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PROPERTIES OF THE INDUCED SEMIGROUP
OF AN ARCHIMEDEAN COPULA

Abstract. It is shown that to every Archimedean copula H there corre-
sponds a one-parameter semigroup of transformations of the interval [0, 1].
If the elements of the semigroup are diffeomorphisms, then it determines a
special function vH called the vector generator. Its knowledge permits find-
ing a pseudoinverse y = h(x) of the additive generator of the Archimedean
copula H by solving the differential equation dy/dx = vH(y)/x with ini-
tial condition (dh/dx)(0) = −1. Weak convergence of Archimedean copulas
is characterized in terms of vector generators. A new characterization of
Archimedean copulas is also given by using the notion of a projection of a
copula.

1. Introduction. An increasing role in mathematical statistics is played
by a class of copulas called Archimedean. Basic properties of Archimedean
copulas were studied by Genest and MacKay (1986a, 1986b). Marshall and
Olkin (1988) emphasized the relevance of Archimedean copulas in the con-
text of mixture models. Genest and Rivest (1993) studied dependence model
selection and fitting of copulas within this class. Bilodeau (1989) investi-
gated conditions under which a parametric family of Archimedean copulas
has the regression dependence (RD) property. See also Nelsen (1998) for a
general overview of the field, containing in particular much information on
Archimedean copulas. The present work provides new tools for the study of
Archimedean copulas.

An Archimedean copula is a two-dimensional copula of the form

(1) H(u1, u2) = g[−1](g(u1) + g(u2)) for all (u1, u2) ∈ [0, 1]2,

where g[−1] is a pseudoinverse of the convex and strictly decreasing function
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g : [0, 1] → [0,∞] satisfying g(1) = 0. The function g[−1] is an extension
of the usual inverse g−1 to the whole interval [0,∞]. The pseudoinverse is
defined as follows:

g[−1](x) =
{
g−1(x) if 0 ≤ x ≤ g(0),

0 if x > g(0).

The pseudoinverse of g coincides with the usual inverse if and only if g(0)
=∞.

The function g appearing in (1) is called the additive generator of the
copula H. The set of all additive generators is denoted by G. A genera-
tor g ∈ G is called strict if it is unbounded. Otherwise it is nonstrict. In
what follows, for convenience, we denote the pseudoinverse of the additive
generator g by h.

In the next section we study Archimedean copulas whose additive gen-
erators and the corresponding pseudoinverses satisfy certain regularity con-
ditions. We assume that the pseudoinverse h of the additive generator g has
a continuous second derivative, except possibly at x = g(0). The set of all
such generators is denoted by

∗G, and the corresponding set of pseudoinverses
by

∗H.
The additive generator is uniquely determined up to a multiplicative

constant. Therefore we may assume that
∗G is the set of all those additive

generators g that satisfy (dg/dt)(1) = ε, where ε = −1 or 0. The sets of gen-
erators and of their pseudoinverses corresponding to the specific values of ε
will be denoted by

∗G0,
∗G− and

∗H0,
∗H−. The families of Archimedean cop-

ulas generated by
∗G0 and

∗G− will be denoted by H0 and H−, respectively.
For convenience, we set H :=H0 ∪H−, I = [0, 1], T = [0,∞].

Example 1. The functions

1) g(1)
θ (t) =

1
θ

(t−θ − 1) (for θ > 0),

2) g(2)
θ (t) =

1
θ

arcsin(1− tθ) (for θ ∈ (0, 1]),

3) g(3)
θ (t) = θ(1− t1/θ) (for θ ≥ 2),

4) g(4)
θ (t) = cotθ

(
1
2
πt

)
(for θ > 1),

5) g(5)(t) =
1− t
t2

are additive generators of the following Archimedean copulas:

1) H(1)
θ (u1, u2) = [u−θ1 + u−θ2 − 1]−1/θ for all (u1, u2) ∈ I2.

We have {g(1)
θ : θ > 0} ⊂

∗G−.
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2) H(2)
θ (u1, u2) ={
[1− sin(arcsin(1− uθ1) + arcsin(1− uθ2))]1/θ if (u1, u2) ∈ H(2)

θ ,

0 if (u1, u2) ∈ I2 − H(2)
θ ,

where H(2)
θ =

{
(u1, u2) : arcsin(1 − uθ1) + arcsin(1 − uθ2) ≤ 1

2π
}

. We have

{g(2)
θ : θ ∈ (0, 1]} ⊂

∗G−.

