+1

n cn) for any i = 0, 1, 2, . . . , N − 1, so
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that Lemma 4.2 implies that

(4.11) lim inf
n→∞

nνn(k)
dNn cn

> 0 Pπx -a.s.,

for every k ∈ ⋃N−1
i=0 (Si ×A) = K∗. Therefore, Lemma 3.2(ii) shows that for

any x ∈ S and k ∈ K∗, limn→∞[Pn(x | k) − P (x | k)] = 0 P πw-a.s., and the
conclusion follows.

5. Non-stationary value iteration. This section introduces a form of
the value iteration algorithm, a device that will be used later to formulate an
optimal adaptive policy. According to an advice in Puterman (1994), firstly
the original model will be modified by applying the following Schweitzer’s
transformation to the transition law P .

Definition 5.1 (Schweitzer, 1971). Let M = 〈S,A,R, P 〉 be the MDP
described in Section 2, and let α ∈ (0, 1) be fixed.

(i) The modified transition law Q = [Q(y |x, ·)] is defined by

(5.1) Q(y |x, a) = (1− α)δ(x, y) + αP (y |x, a), x, y ∈ S, a ∈ A,
where δ(·, ·) is the Kronecker symbol on S, i.e., for x, y ∈ S, δ(x, x) =
1 and δ(x, y) = 0 if x 6= y. Similarly, for each n ∈ N set

(5.2) Qn(y |x, a) = (1− α)δ(x, y) + αPn(y |x, a), x, y ∈ S, a ∈ A,
where Pn is the estimator of the transition law P introduced in Def-
inition 3.1(iv).

(ii) The transformed MDP M̃ is given by M̃ = 〈S,A,R,Q〉.
The following lemma, which follows from Definition 5.1 via direct cal-

culations, shows that the solution to the optimality equations associated to
models M and M̃ are simply related.

Lemma 5.1. (i) Suppose that g ∈ R and h: S → R satisfy (2.4) and
define H: S → R by

H(x) =
h(x)
α

, x ∈ S.

In this case (g,H(·)) is a solution to the AROE associated to the
transformed model M̃ :

(5.3) g +H(x) = sup
a∈A

[
R(x, a) +

∑

y∈S
Q(y |x, a)H(y)

]
, x ∈ S.

(ii) Suppose that (5.3) is valid for the pair (g,H(·)) and set h(·) =
αH(·). In this case (g, h(·)) satisfies the AROE (2.4) for the orig-
inal model M .
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Remark 5.1. Throughout the remainder (g, h(·)) and (g,H(·)) stand
for pairs satisfying (2.4) and (5.3), respectively, and H(z) = 0 = h(z); such
pairs exist and are unique, by Lemmas 2.1 and 5.1, and αH(·) = h(·).

Definition 5.2 (Federgruen and Schweitzer, 1981; Hernández-Lerma,
1988).

(i) The non-stationary value iteration functions {Vn: S → R | n = −1, 0,
1, 2, . . .} are defined as follows: V−1(·) = 0, and

(5.4) Vn(x) = max
a∈A

[
R(x, a) +

∑

y∈S
Qn(y |x, a)Vn−1(y)

]
, x ∈ S, n ∈ N.

(ii) Let z ∈ S be as in Assumption 2.1. The nth relative value function
Hn: S → R is given as follows:

(5.5) Hn(x) = Vn(x)− Vn(z), x ∈ S, n = −1, 0, 1, 2, . . . ,

whereas the nth differential reward gn ∈ R is defined by

(5.6) gn = Vn(z)− Vn−1(z), n ∈ N.
From this definition, it is not difficult to see that

(5.7) ‖Vn−1‖ ≤ n‖R‖, n ∈ N,
and after some computations using (5.6) and (5.5), equation (5.4) can be
equivalently written as

(5.8) gn +Hn(x) = max
a∈A

[
R(x, a) +

∑

y∈S
Qn(y |x, a)Hn−1(y)

]
,

n ∈ N, x ∈ S,
which resembles the AROE (5.3).

