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GENERAL METHOD OF REGULARIZATION.
I: FUNCTIONALS DEFINED ON BD SPACE

Abstract. The aim of this paper is to prove that the relaxation of the
elastic-perfectly plastic energy (of a solid made of a Hencky material) is
the lower semicontinuous regularization of the plastic energy. We find the
integral representation of a non-locally coercive functional. In part II, we
will show that the set of solutions of the relaxed problem is equal to the set
of solutions of the relaxed problem proposed by Suquet. Moreover, we will
prove the existence theorem for the limit analysis problem.

1. Introduction. In this paper we investigate the convex functional

(1.1) BD 3 u 7→ B(ε(u)) =
�

Ω

h(x, ε(u))

with constraints on the boundary of Ω, where ε(u) is the symmetrized
gradient of u and BD(Ω) is the space of bounded deformations (cf. (2.1)
and (2.2)). Moreover, we assume that B(ε(u)) = ∞ if ε(u) 6∈ L1. In [8]
we find the lower semicontinuous (l.s.c.) relaxation of B, and we show that
the relaxation is a l.s.c. function (in the weak∗BD topology), not greater
than B. Here we prove that this relaxation is the largest l.s.c. minorant less
than B, i.e. it is the l.s.c. regularization of B (cf. [18, p. 10]). If the volume
forces are equal to 0, then we can omit the assumption of global coercivity
of the functional considered (cf. Theorem 14 and Assumption 7).

The l.s.c. regularization (in the L1
loc-topology) of functionals defined on

the space BV (Ω) is investigated in many papers ([2], [3], [5], [20]), but their
authors do not consider problems with constraints on the boundary of Ω.
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In some contributions (cf. [5]) only a relaxation of the original problem is
found, i.e. a l.s.c. minorant of the original functional.

Fonseca and Müller [20] find the l.s.c. regularization (in L1) of a qua-
siconvex functional on BV (Ω). However, they neglect kinematic boundary
conditions and assume local coercivity (if f(x,u,A1) = 0 for A1 6= 0 then
f(x,u,A) = 0 for every A; moreover, the function g in their condition (H3)
is continuous).

In [6] an integral representation for the regularization in SBV (Ω,Rm)
of the functional

(1.2) u 7→
�

Ω

f(x,∇u(x)) dx+
�

Σ(u)

ϕ(x, [u](x),ν(x)) dHN−1(x)

with respect to the BV weak∗ convergence is obtained, where

(1.3) c‖A‖ ≤ f(x,A) ≤ C(1 + ‖A‖), c1|ξ| ≤ ϕ(x, ξ,ν) ≤ C1|ξ|

for every x, A, ξ, with constants C ≥ c > 0, C1 ≥ c1 > 0. The kinematic
boundary conditions are ignored.

In [7], the global method of relaxation (cf. [10]) is applied to l.s.c. reg-
ularization of symmetric-quasiconvex functionals, defined on SBD(Ω). The
authors ignore the kinematic boundary condition (i.e. the Dirichlet condi-
tion). The essential assumption of the method is the local coercivity of the
density of elastic-plastic energy (with work of external forces) (see assump-
tion (1.3) above and [10, formula (2.3′), Theorems 3.7 and 3.12]). Note that
the existence theorem is proved in the space BD(Ω), larger than SBD(Ω).

In [11], the global method of relaxation (cf. [10]) is applied to l.s.c. regu-
larization of quasiconvex functionals with constraints (Dirichlet condition).
These functionals are defined on BV (Ω). The constraints considered do not
describe the relaxation proposed by Suquet (see [26] and part II of the pa-
per). Here, similarly to [7], the essential assumption of the method is the
local coercivity of the density of elastic-plastic energy (with work of external
forces) (cf. assumption (1.3)).

Kohn and Temam [23] solve the existence problem for an elastic-perfectly
plastic solid made of a homogeneous Hencky material. To prove that the
functional of the total potential energy is weak∗ l.s.c. onBD(Ω), they use the
method of relaxation of the kinematic boundary condition. They do not show
that the relaxed problem is the l.s.c. regularization of the original problem.
Indeed, in Theorem 6.1 of [27, Chapter 2] and Theorem 6.1 of [27, Chapter
1] only the equality of the infima of the relaxed and original problems is
shown. But it is not proved that for every solution û of the relaxed problem
there exists a sequence {um}m∈N which minimizes the original problem and
um ⇀ û as m→∞.
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The existence problem for an anisotropic elastic-plastic solid made of
a non-homogeneous Hencky material with the Signorini constraints on the
boundary (i.e. with the unilateral contact condition) is solved in [8]. The
Signorini problem for an isotropic homogeneous body made of a Hencky
material (with the von Mises plastic yield condition) is solved in [29].