3) H(3)
θ (u1, u2) =

{
[u1/θ

1 + u
1/θ
2 − 1]θ if (u1, u2) ∈ H(3)

θ ,

0 if (u1, u2) ∈ I2 −H(3)
θ ,

where H(3)
θ = {(u1, u2) : u1/θ

1 + u
1/θ
2 ≥ 1}. We have {g(3)

θ : θ ≥ 2} ⊂
∗G−.

4) H(4)
θ (u1, u2) =

2
π

arccot
([

cotθ
(

1
2
πu1

)
+ cotθ

(
1
2
πu2

)]1/θ)

for all (u1, u2) ∈ I2. We have {g(4)
θ : θ > 1} ⊂

∗G0.

5) H(5)(u1, u2) =
u1u2[u2

1u
2
2 + 4(u2

1 + u2
2 − u1u2(u1 + u2))]1/2 − u2

1u
2
2

2(u2
1 + u2

2 − u1u2(u1 + u2))

for all (u1, u2) ∈ I2. The generator g(5) is an element of the family defined
by g

(5)
θ (t) = (1− t)/tθ for θ ≥ 0. The generator g(5)

0 belongs to G. It gen-

erates the copula H−(u1, u2) = max(u1 + u2 − 1, 0). For θ > 0, g(5)
θ ∈

∗G−.

We are able to give analytic formulas for the copulas H (5)
θ only for a few

parameters θ. This is due to the fact that only in these cases can we find
the pseudoinverses h(5)

θ .

The family {H(1)
θ } was discussed by Clayton (1978), Oakes (1982, 1986),

Cox and Oakes (1984), and Cook and Johnson (1981, 1986). The families
{g(2)
θ : θ ∈ (0, 1]} and {g(3)

θ : θ ≥ 2} are known. They can be found e.g. in

Nelsen (1998). The families {g(4)
θ : θ > 1} and {g(5)

θ : θ ≥ 0} are new to the
best of our knowledge.

To end this section, let us recall that if for some continuous increasing
bijection f of the interval I onto itself, the composition − ln ◦f is an additive
generator of an Archimedean copula H, then f is called the multiplicative
generator of the copula H. The corresponding copula then has the form

H(u1, u2) = f−1(f(u1)f(u2)) for all (u1, u2) ∈ I2.
Let X : (Ω,A, P )→ R2 be a two-dimensional random vector defined on

a probability space (Ω,A, P ). Let F and Fj be the distribution functions
of the random vector X = (X1,X2) and of the coordinates Xj for j = 1, 2,
respectively. We assign to X the random vector U = (U1, U2) by Uj =
Fj(Xj) for j = 1, 2. If F is continuous, then the distribution function H
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of U has a unique representation H(u1, u2) = F (F−1
1 (u1), F−1

2 (u2)) for all
(u1, u2) ∈ I2. The inverse of Fj is defined by F−1

j (uj) = inf{x : Fj(x) ≥ uj}
for j = 1, 2. The coordinates of U are uniformly distributed on [0, 1]. The
distribution function H is called a copula, and the random vector U is the
uniform representation of X.

2. Vector generators. In this section we show that to every Archi-
medean copula there corresponds a one-parameter semigroup of bijections.
It turns out that if the elements of the semigroup are diffeomorphisms,
then the semigroup determines a special function called a generator. Its
knowledge enables finding the pseudoinverse of the additive generator of the
Archimedean copula.

Let f̃t : [0,∞) → [0,∞) be defined by f̃t(u) = etu (multiplication by
et), t∈T. Let h be the pseudoinverse of the additive generator g∈G of an
Archimedean copula H. We define a family {ft : t∈T} of functions as follows:

(2) ft(u) = h ◦ f̃t ◦ g(u) for all u ∈ I.
We indicate some simple properties of the family (2). First assume that the
generator g is strict. Then:

(a1) The function ft is a continuous increasing bijection of I onto itself
satisfying ft(0) = 0, ft(1) = 1.