Remark 5.2. Notice that for each k ∈ K, x ∈ S, and n ∈ N, Qn(x | k)
is a function of In; see Remark 3.1(ii). Consequently, gn, Vn(x) and Hn(x)
are always σ(In)-measurable random variables.

The main result of this section can now be stated as follows.

Theorem 5.1. For each x ∈ S∗, w ∈ S and π ∈ P∗ assertions (i)
and (ii) below hold P πw-a.s.:

(i) limn→∞ gn = g.
(ii) limn→∞Hn(x) = H(x); equivalently , limn→∞ αHn(x) = h(x) (see

Remark 5.1).

To establish this theorem it is convenient to introduce the following
notation.
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Definition 5.3. (i) For each n ∈ N, the random variable εn is given by

εn := max
k∈K∗

∣∣∣
∑

w∈S
[Qn(w | k)−Q(w | k)]Vn−1(w)

∣∣∣.

(ii) Given f ∈ F and n ∈ N, matrices Qf and Qn;f are determined as
follows: for each x, y ∈ S,

Qfxy := Q(y |x, f(x)), Qn;f
xy := Qn(y |x, f(x)).

(iii) For f1, . . . , fk ∈ F, set fk1 := (f1, . . . , fk) and define

Mk(fk1 ) :=
k∏

i=1

Qfi , Mk
n(fk1 ) :=

k∏

i=1

Qn−i+1;fi when n ≥ k.

The proof of Theorem 5.1 has been divided into four lemmas. The first
one was stated as Theorem 5.1 in Cavazos-Cadena (1998), where it was
proved using the inequality Q(x |x, a) ≥ 1−α > 0, which follows from (5.2).

Lemma 5.2. Let z ∈ S be as in Assumption 2.1. There exist a positive
integer N0 and ∆ ∈ (0, 1) such that if fi ∈ F for i = 1, . . . , N0, then

MN0(fN0
1 )xz > 2∆, x ∈ S.

Lemma 5.3. Let N0 and ∆ be as in Lemma 5.2. There exists a random
variable L: H∞ → [N0,∞] such that :

(i) When n > L, the set S∗ of essential states is closed with respect to
each matrix Qn;f , that is, given f ∈ F, x ∈ S∗ and n > L, we have
Qn;f
xw = 0 for each w ∈ S∗c.

(ii) For each x∈S∗ and f1, . . . , fN0 ∈F, if n > L then MN0
n (fN0

1 )xy > 0
⇒ y ∈ S∗, and

(5.9) MN0
n (fN0

1 )xz > ∆.

(iii) For each w ∈ S and π ∈ P∗, Pπw [L <∞] = 1.

Proof. For each r ∈ N, define the event

Ωr :=
⋂

n≥r

⋂

k∈K∗
[Pn(S∗ | k) = 1, and ‖Pn(· | k)−P (· | k)‖≤∆/(αN0)](5.10)

=
⋂

n≥r

⋂

k∈K∗
[Qn(S∗ | k) = 1, and ‖Qn(· | k)−Q(· | k)‖≤∆/N0];

see Definition 5.1. With this notation and via Definition 5.3(ii), it is not
difficult to see that the following assertion holds:

(a) Along a trajectory in Ωr, for each x ∈ S∗ and f ∈ F, if n ≥ r then∑
w∈S∗ Q

n;f
xw = 1.

From this, the product formula for MN0
n (fN0

1 ) in Definition 5.3(iii) allows
us to obtain
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(b) On the event Ωr, if n ≥ N0 + r and x ∈ S∗, then MN0
n (fN0

1 )xy > 0
implies that y ∈ S∗.

Recall now that P (S∗ | k) = 1 = Q(S∗ | k) for each k ∈ K∗, by Lemma 4.1(i)
and (5.2). Since along a trajectory in Ωr the equality Qn(S∗ | k) = 1 holds
when n ≥ r, an induction argument shows that for each positive integer t
the following is true (see (4.1)):

(5.11) On the event Ωr, ‖M t
n(f t1)−M t(f t1)‖∗ ≤

t∑

i=1

‖Qn−i+1;fi −Qfi‖∗,

f1, . . . , ft ∈ F, n ≥ t+ r.