In [14] the l.s.c. regularization of the elastic-plastic energy of a homo-
geneous Hencky material with the von Mises (or Tresca) yield condition is
found. The work of external forces is neglected. The local coercivity of the
relevant functional is assumed. Moreover, the kinematic boundary condi-
tions are not studied in [14].

Here we prove that the relaxation (established in [8]) is the l.s.c. regu-
larization of elastic-plastic energy if the volume force is equal to 0 and if
Assumption 5 is satisfied (see Theorem 14). In this case we do not assume
that the functional considered is coercive. Therefore, a body with cavities
can be described by such a functional. Moreover, we can assume that the
density of elastic-plastic energy has nonlinear growth at infinity, on a ray,
and has linear growth on the complementary ray of the same straight line
(cf. mechanics of soil).

It seems that this paper is the first one where the problem of regular-
ization of a non-coercive functional, with the Dirichlet condition, is solved.
Here the density of energy is not bounded from below.

In the special case when the integral of the total elastic-plastic energy is
coercive, the relaxation is the l.s.c. regularization of the total energy in the
weak∗BD topology (cf. (5.5) and Theorem 18). That is, we prove that for
every solution û of the relaxed problem (RP ∗∗λ,j), there exists a generalized
sequence (net) {um}m∈H which minimizes the original problem (Pλ,j) and
um ⇀ û in weak∗BD(Ω) topology (see (3.9)–(3.11), (5.1), (5.3), (5.4) and
(5.8)).

We show that the set of solutions of the relaxed problem is equal to the
set of solutions of the relaxed problem proposed by Suquet (see [26] and
Theorem 11 in part II).

In [15] and [16] Christiansen has found the solution for the limit analysis
problem, associated to the relaxed problem proposed by Suquet. But the
limit analysis problem is not explicitly formulated in [15]. Also, the rela-
tion between solutions of the relaxed problem and solutions of the relaxed
problem proposed by Suquet is not considered.

In Section 3 of part II, we obtain the existence theorem for the limit
analysis problem, associated to the relaxed problem proposed by Suquet.
In Corollary 10 of part II, we obtain a criterion of coercivity of the original
problem (Pλ,j), or the relaxed problem (RP ∗∗λ,j) (see (3.9)–(3.11), (5.1), (5.3),
(5.4) and (5.8)).
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In the Appendix of part II, we show the scheme of duality in convex
optimization in the case of Hencky plasticity.

2. Some basic definitions and theorems. Let Ω be a bounded, open,
connected set of class C1 in Rn. The space of continuous functions with
compact support is denoted by Cc. Let C∞(Ω,Rm) be the space of Rm-
valued, infinitely differentiable functions. Moreover, the space of infinitely
differentiable functions equal to 0 at the boundary FrΩ of Ω is denoted by
C∞0 (Ω). Finally, Mb(Ω,Rm) is the space of Rm-valued, Radon, bounded,
regular measures on Ω, with the norm ‖ · ‖Mb(Ω,Rm).

We will use the dual pairs (Mr, Cc) or (Mb, C0), where Mr is the space of
regular measures. The duality pairing will be denoted by 〈·, ·〉, and the scalar
product of z, z∗ ∈ Rn by z · z∗ or zz∗. The scalar product of w, w∗ ∈ Rn×n
is denoted by w : w∗ = wijw∗ij . Let g = (g1, . . . , gm) ∈ C(Ω,Rm) and
µ = (µ1, . . . , µm) ∈ Mb(Ω,Rm). Then �

Ω
g · µ = �

Ω
gµ ≡ ∑m

i=1 �
Ω
giµi. If

F : Y → R ∪ {∞}, then F ∗ denotes its polar function (see [18]) F ∗(y∗) =
sup{〈y∗, y〉 − F (y) | y ∈ Y }, and domF = {y ∈ Y | F (y) < ∞} is the
effective domain of F . If Q is a subset of Y , then IQ(·) stands for its indicator
function (taking the value 0 in Q and ∞ outside), and I∗Q(·) stands for its
support function.