(a2) For t > 0, ft(u) < u for all u ∈ (0, 1).
(a3) If s, t ∈ T, then ft+s(u) = ft ◦ fs(u) = fs ◦ ft(u), f0 = Id.

Only (a2) is not evident, although its proof is very simple. Applying the (de-
creasing) function h to both sides of the inequality etg(u) > g(u), u ∈ (0, 1),
t > 0, we obtain ft(u) = h ◦ [etg(u)] < h ◦ g(u) = u. Thus the family
{ft : t ∈ T} is a one-parameter semigroup of transformations of I.

For a nonstrict generator the situation is more complex. The functions
ft of the family (2) then have the following properties:

(A1) The function ft is an increasing bijection of its support [αt, 1]
onto I, where αt = h(e−tg(0)). Moreover, ft(αt) = 0, ft(1) = 1.

(A2) For t > 0, ft(u) < u for all u ∈ (0, 1).
(A3) For every t ∈ T there are subsets Ut, Vt of I such that ft : Ut → Vt

is bijective and for all s, t ∈ T, ft+s(u) = ft ◦ fs(u) for all those u
that satisfy u ∈ Us, u ∈ Ut+s and fs(u) ∈ Ut. Moreover, f0 = Id.

So in contrast to the preceding case, we can now call the family (2) a local
one-parameter semigroup of transformations of I.

Suppose that {ft : t ∈ T} is a family of transformations with the proper-
ties (a1)–(a3) or (A1)–(A3) and satisfying: (1) for all t ∈ T the functions ft
are diffeomorphisms, (2) for each fixed u ∈ I the function t 7→ ft(u) is
differentiable.
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Let v : I→ R1 be defined by

(3) v(u) = lim
t→0+

ft(u)− u
t

.

If h ∈
∗H− in (2), then the function v for the family (2) has the form

(4) v(u) =
[
dh

dx
◦ g(u)

]
g(u) = g(u)

[
dg(u)
du

]−1

.

The function v is called the generator of the one-parameter semigroup of
diffeomorphisms (2). For simplicity, v will be briefly called the generator.
Note that v is always defined on the whole interval I, whether g is a strict
generator or not.

Example 2. The generators corresponding to the Archimedean copulas
(or additive generators) of Example 1 are the following:

1) v(1)
θ (u) =

1
θ
u(uθ − 1) for θ > 0,

2) v(2)
θ (u) = −1

θ
u1−θ[1− (1− uθ)2]1/2 arcsin(1− uθ) for θ ∈ (0, 1],

3) v(3)
θ (u) = θ[u− u1−1/θ] for θ ≥ 2,

4) v(4)
θ (u) = − 1

πθ
sin(πu) for θ > 1,

5) v(5)
θ (u) =

u(1− u)
u(θ − 1)− θ for θ > 0,

Lemma 1. If h ∈
∗H−, then the generator defined by (4) has the following

properties:

(1) v : I→ [−1, 0], v(0) = v(1) = 0,
(2) v is continuously differentiable on the interval (0, 1],
(3) dv/du < 1 for all u ∈ [0, 1) and (dv/du)(1) = 1.

Proof. The identity ft(0) ≡ 0 yields v(0) = 0. The properties (3) follow
directly from the representation

dv

du
(u) = 1− g(u)

d2g(u)
du2

[
dg(u)
du

]−2

.

The other properties are obvious.

Remark 1. A simple application of the mean value theorem shows that
property (3) is equivalent to the inequality u− 1 ≤ v(u) ≤ 0 for all u ∈ I.

The set of all functions v : I → [−1, 0] with the properties listed in
Lemma 1 will be denoted by V−. The generators corresponding to the family
H0 are formally of the form (4). But they fail property (3) of Lemma 1. The
set of all functions v with properties (1) and (2) will be denoted by V0.
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The proof of the main theorem of this section requires some notions
from the theory of ordinary differential equations. Some facts needed here
are taken from Arnold’s book (1971), in a simplified or modified form.

• An ordered pair consisting of a set I and a one-parameter semigroup
of transformations {ft : t ∈ T} of I is called a phase flow. The set I is
called a phase space.
• The map T : T → I defined by T (t) = ft(u) is the trajectory of the

phase flow corresponding to u. The image of T is a phase curve.
• The generator v of the phase curve is the right hand derivative of the

map T at t = 0, that is, the function defined by (3).
• The function dft(u)/dt is called a vector field in the domain I. By the

equality dft(u)/dt = v(ft(u)), the vector field dft(u)/dt is identified
with the generator v.