On the other hand, combining Definition 5.3(ii) and (4.1) yields

‖Qn−i+1;fi −Qfi‖∗ ≤ max
k∈K∗

‖Qn−i+1(· | k)−Q(· | k)‖,

so that along trajectories in Ωr,

‖Qn−i+1;fi −Qfi‖∗ ≤ ∆/N0, n− i+ 1 ≥ r, fi ∈ F;

see (5.10). Next, let x ∈ S∗ be arbitrary but fixed. Since z ∈ S∗, (4.1) yields

|MN0
n (fN0

1 )x z −MN0(fN0
1 )xz| ≤ ‖MN0

n (fN0
1 )−MN0(fN0

1 )‖∗
and combining these relations with the case t = N0 of (5.11) shows that,
on trajectories in Ωr, if x ∈ S∗, then |MN0

n (fN0
1 )xz −MN0(fN0

1 )xz| ≤ ∆ is
always valid when n ≥ N0 + r; since MN0(fN0

1 )xz > 2∆, by Lemma 5.2, the
next claim follows:

(c) For each x ∈ S∗ and f1, . . . , fN0 , if n ≥ N0+r, thenMN0
n (fN0

1 )xz > ∆
on the event Ωr.

Now, observe that Ωt ⊂ Ωt+1, and define the random variable L: H∞ →
[N0,∞] by

L: =
{
N0 + r on Ωr \

⋃
i<r Ωi,

∞ on H∞ \
⋃∞
i=1 Ωi.

In this case assertions (a)–(c) above show that parts (i) and (ii) hold with
this variable L. To conclude, let w ∈ S and π ∈ P∗ be arbitrary but fixed,
and notice that Theorem 4.1 implies that

lim
r→∞

Pπw

[ ⋂

n≥r

⋂

k∈K∗
‖Pn(· | k)− P (· | k)‖ ≤ ∆/(αN0)

]
= 1.

Next, set T ∗ = max{Tk | k ∈ K∗} (see (4.2)) and observe that P πw [T ∗ <∞]
= 1, by Lemma 4.2(ii) and the finiteness of K∗, and thus P πw [T ∗ < r] ↗ 1
as r ↗ 1. Since [T ∗ < r] ⊂ ⋂n≥r

⋂
k∈K∗ [Pn(S∗ | k) = 1], by Lemma 4.1(iii),

it follows that

lim
r→∞

Pπw

[ ⋂

n≥r

⋂

k∈K∗
[Pn(S∗ | k) = 1]

]
= 1,
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so that limr→∞ Pπw [Ωr] = 1, by (5.10), and thus

Pπw [L <∞] = Pπw

[⋃

r

Ωr

]
= 1.

To continue, for each W : S → R define

(5.12) sp∗(W ) = max
x∈S∗

W (x)− min
x∈S∗

W (x)

and notice that, via (5.7),

(5.13) sp∗(Vn) ≤ 2‖R‖(n+ 1), n ∈ N.
Lemma 5.4. Let the random variable L be as in Lemma 5.3. On the event

[L <∞], the sequence {sp∗(Vn)} is (pointwise) bounded.

Proof. Given n ∈ N, (5.4) and the finiteness of A ensure that there exists
a policy φn ∈ F such that

(5.14) Vn(x) = R(x, φn(x)) +
∑

w

Qn(w |x, φn(x))Vn−1(w), x ∈ S;

notice that, for each state x, φn(x) is a random variable depending on In,
by Remark 5.2. This equality implies that for every state x,

− ‖R‖+
∑

w

Qn(w |x, φn(x))Vn−1(w)

≤ Vn(x) ≤ ‖R‖+
∑

w

Qn(w |x, φn(x))Vn−1(w).

If we identify Vn with a column vector and use the notation of Definition 5.3,
it follows that −‖R‖ �

+Qn;φnVn−1 ≤ Vn ≤ ‖R‖
�

+Qn;φnVn−1, where
�

is
the vector of ones, and an induction argument shows that, for each t ∈ N,

− (t+ 1)‖R‖ �
+
[ t∏

i=0

Qn−i;φn−i
]
Vn−t−1

≤ Vn ≤ (t+ 1)‖R‖ �
+
[ t∏

i=0

Qn−i;φn−i
]
Vn−t−1, n > t.