Finally, we need the following notations. Let V be a metric space. Then
BV (Ξ, r) is the closed ball in V with center Ξ and radius r. Furthermore,
clV (Z) stands for the closure of Z ⊂ V in the topology of the space V ;
analogously, cl‖·‖(Z) is the closure of the set Z in the norm ‖ · ‖. Similarly
intZ denotes the interior of Z. We will also consider the spaces En of real
n × n matrices and En

s of symmetric real n × n matrices. We set ‖[eij ]‖En
≡∑n

i,j=1 |eij | and ‖ · ‖Ens ≡ ‖·‖En , where [eij ] ∈ En. We denote by ⊗ (resp.
⊗s) the tensor product (resp. symmetric tensor product). Let L0(Ω,Rm)µ
be the set of µ-measurable functions from Ω into Rm. If τ ⊂ 2X is a linear
topology in a vector space X, then [X, τ ] denotes the topological space and
[X, τ ]∗ is the space dual to [X, τ ]. We define the following Banach spaces
(see [23], [27], [28]):

LD(Ω) ≡
{

u ∈ L1(Ω,Rn)
∣∣∣∣(2.1)

εij(u) ≡ 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
∈ L1(Ω), i, j = 1, . . . , n

}
,

BD(Ω) ≡ {u ∈ L1(Ω,Rn) | εij(u) ∈Mb(Ω), i, j = 1, . . . , n},(2.2)

with the natural norms
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(2.3) ‖u‖LD = ‖u‖L1+
n∑

i,j=1

‖εij(u)‖L1 , ‖u‖BD = ‖u‖L1+
n∑

i,j=1

‖εij(u)‖Mb .

R0 ≡ {u ∈ BD(Ω) | ε(u) = 0} denotes the space of rigid motions in Rn.

Proposition 1 (see [27]). Let BD(Ω) and L1(FrΩ,Rn) be endowed
with the norm topologies. There exists a continuous surjective linear trace
γB from BD(Ω) into L1(FrΩ,Rn) such that γB(u) = u|FrΩ for all u ∈
BD(Ω) ∩ C(Ω,Rn).

We define the spaces

(2.4) X ≡ Cc(Ω,Rn)× Cc(Ω,En
s ), X0 ≡ {(g,h) ∈ X | g = div h},

endowed with the natural norm

(2.5) ‖g‖C(Ω,Rn) + ‖h‖C(Ω,Ens )

≡ sup{‖g(x)‖Rn | x ∈ Ω}+ sup{‖h(x)‖Ens | x ∈ Ω}.
Then BD(Ω) is isomorphic to the dual of [X/X0, ‖ · ‖C(Ω,Rn) + ‖ · ‖C(Ω,Ens )]
(see [28]). The topology σ((X/X0)∗,X) = σ(BD(Ω), Cc(Ω,Rn)×Cc(Ω,En

s ))
is called the weak∗ BD topology. A net {uδ}δ∈D ⊂ BD(Ω) is convergent to
u0 ∈ BD(Ω) in this topology if and only if for all (g,h) ∈ X,

(2.6)
�

Ω

g · (u0 − uδ) dx+
�

Ω

h : ε(u0 − uδ)→ 0.

For every ϕ ∈ L1(FrΩ,Rn), the set {u ∈ BD(Ω) | γB(u) = ϕ} is dense
in the space [BD(Ω), weak∗ topology] (see [8, Proposition 2.5]). The trace
operator γB is not continuous on [BD(Ω), weak∗ topology] if the space
L1(FrΩ,Rn) is endowed with a Hausdorff topology (or a T1-topology, see
[19, Chapter I, Section 5] and [27]).

Definition 1 (see [27] and [19, Chapter I, Section 6]). A net {uδ}δ∈D
converges to u0 (in the topology (2.7)–(2.8)) if

uδ → u0 in ‖ · ‖Lp(Ω,Rn) for all p such that 1 ≤ p < q = n/(n− 1)(2.7)

and weakly in Lq(Ω,Rn) (q =∞ if n = 1),

ε(uδ)→ ε(u0) weak∗ in Mb(Ω,En
s ).(2.8)

Proposition 2 (cf. [8] and [9, Proposition 2]). The weak∗BD(Ω) topology
and the topology (2.7)–(2.8) are equivalent on bounded subsets of BD(Ω).

The injection of [BD(Ω), weak∗] into [Lp(Ω,Rn), weak topology] is con-
tinuous on bounded subsets of BD(Ω), where 1 ≤ p ≤ q = n/(n−1) (q =∞
if n = 1).

We define the Banach space of measurable functions

(2.9) Wn(Ω,div) ≡ {σ ∈ L∞(Ω,En
s ) | divσ ∈ Ln(Ω,Rn)}
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endowed with the natural norm ‖σ‖Wn(Ω,div) = ‖σ‖L∞(Ω,Ens ) +
‖divσ‖Ln(Ω,Rn) (cf. [27, Chapter II, Section 7] and [8]). The distribution
σ : ε(u), where σ ∈ Wn(Ω,div), u ∈ BD(Ω), defined (for every ϕ1 ∈
C∞c (Ω)) by

(2.10) 〈σ : ε(u), ϕ1〉D′×D = −
�

Ω

(divσ) · uϕ1 dx−
�

Ω

σ : (u⊗ gradϕ1) dx,

is a bounded measure on Ω, and it is absolutely continuous with respect to
|ε(u)| (see [27]).