The theorem below concerns formula (4). For x = g(u) the formula takes
the form

dh(x)
dx

=
v ◦ h(x)

x
.

In the proof of the theorem we write ż for the derivative dz/dt.

Theorem 1. Let v ∈ V−. Then the function y = h(x) which solves the
differential equation

(5)
dy

dx
=
v(y)
x

with initial condition (dy/dx)(0) = −1 is a pseudoinverse in the family
∗H−.

Proof. We consider two cases: when the support of h is unbounded (strict
generator) and bounded (nonstrict generator).

Case 1. The solution y = y(x) is a phase curve of the vector field ẋ = x,
ẏ = v(y) in the plane R2. In the neighbourhood of (x = 0, y = 1) the vector
field v(y) has the expansion v(y) = y − 1 +O((y − 1)2). Hence

ẋ = x,
d

dx
(y − 1) = y − 1 +O((y − 1)2).

Its linear part has the matrix
[ 1 0

0 1

]
. The point (0, 1) is an unstable focus.

This means that from (0, 1) in a given direction there emanates exactly one
phase curve. Let z be the slope of the direction passing through (0, 1), z =
(y − 1)/x. Then the phase curve corresponding to z = −1 is our solution.
In the variables z, x the differential equation (5) takes the form dz/dx =
A(z, x), where A is a differentiable function. The last equation with initial
condition z(0) = −1 has the solution z(x) = −1 + · · ·. It yields y(x) =
−1 + z(x)x = 1 − x + · · ·. Note that the function y(x) is decreasing, since
the right hand side of (5) is nonpositive. To check that d2y/dx2 ≥ 0 we
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differentiate both sides of (5):

d2y

dx2 =
v(y)
x2

[
dv

du
◦ h(x)− 1

]
.

Hence the condition dv/du ≤ 1 (v ∈ V−) implies d2y/dx2 ≥ 0.

Case 2. The only difference is in the phase portrait of the vector field
ẋ = x, ẏ = v(y). The phase curves in {(x, y) : x ≥ 0, y ≥ 0 ∧ y ≤ 1}
emanating from (0, 1) are no longer asymptotic to the y axis. This axis is
tangent to them at all points ≥ x0, where x0 is the right end point of the
support of the solution y = h(x). Indeed, the differentiability of h implies
that dh(x)/dx = 0 for x ≥ x0.

Theorem 1 enables one to produce new families of additive generators of
Archimedean copulas.

Example 3. • It is easy to check that the functions

v
(6)
θ (u) = 2

u�

0

Φ(θΦ−1(t)) dt− u

for θ ≥ 1 belong to the family V−. Clearly, (dv(6)
θ /du)(1) = 1, and the

condition dv
(6)
θ (u)/du < 1 for all u ∈ [0, 1) follows from the convexity of

v
(6)
θ , which is equivalent to the inequality

d2v
(6)
θ (u)
du2 = 2θe

1
2 (1−θ2)[Φ−1(u)]2 > 0.

The function Φ appearing here is the standard normal cumulative distribu-
tion function, Φ(t) = (2π)−1/2 � t

−∞ e
−s2/2 ds.

The additive generators g(6)
θ corresponding to the solutions h(6)

θ of the

differential equation (5) for v = v
(6)
θ cannot be given explicitly, except for

the case θ = 1. The generator g(6)
1 coincides with the generator g

(1)
1 of

Example 1, v(6)
1 (u) = u2 − u.

• It is easy to check that the functions

v
(7)
θ (u) = − u(1− u)

[u1/θ + (1− u)1/θ − u1/θ(1− u)1/θ]1/θ

for θ > 0 are in V−. Clearly,

dv
(7)
θ (u)
du

(1) = 1,
dv

(7)
θ (u)
du

< 1 for all u ∈ [0, 1).

Solving the differential equation (5) for v = v
(7)
θ we obtain the family of

additive generators g(7)
θ for θ > 0 corresponding to the pseudoinverses h(7)

θ .
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For θ = 1 we have

g
(7)
1 (t) =

1− t
t

e1−t.