Now, let n be an integer satisfying n > L (≥ N0). In this context, set
(f1, . . . , fN0): = (φn, φn−1, . . . , φn−N0+1) and observe that, by Definition 5.3,
the previous inequality with t = N0 − 1 leads to

−N0‖R‖
�

+MN0
n (fN0

1 )Vn−N0 ≤ Vn ≤ N0‖R‖
�

+MN0
n (fN0

1 )Vn−N0 .

Next, let x, y ∈ S∗ be arbitrary but fixed . The above displayed relation
implies that

Vn(x)− Vn(y) ≤ 2N0‖R‖+
∑

w∈S
MN0
n (fN0

1 )xwVn−N0(w)(5.15)

−
∑

w∈S
MN0
n (fN0

1 )ywVn−N0(w),
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and since MN0
n (fN0

1 )xw = 0 when w 6∈ S, by Lemma 5.3(ii),
∑

w∈S
MN0
n (fN0

1 )xwVn−N0(w)

=
∑

w∈S∗
MN0
n (fN0

1 )xwVn−N0(w)

=
∑

w∈S∗, w 6=z
MN0
n (fN0

1 )xwVn−N0(w)

+ (MN0
n (fN0

1 )xz −∆)Vn−N0(z) +∆Vn−N0(z);

since MN0
n (fN0

1 )xz −∆ > 0, by (5.9), it follows that
∑

w∈S∗, w 6=z
MN0
n (fN0

1 )xwVn−N0(w) + (MN0
n (fN0

1 )xz −∆)Vn−N0(z)

≤
[ ∑

w∈S∗, w 6=z
MN0
n (fN0

1 )xw + (MN0
n (fN0

1 )xz −∆)
]

max
w∈S∗

Vn−N0(w)

= (1−∆) max
w∈S∗

Vn−N0(w)

so that
∑

w∈S
MN0
n (fN0

1 )xwVn−N0(w) ≤ (1−∆) max
w∈S∗

Vn−N0(w) +∆Vn−N0(z).

Similarly, it can be established that
∑

w∈S
MN0
n (fN0

1 )y wVn−N0(w) ≥ (1−∆) min
w∈S∗

Vn−N0(w) +∆Vn−N0(z).

The last two displayed inequalities together with (5.15) and (5.12) lead to
Vn(x) − Vn(y) ≤ 2N0‖R‖ + (1 − ∆)sp∗(Vn−N0), and since x, y ∈ S∗ and
n > L are arbitrary, it follows that

sp∗(Vn) ≤ 2N0‖R‖+ (1−∆)sp∗(Vn−N0), n > L.

Next, given n>L, let r be the first positive integer such that n−rN0 ≤L.
Repeated application of the above inequality allows us to obtain

sp∗(Vn) ≤ 2N0‖R‖
r−1∑

i=0

(1−∆)i + (1−∆)rsp∗(Vn−rN0)

≤ 2N0‖R‖
∆

+ sp∗(Vn−rN0);

since n − rN0 ≤ L, via (5.13) it follows that sp∗(Vn−rN0) ≤ 2(L + 1)‖R‖,
and then

sp∗(Vn) ≤ 2N0‖R‖
∆

+ 2(L+ 1)‖R‖, n > L;
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together with (5.13), this implies that {sp∗(Vn)} is pointwise bounded on
the set [L <∞].

The following is the last step before the proof of Theorem 5.1.

Lemma 5.5. Let the random variable L be as in the previous lemmas,
define the event Ω′ by

(5.16) Ω′ = [L <∞, and lim
n→∞

‖Qn(· | k)−Q(· | k)‖ = 0 for all k ∈ K∗],
and set

(5.17) Dn(·) = Vn(·)− ng −H(·)
(see Remark 5.1). The following convergences (i) and (ii) hold on the
event Ω′:

(i) limn→∞ εn = 0, where εn is as in Definition 5.3(i).
(ii) limn→∞ sp∗(Dn) = 0.