Assumption 1. Ω and Ω1 are bounded open connected sets of class C1

in Rn. Moreover, Ω ⊂⊂ Ω1.

Theorem 3 (cf. [27]). There exists a continuous, linear , surjective, open
map βB from [Wn(Ω,div), ‖ · ‖Wn(Ω,div)] onto [L∞(FrΩ,Rn), ‖ · ‖L∞ ] such
that for every σ ∈ C(Ω,En

s ), βB(σ) = σ|FrΩ · ν, where ν denotes the
exterior unit vector normal to FrΩ. Furthermore, for all u ∈ BD(Ω) and
all σ ∈Wn(Ω,div), the following Green formula holds:

(2.11)
�

Ω

σ : ε(u) +
�

Ω

(divσ) · u dx =
�

FrΩ

βB(σ) · γB(u) ds.

3. Auxiliary theorems and spaces. In this paper, the Lebesgue and
Hausdorff measures on Ω and FrΩ are denoted by dx and ds, respectively.
Let Γ0 and Γ1 (= Γ 1) be Borel subsets of FrΩ such that Γ0 ∩ Γ1 = ∅
and ds(FrΩ − (Γ0 ∪ Γ1)) = 0. We will consider an elastic-perfectly plastic
body, occupying the given set Ω. We first introduce some functions. Let
K : Ω → 2Ens be a multifunction.

Assumption 2 (cf. [8]). K(x) is a convex closed subset of En
s , for all

x ∈ Ω. Moreover, there exists z0 ∈ C1(Ω,En
s ) such that

(3.1) z0(x) ∈ K(x) for every x ∈ Ω
and the following conditions hold:

(i) if z(x) ∈ K(x) for dx-almost every (dx-a.e.) x ∈ Ω, z ∈ C(Ω,En
s )

and z|intΩ ∈Wn(Ω,div), then z(y) ∈ K(y) for every y ∈ Ω;
(ii) for every y ∈ Ω and every w ∈ K(y) there exists z ∈ C(Ω,En

s )
such that z|intΩ ∈ Wn(Ω,div), z(y) = w and z(x) ∈ K(x) for every
x ∈ Ω.

Conditions (i) and (ii) are equivalent to the condition that for every
y ∈ Ω,

(3.2) K(y) = {z(y) | z ∈ C(Ω,En
s ), z|intΩ ∈Wn(Ω,div),

z(x) ∈ K(x) for dx-a.e. x ∈ Ω}.
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Definition 2. Let j∗ : Ω × En
s → R ∪ {∞} be a convex normal integ-

rand, i.e.

(a) the function En
s 3 w∗ 7→ j∗(x,w∗) is convex and l.s.c. for dx-a.e.

x ∈ Ω;
(b) there exists a Borel function j̃∗ : Ω × En

s → R ∪ {∞} such that
j̃∗(x, ·) = j∗(x, ·) for dx-a.e. x ∈ Ω

(cf. [18, Chapter 8, p. 232]). Moreover, assume

(3.3) {w∗ ∈ En
s | j∗(x,w∗) <∞} = K(x) for dx-a.e. x ∈ Ω.

Assumption 3. For every r̂ > 0 there exists cr̂ such that

(3.4) sup
{ �

Ω

j∗(x, z∗) dx
∣∣∣ z∗ ∈ L∞(Ω,En

s ), ‖z∗‖L∞ < r̂

and z∗(x) ∈ K(x) for dx-a.e. x ∈ Ω
}
< cr̂ <∞.

Assumption 4. There exist ue ∈ LD(Ω) and q ∈ L1(Ω,R) such that

(3.5) j∗(x,w∗) ≥ ε(ue)(x) : w∗ + q(x)

for dx-a.e. x ∈ Ω and every w∗ ∈ En
s , and γB(ue) = 0 on FrΩ.

The set K(x) denotes the elasticity convex domain at the point x.
Define

(3.6) j(x,w) ≡ j∗∗(x,w) ≡ sup{w : w∗ − j∗(x,w∗) | w∗ ∈ En
s }

for dx-a.e. x ∈ Ω and all w ∈ En
s . Then j is a convex normal integrand (cf.

[18, Chapter 8, Proposition 1.2]). Define j∞ : Ω ×En
s → R ∪ {∞} by

(3.7) j∞(x,w) ≡ sup{w : w∗ − IK(x)(w
∗) | w∗ ∈ En

s }

for x ∈ Ω and w ∈ En
s .