The form of the function v
(6)
θ from Example 3 is closely connected with

normal copulas. This will be discussed in a forthcoming paper on adjoint
copulas.

The considerations leading to the definition of V− and Theorem 1 show
that there is a one-to-one correspondence v : H− → V− given by v(H) =
vH .

The function vH will be called the vector generator of the Archimedean
copula H. Obtaining an analogue of Theorem 1 for the sets

∗H0 and V0

does not seem easy. For consistency we will call the elements of V0 vector
pseudogenerators of Archimedean copulas.

The vector generator vH generates a one-parameter transformation semi-
group of the form (2). It is easy to show that the semigroup can be obtained
by solving the differential equation ẏ = vH(y) with initial condition y(0) = u.
Then y(t) = ft(u). The one-parameter semigroup (2) corresponding to the
Archimedean copula H ∈ H− will be called the transformation semigroup
induced by H and will be denoted by FH .

Solving the differential equation ẏ = vH(y) for

v(u) =
1
2
u(2− u) ln

[
u

2− u

]

we obtain

ft(u) =
2ue

t

(2− u)et + uet
.

Example 4. The Archimedean copulas in items 1, 3 and 5 of Example 1
induce the following transformation semigroups:

F
H

(1)
θ

= {f θt (u) = [u−θet + 1− et]−1/θ : t ∈ T} for θ > 0,

F
H

(3)
θ

= {f θt (u) = [u1/θet + 1− et]θ : t ∈ T} for θ ≥ 2,

where the support of the function f θt is [αt, 1] with αt = (1− e−t)θ, and

FH(5) =
{
ft(u) =

u[u2 − 4uet + 4et]1/2 − u2

2(1− u)et
: t ∈ T

}
.

To end this section we give a characterization of the Archimedean copulas
of the family H−. To this end, we define on H an operator ̂ as follows:

Ĥ(u) =
� �

{(u1,u2) :H(u1,u2)≤u}
dH(u1, u2).
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If U = (U1, U2) is a random vector with distribution H, then Ĥ is the
distribution function of the random variableH◦U . Genest and Rivest (1993)
showed that

(6) Ĥ(u) = u− vH(u),

and called Ĥ the projection of H.

Lemma 2. If H ∈H−, then Ĥ has the following properties:

(1) Ĥ is an increasing function of I onto I having continuous derivative
on (0, 1].

(2) (dĤ/du)(1) = 0.
(3) Ĥ(u) > u for all u ∈ (0, 1).

Proof. All the properties are evident.

Let Ĥ be the set of all functions with the properties listed in Lemma 2.

Theorem 2. The following conditions are equivalent :

(A) H is a copula in the family H−.
(B) Ĥ ∈ Ĥ.

Proof. (B)⇒(A). Assume that Ĥ ∈ Ĥ. Then the function ṽ(u) = u −
Ĥ(u) is in V−. Thus Theorem 1 indicates that to ṽ there corresponds a cop-
ula H̃ ∈H−. As H̃ has vector generator u− Ĥ(u), it follows that H = H̃.

Example 5. The function f(u) =
√

1− (1− u)2 is in Ĥ. Hence v(u) =
u − f(u) is the vector generator of an Archimedean copula. Solving the
differential equation (5) we obtain the additive generator

g(t) = {1− [1− (1− t)2]1/2}1/2e 1
2 arcsin(1−t).

Two characterizations of Archimedean copulas are known: an “algebraic”
characterization due to Ling (1965) and a “differential” one given in Genest–
MacKay (1986a) (1).

The next section gives applications of the vector generators of Archim-
edean copulas.

3. Weak convergence of Archimedean copulas. In this section we
show that convergence in H can be characterized in terms of convergence
of vector generators and pseudogenerators.

Let us recall the notion of convergence in distribution of a sequence
of random vectors (see e.g. Billingsley (1979)). Let X and Xn for n =
1, 2, . . . be two-dimensional random vectors on a common probability space

(1) More precisely, this is a sufficient criterion for a copula to be Archimedean. The
converse appears in Nelsen’s book (1997).
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(Ω,A, P ). Let moreover G and Gn for n = 1, 2, . . . be the distribution func-
tions of X and Xn, respectively.