Proof. (i) Observe that

(5.18) Q(S∗ | k) = 1, and Qn(S∗ | k) = 1 when n > L, k ∈ K∗;
see Lemma 4.1(i), (5.2), and Lemma 5.3(i). Since z ∈ S∗, it follows that for
k ∈ K∗,
∣∣∣
∑

w∈S
[Qn(w | k)−Q(w | k)]Vn−1(w)

∣∣∣

=
∣∣∣
∑

w∈S∗
[Qn(w | k)−Q(w | k)](Vn−1(w)− Vn−1(z))

∣∣∣

≤
∑

w∈S∗
|Qn(w | k)−Q(w | k)|sp∗(Vn−1)

= sp∗(Vn−1)‖Qn(· | k)−Q(· | k)‖.
Thus, εn ≤ sp∗(Vn−1) maxk∈K∗ ‖Qn(· | k) − Q(· | k)‖ for n > L and, via
Lemma 5.4, the conclusion follows from the specification of Ω ′.

(ii) Given a positive integer n, let φn ∈ F be as in (5.14). From (5.3), it
follows that ng+h(x) ≤ R(x, φn(x))+

∑
w∈S Q(w |x, φn(x))[(n−1)g+h(w)],

which together with (5.14) and (5.17) yields

Dn(x) ≥
∑

w∈S
Qn(w |x, φn(x))Vn−1(w)(5.19)

−
∑

w∈S
Q(w |x, φn(x))[(n− 1)g + h(w)], x ∈ S.
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This is equivalent to

Dn(x) ≥
∑

w∈S
[Qn(w |x, φn(x))−Q(w |x, φn(x))]Vn−1(w)

+
∑

w∈S
Q(w |x, φn(x))Dn−1(w)

and thus

Dn(x) ≥ −εn +
∑

w∈S∗
QφnxwDn−1(w), x ∈ S∗;

see Definition 5.3 and observe that Qφnxw = Q(w |x, φn(x)) = 0 when x ∈ S∗
and w 6∈ S∗, by Lemma 4.1(i) and (5.1). From this, an induction argument
shows that for each t ∈ N,

Dn(x) ≥ −
t−1∑

i=0

εn−i +
∑

w∈S∗

[ t∏

i=0

Qφn−i
]
xw
Dn−t−(w), x ∈ S∗, n > t,

or, with the notation in Definition 5.3,

(5.20) Dn(x) ≥ −
t−1∑

i=0

εn−i+
∑

w∈S∗
M t(f t1)xwDn−t−1(w), x ∈ S∗, n > t,

where (f1, . . . , ft): = (φn, φn−1, . . . , φn−t+1). Observe now that MN0(fN0
1 )xz

> ∆, by Lemma 5.2, so that
∑

w∈S∗
MN0(fN0

1 )xwDn−N0(w)

=
∑

w∈S∗, w 6=z
MN0(fN0

1 )xwDn−N0(w)

+ (MN0(fN0
1 )xw −∆)Dn−N0(z) +∆Dn−N0(z)

≥
[ ∑

w∈S∗, w 6=z
MN0(fN0

1 )xw + (MN0(fN0
1 )xz −∆)

]
min
w∈S∗

Dn−N0(w)

+∆Dn−N0(z)

= (1−∆) min
w∈S∗

Dn−N0(w) +∆Dn−N0(z),

and together with the case t = N0 of (5.20) this implies

(5.21) Dn(x) ≥ −
N0−1∑

i=0

εn−i + (1−∆) min
w∈S∗

Dn−N0(w) +∆Vn−N0(z),

x ∈ S∗, n > N0.
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Next, let f ∈ F be such that, for each x ∈ S, f(x) maximizes the right
hand side of (5.3), so that

ng + h(y) = R(y, f(y)) +
∑

w∈S
Q(w | y, f(y))[(n− 1)g + h(w)]

for every y ∈ S and n > 0. Since

Vn(y) ≤ R(y, f(y)) +
∑

w∈S
Qn(w | y, f(y))Vn−1(y),

by (5.4), it follows that for each n > 0,

Dn(y) ≤
∑

w∈S
Qn(w | y, f(y))Vn−1(y)

−
∑

w∈S
Q(w | y, f(y))[(n− 1)g + h(y)], y ∈ S.