Let f ∈ Ln(Ω,Rn) and g ∈ L∞(Γ1,Rn). In this paper we consider the
functional

(3.8) BD(Ω) 3 u 7→ Pλ,j(u) = λF (u) +Gj(ε(u)),

where

(3.9) λF (u) ≡ −λL(u) + ICa(u0)(u), L(u) ≡
�

Ω

f · u dx+
�

Γ1

g · γB(u) ds,

u0 ∈ L1(Γ0,Rn) and

(3.10) Ca(u0) ≡ {u ∈ BD(Ω) | γB(u)|Γ0 = u0}.
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The functional Gj : Mb(Ω,En
s )→ R ∪ {∞} is given by

(3.11) Gj(µ) ≡





�

Ω

j(x,µ) dx if µ ∈ L1(Ω,En
s ), i.e. µ is absolutely

continuous with respect to dx,

∞ otherwise.
The formula (3.8) describes the total elastic-perfectly plastic energy of a

body occupying the given subset Ω of Rn. This body is subjected to volume
forces f ∈ Ln(Ω,Rn) and boundary forces g ∈ L∞(Γ1,Rn). The constant
λ ≥ 0, λ <∞ is the load multiplier (see [27, Chapter I, Section 4]). The set
Ca(u0) consists of the kinematically admissible displacement fields for the
body clamped on Γ0 (see [8] and [27]).

Assumption 5. There exists σ0 ∈ C(Ω,En
s ) such that σ0|intΩ ∈

Wn(Ω,div), βB(σ0) = λg on Γ1 and σ0(x) ∈ K(x) for dx-a.e. x ∈ Ω.

By Assumption 5, the boundary force g ∈ L∞(Γ1,Rn) is a regular func-
tion.

Proposition 4 (see [27, p. 255]). If u ∈ BD(Ω1), then

(3.12) ε(u) = ε(u)|Ω + ε(u)|Ω1−Ω + (γOB (u)− γIB(u))⊗s ν ds,
where the inside trace γIB : BD(Ω) → L1(FrΩ,Rn) and outside trace
γOB : BD(Ω1 − Ω) → L1(FrΩ,Rn) are given by γIB(u) = u|FrΩ for u ∈
BD(Ω) ∩ C(Ω,Rn) and γOB (u) = u|FrΩ for u ∈ BD(Ω1 − Ω) ∩ C(Ω1 −
Ω,Rn), respectively , and where ⊗s denotes the symmetric tensor product :
(p⊗s ν)ij ≡ (piνj + pjνi)/2.

Definition 3 (see [22]). A Borel set C ⊆ Rn is called a Caccioppoli set
if sup{ � C div f̃ dx | f̃ ∈ C1

0 (Ω2,Rn), ‖f̃(x)‖Rn ≤ 1 ∀x ∈ Ω2} < ∞ for all
bounded open subsets Ω2 of Rn.

Remark 1. For every σ ∈ Wn(Ω1,div) and u ∈ BD(Ω1) the distri-
bution σ : ε(u) is a regular measure on Ω1. Thus there exist sequences
{Ωkc }k∈N and {Ωk0}k∈N of subsets of Ω1 such that

clΩkc = Ωkc ⊂ FrΩ ⊂ Ωk0 = intΩk0 , ∀k ∈ N,(3.13)

if k1 < k2 then Ωk1
c ⊂ Ωk2

c ⊂ Ωk2
0 ⊂ Ωk1

0 ,(3.14)

|σ : ε(u)|(Ωk
0 −Ωkc ) < 1/k, ∀k ∈ N.(3.15)

Moreover, by Urysohn’s Lemma [19, Theorem 1.5.10], for every k ∈ N, there
exists a continuous function ψk : Ω1 → [0, 1] such that ψk(x) = 1 for x ∈ Ωk

c

and ψk(x) = 0 for x ∈ Ω1 − Ωk0 . Then for every ϕ ∈ Cc(Ω1) we have
� FrΩ ϕσ : ε(u) = limk→∞ � Ω1

ψkϕσ : ε(u) (cf. [4, Theorem 3.1]).

Lemma 5 (see [9, Lemma 5]). If there exists a closed Caccioppoli set
C ⊂ Ω1 with C = cl int C such that Γ2 = FrΩ ∩ C, with ds(FrΩ ∩ Fr C) = 0,
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then for all u ∈ BD(Ω1) and all σ ∈Wn(Ω1,div),

(3.16)
�

Γ2

βB(σ|Ω) · (γOB (u)−γIB(u)) ds =
�

Γ2

σ : [(γOB (u)−γIB(u))⊗s ν] ds,

where we denote σ : ε(u)|FrΩ by σ : [(γOB (u)− γIB(u))⊗s ν] ds.