We say that the sequence (Xn) is convergent in distribution to X if for
every bounded continuous function f : R2 → R1 we have the convergence

�
R2 f(x) dGn(x)→ �

R2 f(x) dG(x), where x = (x1, x2) ∈ R2.
It is known that the convergence in distribution Xn → X is equivalent

to the pointwise convergence of Gn → G at each continuity point of G. If
G is continuous, then the latter convergence is uniform. We recall another
well known fact.

Lemma 3. Assume that the sequence (Zn) of two-dimensional random
vectors converges in distribution to a random vector Z, and the sequence of
continuous functions fn : R2 → R1 is uniformly convergent to a function f .
Then the sequence (fn ◦ Zn) of random variables converges in distribution
to the random variable f ◦Z.

Theorem 3. Let H and Hn for n = 1, 2, . . . be Archimedean copulas in
the family H−, corresponding to the uniform representations U and Un of
random vectors X and Xn, respectively. Assume that the second derivative
of the pseudoinverse hn of the additive generator gn of Hn is continuous at
x = gn(0) for n = 1, 2, . . . . Then the following conditions are equivalent :

(A1) The sequence (Un) converges in distribution to U .
(A2) The sequence (Hn) converges uniformly to H.
(A3) The sequence (vHn) converges uniformly to vH .

Proof. It suffices to prove the implications (A2)⇒(A3) and (A3)⇒(A2).
(A2)⇒(A3). Let Ĥ and Ĥn for n = 1, 2, . . . be the projections of H and

Hn defined by (6). IfZ = U , f = H andZn = Un, fn = Hn for n = 1, 2, . . . ,
then by Lemma 3 the convergence Hn → H implies the uniform convergence

(7) Ĥn → Ĥ,

which in turn yields the uniform convergence vHn → vH .
(A3)⇒(A2). By Theorem 1, to the generators vHn , vH there correspond

the pseudoinverses hn, h. The functions vHn ◦hn are equicontinuous. To see
this, it suffices to show that they are all Lipschitz with constant 1. To this
end, write (5) in the form

vHn ◦ hn(x) = x
dhn(x)
dx

.

Differentiating both sides we obtain[
dvhn
du
◦ hn(x)

]
dhn(x)
dx

=
dhn(x)
dx

+ x
d2hn(x)
dx2 = α(x).

Note that for each positive integer n there exists x0n>0 such that α(x0n)=0.
The function α(x), continuous in the interval [0, x0n], takes all values from
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[−1, 0]. It turns out that if gn(0) =∞, then

lim
x→∞

x
d2hn(x)
dx2 = lim

x→∞
x

[ dhn
dx (2x)− dhn

dx (x)
x

]

= lim
x→∞

[
dhn
dx

(2x)− dhn
dx

(x)
]

= 0.

Since dhn(x)/dx is negative and increases to 0, it follows that the values
of the positive function xd2hn(x)/dx2 are such that α(x) is less than 1 for
x ∈ [x0n,∞]. If gn(0) < ∞, then α(x) also has values < 1 in [x0n, gn(0)],
since then d2hn(x)/dx2 = 0 and α(x) = 0 for x ≥ gn(0). This argument
leads to

sup
x≥0

∣∣∣∣
[
dvHn
du

◦ hn(x)
]
dhn(x)
dx

∣∣∣∣ = 1,

implying that all the functions vHn ◦ hn(x) are Lipschitz with constant 1.
They are also uniformly bounded. Hence by the Ascoli theorem (see e.g.
Schwartz (1967)) there exists a subsequence vHnk ◦hnk(x) almost uniformly
convergent (that is, uniformly convergent on each compact set) to a continu-
ous function f . Similarly, all the hn are uniformly bounded and equicontin-
uous. Hence in this case there also exists a subsequence hnk almost uni-
formly convergent to a continuous function f̃ . By (A3) we deduce that
f̃ = h, and the subsequence vHnk ◦hnk(x) is almost uniformly convergent to
f(x) = vH ◦ h(x). Since vHn(u) is convergent, it has a unique accumulation
point. Hence vHn ◦hn(x) must converge almost uniformly to vH ◦h(x). This,
however, means that hn(x) converges almost uniformly to h(x), which in
turn implies the almost uniform convergence of gn(t) to g(t). The last two
convergences ensure the uniform convergence of the Archimedean copulas
Hn to H.