Paralleling the argument used to go from (5.19) to (5.21), it can be estab-
lished that

Dn(y)≤
N0−1∑

i=0

εn−i+(1−∆) max
w∈S∗

Dn−N0(w)+∆Vn−N0(z), y ∈ S∗, n>N0.

Combining this with (5.21) and (5.12) implies that, for each x, y ∈ S∗,
Dn(y)−Dn(x) ≤ 2

∑N0−1
i=0 εn−i + (1−∆)sp∗(Dn−N0), and thus

(5.22) sp∗(Dn) ≤ 2
N0−1∑

i=0

εn−i + (1−∆)sp∗(Dn−N0), n > N0.

To conclude, let h∞ ∈ Ω′ be arbitrary but fixed, and notice that part (i) im-
plies that {εn} is bounded along this trajectory, say εn ≤ b ≡ b(h∞) for each
n ∈ N. In this case, (5.22) leads to sp∗(Dn) ≤ 2bN0 + (1 −∆)sp∗(Dn−N0),
for each n > n0, and along the same lines as in the proof of Lemma 5.4
this implies that {sp∗(Dn)} is bounded, so that lim supn→∞ sp∗(Dn) <∞.
Taking the upper limit on both sides of (5.22), via part (i) it follows that

lim sup
n→∞

sp∗(Dn) ≤ (1−∆) lim sup
n→∞

sp∗(Dn),

and then lim supn→∞ sp∗(Dn) = 0, since ∆ is positive.

Proof of Theorem 5.1. Since H(z) = 0 (see Remark 5.1), (5.5) and (5.17)
yield

Hn(x)−H(x) = [Vn(x)− Vn(z)]−H(x) +H(z)

= [Vn(x)− ng −H(x)]− [Vn(z)− ng −H(z)]

= Dn(x)−Dn(z),

and as z ∈ S∗, from (5.12) it follows that |Hn(x) − H(x)| ≤ sp∗(Dn) for
every x ∈ S∗ and thus, by Lemma 5.5(ii),
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(5.23) on the event Ω′, lim
n→∞

Hn(x) = H(x), x ∈ S∗.

On the other hand, on Ω′ the random variable L is finite, and by (5.16),
limn→∞ ‖Qn(· | z, a)−Q(· | z, a)‖ = 0. Therefore, since A is finite, via (5.18)
it follows that along trajectories in Ω′,

lim
n→∞

max
a∈A

[
R(z, a) +

∑

y∈S
Qn(y | z, a)Hn−1(y)

]

= lim
n→∞

max
a∈A

[
R(z, a) +

∑

y∈S∗
Qn(y | z, a)Hn−1(y)

]

= max
a∈A

[
R(z, a) +

∑

y∈S∗
Q(y | z, a)H(y)

]

= max
a∈A

[
R(z, a) +

∑

y∈S
Q(y | z, a)H(y)

]
,

and together with (5.23), (5.8) and (5.3), this shows that

(5.24) lim
n→∞

gn = g on the event Ω′.

To conclude, observe that P πw [limn→∞ ‖Qn(· | k) − Q(· | k)‖ = 0 for all
k ∈ K∗] = 1 by Theorem 4.1 and (5.2), whereas P πw [L < ∞] = 1 by
Lemma 5.3(ii). Thus, formula (5.16) leads to P πw [Ω′] = 1, so that (5.23)
and (5.24) yield the conclusions of Theorem 5.1.

7. The adaptive policy. The results in the previous sections will now
be used to construct an optimal adaptive policy. On a given trajectory inH∞
let the policy φn be as in (5.14), and notice that, as already observed in the
proof of Lemma 5.4, φn(x) is a function of In for each x ∈ S.