Assumption 6. Let Γ1 = FrΩ ∩ C, where C = cl int C ⊂ Ω1 is a closed
Caccioppoli set and ds(FrΩ ∩ Fr C) = 0.

Let µ ∈ Mb(Ω,En
s ). We recall that |µ| is the total variation measure

associated with µ, i.e. for every µ-measurable subset Ω̃ of Ω we have
|µ|(Ω̃) = sup{ � Ω̃ ϕ : µ | ϕ ∈ C(Ω,En

s ), maxi,j(‖ϕij‖C(Ω)) ≤ 1}. Then
‖µ‖Mb(Ω) = � Ω |µ|. The density of µ with respect to |µ| will be denoted by
dµ/d|µ|. Let µ = µa(x) dx + µs be the Lebesgue decomposition of µ into
the absolutely continuous and singular parts with respect to dx.

We consider the spaces Y1(Ω) and Cdiv(Ω,En
s ) given by

Y1(Ω) ≡ {M ∈Mb(Ω,En
s ) | ∃u1 ∈ BD(Ω1),(3.17)

ε(u1)|Ω = M, u1|Ω1−Ω = 0},
Cdiv(Ω,En

s ) ≡ {σ ∈ C(Ω,En
s ) | σ|Ω ∈Wn(Ω,div)}.(3.18)

These are topological vector spaces put in duality by the bilinear pairing

(3.19) 〈M,σ〉Y1×C =
�

Ω

σ : M =
n∑

i,j=1

�

Ω

σijM
ij .

Remark 2. The definition of spaces in duality requires that for every
σ ∈ Cdiv(Ω,En

s ), σ 6= 0, there exists M = ε(u) ∈ Y1(Ω) such that

(3.20)
�

Ω

σ : M =
�

Ω

σ : ε(u)−
�

FrΩ

σ : (γIB(u)⊗s ν) ds 6= 0

(cf. (3.12), (3.16)). But for every σ ∈ Cdiv(Ω,En
s ) such that divσ = 0 in

Ω, and for every M = ε(u) ∈ Y1(Ω),

(3.21)
�

Ω

σ : ε(u)−
�

FrΩ

σ : (γIB(u)⊗s ν) ds = −
�

Ω

(divσ) · u dx = 0

(see (2.11) and (3.16)). Therefore the duality should be defined between the
spaces Y1(Ω) and Cdiv(Ω,En

s )/{σ ∈ C(Ω,En
s ) | divσ = 0}. To simplify the

proofs, the previous definition, given by (3.18) and (3.19), is considered here.
We do not get a contradiction, since we do not use the Hausdorff property
of the topology σ(Cdiv(Ω,En

s ),Y1(Ω)).
This remark relates to the spaces Y1(Ω) ×M1(Γ1) and Cdiv(Ω,En

s ) ×
C(Γ1,En

s ), put in duality in part II (by formulae (2.1), (2.4)). To simplify
the proofs, we do not replace the above spaces by Y1(Ω)×M1(Γ1) and
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(3.22) [Cdiv(Ω,En
s )/{σ ∈ C(Ω,En

s ) | divσ = 0}]

×
[
C(Γ1,En

s )/
{
κ ∈ C(Γ1,En

s )
∣∣∣ ∀µ ∈Mb(Γ1,Rn),

�

Γ1

κ : [µ⊗s ν] ds = 0
}]
.

We say that a net {Mk}k∈K ⊂ Y1(Ω) converges to M0 in the topol-
ogy σ(Y1(Ω), Cdiv(Ω,En

s )) if 〈(Mk − M0),σ〉Y1×C → 0 for every σ ∈
Cdiv(Ω,En

s ). Let Y1(Ω) be endowed with this topology. Then Cdiv(Ω,En
s )

is the dual space to Y1(Ω), i.e.

(3.23) [Y1(Ω), σ(Y1(Ω), Cdiv(Ω,En
s ))]∗ = Cdiv(Ω,En

s )

(cf. [17, Theorem V.3.9]). Similarly,

(3.24) [Cdiv(Ω,En
s ), σ(Cdiv(Ω,En

s ),Y1(Ω))]∗ = Y1(Ω).

The space BD(Ω) is isomorphic to A ≡ {u ∈ BD(Ω1) | u|Ω1−Ω = 0} (cf.
Assumption 1). Moreover, A is isomorphic to Y1(Ω), and the isomorphism
is given by A 3 u 7→ ε(u)|Ω ∈ Y1(Ω). The Banach spaces [BD(Ω), ‖ · ‖BD]
and [Y1(Ω), ‖·‖Mb(Ω)] are isomorphic (cf. [8, Proposition 4.24]). Each closed
ball cl‖·‖(B(0, r)) (in Y1) is compact in the topology σ(Y1(Ω), Cdiv(Ω,En

s )),
where cl‖·‖ denotes the closure in the norm of BD(Ω) (see [8, Proposi-
tion 4.23]). The space [cl‖·‖BD (BBD(0, r2)), weak∗ BD(Ω) topology] is iso-
morphic to [cl‖·‖BD (BBD(0, r2)), σ(Y1(Ω), Cdiv(Ω,En

s ))] (cf. [8, Proposition
4.25]).