The convergence (7) yields

Corollary 1. The operator ̂ is continuous in the topology of uniform
covergence.

Theorem 3 implies

Corollary 2. v : H− → V− is a homeomorphism in the topology of
uniform convergence.

Example 6. Let Hθ be the Archimedean copula corresponding to the
generator g(1)

θ (for θ ≥ 1) of Example 3,

H1(u1, u2) =
u1u2

u1 + u2 − u1u2
for all (u1, u2) ∈ I2.

Suppose that θn → 1, θn > 1. Then Φ
(
θnΦ

−1(u)
)

converges uniformly to the
identity map for all t ∈ I. By Lebesgue’s theorem � u

0 Φ(θnΦ−1(t)) dt converges
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to 1
2u

2 for all u ∈ I. This yields the uniform convergence v(1)
θn

(u)→ v
(1)
1 (u) =

u2 − u. Theorem 3 now shows that Hθn tends uniformly to H1.

The convergence of Archimedean copulas was considered by Genest and
MacKay (1986a). Their condition for convergence Hn → H, although equiv-
alent to vHn → vH , is unnatural and may be difficult to check.

As the last result we prove a theorem stating convergence of Archimedean
copulas in H to a copula that is not Archimedean. It is a modification of
the result of Genest and MacKay (1986a). Let H+ be the copula defined by
H+(u1, u2) = min(u1, u2) for all (u1, u2) ∈ I2. Then H+ is not Archimedean.
It is called the Fréchet upper bound.

Theorem 4. Let Hn for n = 1, 2, . . . be Archimedean copulas of the
family H, corresponding to uniform representations Un of random vectors
Xn. Then the following conditions are equivalent :

(B1) The sequence (Un) converges in distribution to U+.
(B2) The sequence (Hn) converges uniformly to H+.
(B3) The sequence (vHn) converges uniformly on I to the identically zero

function.

The proof of (B2)⇒(B3) is similar to that of (A2)⇒(A3) in the proof of
Theorem 3. In this case we have Ĥ+(u) = u. Thus (7) yields (B3).

To prove (B3)⇒(B2) we apply the form of Kendall’s familiar index of
stochastic dependence τ , given by Genest and MacKay (1986a):

(8) τ(H) = 4
1�

0

vH(t) dt+ 1.

By Lebesgue’s theorem � 1
0 vHn(t) dt→ 0, and hence (8) implies τ(Hn)→ 1.

As is well known, τ(H) = 1 if and only if H = H+, and so τ(Hn)→ τ(H+).
The copulas Hn for n = 1, 2, . . . are Lipschitz with constant 1 in the metric
d(u,u′) = |u1 − u′1| + |u2 − u′2|, where u = (u1, u2). Therefore the Hn are
equicontinuous and uniformly bounded. By the Ascoli theorem there exists
a subsequence Hnk uniformly convergent to a copula H̃. By the continuity of
τ we have τ(Hnk) → τ(H̃) = 1. This means that H̃ = H+. Since τ(Hn) →
τ(H+), we finally conclude that the sequence Hn of Archimedean copulas
uniformly converges to H+.

Example 7. Let θn →∞. The sequence of additive generators (gθn) of
the family {g(4)

θ : θ > 1} corresponds to the sequence of vector pseudogen-
erators

vHθn (u) = − 1
πθn

sin(πu).

Thus Hθn → H+.
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Example 8. Let Hn for n = 1, 2, . . . be Archimedean copulas from H−
defined by

Hn(u1, u2) =
u1u2

[un1 + un2 − un1un2 ]1/n
for all (u1, u2) ∈ I2

(cf. the family g(1)
θ of Example 1). Their additive and vector generators are

respectively

gn(t) =
1
n

(t−n − 1), vn(u) = − 1
n
t(1− t−n).

The sequence vn(u) tends uniformly to the constantly zero function. Hence
Theorem 4 yields the uniform convergence of Hn to H+.

Example 8 implies

Corollary 3. H− is not closed under uniform convergence.

The study of the closure ofH− and of further applications of vector gen-
erators (e.g. to characterize stochastic domination of Archimedean copulas)
will be the object of a forthcoming publication.
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