Definition 6.1. The NVI adaptive policy π∗ is specified as follows: For
each t ∈ N and ht = (x0, a0, . . . , xt−1, at−1, xt) ∈ Ht,

π∗t (B | ht) = (1− dt)δφt(xt)(B) + dt%(B), B ⊂ A,
where, for each a ∈ A, δa stands for the Dirac probability measure concen-
trated at a, and %(·) is as in Definition 4.2.

When the system is driven by π∗, the actions are selected using a ran-
dom mechanism: If state Xn = x is observed, then with probability 1− dn
the action applied is An = φn(x), whereas with probability dn the control
An is selected among all the available actions according to the probability
distribution %(·); notice that π∗ ∈ P∗. The main result of this note is the
following.
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Theorem 6.1. The NVI adaptive policy π∗ is optimal.

The proof of this theorem is based on the two lemmas below; as usual
(Hernández-Lerma, 1988), the argument uses the discrepancy function Φ:
K→ R given by

(6.1) Φ(x, a) = g + h(x)−R(x, a)−
∑

y∈S
P (y |x, a)h(y), (x, a) ∈ K,

where (g, h(·)) is the unique solution of (2.4) satisfying h(z) = 0.

Lemma 6.1. For each w ∈ S and π ∈ P∗,
(i) limn→∞ Φ(Xn, φn(Xn))I[Xn ∈ S∗] = 0 Pπw-a.s., and consequently ,
(ii) limn→∞Eπw[Φ(Xn, φn(Xn))] = 0.

Proof. From (5.2) and Definition 5.2, it is not difficult to see that (5.14)
is equivalent to

gn + αHn(x) + (1− α)[Hn(x)−Hn−1(x)]

= R(x, φn(x)) +
∑

y∈S
Pn(y |x, φn(x))[αHn−1(y)],

and via (6.1) it follows that for every state x,

Φ(x, φn(x)) = [g − gn] + [h(x)− αHn(x)](6.2)

− (1− α)[Hn(x)−Hn−1(x)]

+ α
∑

y∈S
[Pn(y |x, φn(x))− P (y |x, φn(x))]Hn−1(y)

+
∑

y∈S
P (y |x, φn(x))[αHn−1(y)− h(y)].

Next, let w ∈ S and π ∈ P∗ be arbitrary, and recall that P (S∗ |x, a) = 1
when (x, a) ∈ K∗ = S∗ ×A, by Lemma 4.1(i), so that

(6.3)
∣∣∣
∑

y∈S
P (y |x, φn(x))[αHn−1(y)− h(y)]

∣∣∣

=
∣∣∣
∑

y∈S∗
P (y |x, φn(x))[αHn−1(y)− h(y)]

∣∣∣

≤
∑

y∈S∗
|αHn−1(y)− h(y)| → 0 P πw-a.s., x ∈ S∗,

by Theorem 5.1(ii). On the other hand, via (5.2) and (5.5), it follows that



152 R. Cavazos-Cadena and R. Montes-de-Oca

α
∑

y∈S
[Pn(y |x, φn(x))− P (y |x, φn(x))]Hn−1(y)

=
∑

y∈S
[Qn(y |x, φn(x))−Q(y |x, φn(x))](Vn−1(y)− Vn−1(z))

=
∑

y∈S
[Qn(y |x, φn(x))−Q(y |x, φn(x))]Vn−1(y)

and then for each x ∈ S∗,
∣∣∣α
∑

y∈S
[Pn(y |x, φn(x))− P (y |x, φn(x))]Hn−1(y)

∣∣∣ ≤ εn → 0 Pπw -a.s.,

by Definition 5.3(i) and Lemma 5.5(i). Combining this with (6.3) and
Theorem 5.1, and letting n → ∞ on both sides of (6.2) we deduce that
Pπw [limn→∞ Φ(x, φn(x)) = 0] = 1 for each x ∈ S∗, and part (i) is a con-
sequence of |Φn(Xn, φ(Xn))I[Xn ∈ S∗]| ≤ ∑

x∈S∗ Φ(x, φn(x)). Now, the
bounded convergence theorem implies Eπw[Φn(Xn, φ(Xn))I[Xn ∈ S∗]] → 0,
and (ii) follows by observing that

|Eπw[Φn(Xn, φ(Xn))I[Xn 6∈ S∗]]| ≤ ‖Φ‖P πw [Xn 6∈ S∗]→ 0,

by Lemma 4.1(iv).