The functional Bjλ : Y1(Ω)→ R ∪ {∞} is defined by

Bjλ(ε(u)|Ω) ≡ −
�

Γ1

σ0 : (γIB(u)⊗s ν) ds+
�

Ω

j(x, ε(u)) dx(3.25)

+
�

Γ0

I{[u0−γIB(u)]⊗sν=0}([u
0 − γIB(u)]⊗s ν) ds

if u|Ω∈LD(Ω) and u|Ω1−Ω = 0, where βB(σ0) = λg on Γ1, and Bjλ(ε(u)|Ω)
≡ ∞ otherwise. We assume that there exists ũ ∈ BD(Ω1) such that ũ|Ω ∈
LD(Ω) and Bjλ(ε(ũ)|Ω) <∞.

4. Lower semicontinuous regularization. In this section the lower
semicontinuous (l.s.c.) regularization of the functional Bjλ is found, where
the space BD(Ω) is endowed with the topology σ(Y1(Ω), Cdiv(Ω,En

s )).
Because of the duality between Y1(Ω) and Cdiv(Ω,En

s ), we define a
functional (Bjλ)∗ : Cdiv(Ω,En

s )→ R ∪ {∞} by

(4.1) (Bjλ)∗(σ) = sup{〈ε(u)|Ω,σ〉Y1×C − Bjλ(ε(u)|Ω) | u ∈ BD(Ω1),

u|Ω ∈ LD(Ω) and u|Ω1−Ω = 0}.
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We say that (Bjλ)∗ is the dual functional to Bjλ with respect to the duality
between Y1(Ω) and Cdiv(Ω,En

s ) (see [18, pp. 16–18]). The bidual functional
(Bjλ)∗∗ : Y1(Ω)→ R ∪ {∞} is defined by

(4.2) (Bjλ)∗∗(ε(u)|Ω)

= sup{〈ε(u)|Ω,σ〉Y1×C − (Bjλ)∗(σ) | σ ∈ Cdiv(Ω,En
s )}.

Because of (3.12), the space Y1(Ω)|FrΩ is isomorphic to {−γB(u)⊗sν ∈
L1(FrΩ,En

s ) | u ∈ BD(Ω)}. Thus, the bilinear form between Mb(Ω,En
s )×

Y1(Ω)|FrΩ and Cdiv(Ω,En
s ) is given by

(4.3) 〈(w,−γIB(u)⊗s ν),σ〉1 ≡
�

Ω

σ : w +
�

FrΩ

σ : (−γIB(u)⊗s ν) ds

for every w∈Mb(Ω,En
s ), −γIB(u)ds⊗sν ∈ Y1(Ω)|FrΩ and σ ∈ Cdiv(Ω,En

s ).
Therefore a net {σδ}δ∈D ⊂ Cdiv(Ω,En

s ) is convergent to σ0 ∈ Cdiv(Ω,En
s )

in the topology

(4.4) σ(Cdiv(Ω,En
s ), L1(Ω,En

s )×Y1(Ω)|FrΩ)

if 〈(w,−γIB(u) ⊗s ν), (σ0 − σδ)〉1 → 0 for every w ∈ L1(Ω,En
s ) and every

−γIB(u)ds ⊗s ν ∈ Y1(Ω)|FrΩ . The extension B̃jλ of Bjλ onto the space
Mb(Ω,En

s )×Y1(Ω)|FrΩ is given by

(4.5) B̃jλ(w,−γB(u)ds⊗s ν) ≡ −
�

Γ1

σ0 : (γB(u)⊗s ν) ds+
�

Ω

j(x,w) dx

+
�

Γ0

I{[u0−γIB(u)]⊗sν=0}([u
0 − γIB(u)]⊗s ν) ds

if w ∈ L1(Ω,En
s ) and u ∈ BD(Ω), where βB(σ0) = λg on Γ1, and

B̃jλ(w,−γB(u)ds⊗s ν) ≡ ∞ otherwise.
By duality between Mb(Ω,En

s )×Y1(Ω)|FrΩ and Cdiv(Ω,En
s ), we define

a functional (B̃jλ)∗ : Cdiv(Ω,En
s ) → R ∪ {∞} (cf. (4.3)). This functional is

given by

(4.6) (B̃jλ)∗(σ) = sup
{ �

Ω

σ : w dx−
�

FrΩ

βB(σ) · γB(u) ds

− B̃jλ(w,−γB(u)ds⊗s ν)
∣∣∣w ∈ L1(Ω,En

s ), u ∈ BD(Ω)
}
.