Lemma 6.2. Let π∗ be the NVI adaptive policy in Definition 6.1. For
each w ∈ S,

lim
n→∞

Eπ
∗

w [Φ(Xn, An)] = 0.

Proof. Let n ∈ N and w ∈ S be arbitrary. By the Markov property, the
specification of π∗ yields

Eπ
∗

w [Φ(Xn, An) | In] = Φ(Xn, φn(Xn))

+ dn

( ∑

a∈ A

%(a)Φ(Xn, a)− Φ(Xn, φn(Xn))
)

so that |Eπ∗w [Φ(Xn, An) | In]− Φ(Xn, φn(Xn))| ≤ 2dn‖Φ‖, and thus

|Eπ∗w [Φ(Xn, An)]− Eπ∗w [Φ(Xn, φn(Xn))]|

= |Eπ∗w [Eπ
∗

w [Φ(Xn, An) | In]− Φ(Xn, φn(Xn))]|

≤ Eπ∗w [|Eπ∗w [Φ(Xn, An) | In]− Φ(Xn, φn(Xn))|] ≤ 2dn‖Φ‖.

Since dn → 0, this last inequality and Lemma 6.1(ii) applied to policy
π∗ ∈ P∗ together imply that limn→∞Eπ

∗
w [Φ(Xn, An)] = 0.
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Proof of Theorem 6.1. An induction argument using (6.1) shows that
for each w ∈ S and n ∈ N,

(6.4) g +
h(x)
n+ 1

=
1

n+ 1
Eπw

[ n∑

t=0

[R(Xn, An) + Φ(Xn, An)]
]
.

Observe now that Lemma 6.2 implies that

lim
n→∞

1
n+ 1

Eπ
∗

w

[ n∑

t=0

Φ(Xn, An)
]

= 0, w ∈ S,

and thus, replacing π by π∗ in (6.4) and letting n→∞ on both sides of the
resulting equality, we conclude that for each w ∈ S,

g = lim
n→∞

1
n+ 1

Eπ
∗

w

[ n∑

t=0

R(Xn, An)
]
,

so that π∗ is optimal; see (2.2), (2.3) and Lemma 2.1(ii).

References

A. Arapostathis, V. S. Borkar, E. Fernández-Gaucherand, M. K. Ghosh and S. I. Mar-
cus (1993), Discrete-time controlled Markov processes with average cost criterion: a
survey , SIAM J. Control Optim. 31, 282–334.

V. S. Borkar (1984), On minimum cost per unit time control of Markov chains, ibid. 22,
965–978.

V. S. Borkar (1996), Recursive self-tuning of finite Markov chains, Appl. Math. (Warsaw)
24, 169–188.

R. Cavazos-Cadena (1991), Nonparametric estimation and adaptive control in a class of
finite Markov decision chains, Ann. Oper. Res. 28, 169–184.

R. Cavazos-Cadena (1996), Value iteration in a class of communicating Markov decision
chains with the average cost criterion, SIAM J. Control Optim. 34, 1848–1873.

R. Cavazos-Cadena (1998), A note on the convergence rate of the value iteration scheme
in controlled Markov chains, Systems Control Lett. 33, 221–230.

E. Drabik and Ł. Stettner (2000), On adaptive control of Markov chains using nonpara-
metric estimation, Appl. Math. (Warsaw) 27, 143–152.

T. E. Duncan, B. Pasik-Duncan and Ł. Stettner (1998), Discretized maximum likelihood
and almost optimal adaptive control of ergodic Markov models, SIAM J. Control Op-
tim. 36, 422–446.

A. Federgruen and P. J. Schweitzer (1981), Nonstationary Markov decision problems with
converging parameters, J. Optim. Theory Appl., 34, 207–241.

O. Hernández-Lerma (1988), Adaptive Markov Control Processes, Springer, New York.
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