The bidual functional (B̃jλ)∗∗ : Y1(Ω)→ R ∪ {∞} is defined by

(4.7) (B̃jλ)∗∗(w,−γIB(u)ds⊗s ν)

= sup
{ �

Ω

σ : w −
�

FrΩ

βB(σ) · γIB(u) ds− (B̃jλ)∗(σ)
∣∣∣ σ ∈ Cdiv(Ω,En

s )
}

for (w,−γIB(u)ds⊗s ν) ∈ Y1(Ω) (cf. (3.16)).
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Lemma 6 (see [8]). For every σ ∈ Cdiv(Ω,En
s ) we have (B̃jλ)∗(σ) ≥

(Bjλ)∗(σ). Moreover , (B̃jλ)∗∗(M) ≤ (Bjλ)∗∗(M) for every M ∈ Y1(Ω).

Proof. Indeed, in the definition of (B̃jλ)∗ we take the supremum over a
larger domain. The second inequality follows from the first.

Definition 4 (cf. [12]). A subset H0 of L0(Ω,Rm)µ is said to be PCU-
stable if for any continuous partition of unity (α0, . . . , αd) such that
α0, . . . , αd ∈ C∞(Ω,R), and any z0, . . . , zd ∈ H0, the sum

∑d
i=0 αizi is

in H0.

Proposition 7. The functional (B̃jλ)∗∗ defined by (4.7), (4.6) and (4.5)
is given by the expression

(4.8) (B̃jλ)∗∗(ε(u)|Ω) = −
�

Γ1

σ0 : (γIB(u)⊗s ν) ds

+
�

Γ0

j∞(x, (u0 − γIB(u))⊗s ν) ds

+
�

Ω

j(x, ε(u)a) dx+
�

Ω

j∞(x, dε(u)s/d|ε(u)s|) d|ε(u)s|

for every ε(u)|Ω ∈ Y1(Ω), where βB(σ0) = λg on Γ1.

Proof. Indeed, by [25, Theorem 3A and Proposition 2M], for every σ ∈
Cdiv(Ω,En

s ) we have

(4.9) (B̃jλ)∗(σ) ≡ sup
{ �

Ω

σ : w dx+
�

FrΩ

σ : (−γIB(u)⊗s ν) ds

+
�

Γ1

σ0 : (γIB(u)⊗s ν) ds−
�

Γ0

I{u0−γIB(u)=0}((u
0 − γIB(u))⊗s ν) ds

−
�

Ω

j(x,w) dx
∣∣∣ u ∈ BD(Ω1), u|Ω1−Ω = 0 and w ∈ L1(Ω,En

s )
}

= sup
{ �

Ω

σ : w dx−
�

Ω

j(x,w) dx
∣∣∣w ∈ L1(Ω,En

s )
}

+ sup
{ �

Γ1

βB(σ0) · ζ ds−
�

Γ1

βB(σ) · ζ ds

+
�

Γ0

σ : ((u0 − γIB(u))⊗s ν) ds

−
�

Γ0

I{u0=γIB(u)}((u
0 − γIB(u))⊗s ν) ds

∣∣∣ ζ ∈ L1(Γ1,Rn),u ∈ BD(Ω)
}
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−
�

Γ0

σ : (u0 ⊗s ν) ds

=
�

Ω

j∗(x,σ) dx+
�

Γ1

I{σ|βB(σ)=λg}(σ) ds−
�

Γ0

σ : (u0 ⊗s ν) ds

(cf. (3.16)). Since γB is a surjection from BD(Ω) onto L1(FrΩ,Rn) (cf.
Theorem 2.1 of [27, Chapter 2]) and by (3.5) we deduce that inf B̃jλ < ∞.
Moreover, we replace γIB(u) by ζ ∈ L1(Γ1,Rn).

By the duality between Y1(Ω) and Cdiv(Ω,En
s ) we obtain (B̃jλ)∗∗. The

space Cdiv(Ω,En
s ) is PCU-stable, so by the proofs of Theorem 1 and 4 of

[12] we get

(4.10) (B̃jλ)∗∗(ε(u)|Ω)

= sup
{ �

Ω

σ : ε(u)|intΩ +
�

FrΩ

σ : (−γIB(u)⊗s ν) ds

−
�

Ω

j∗(x,σ) dx−
�

Γ1

I{σ |σ·ν=λg}(σ) ds+
�

Γ0

σ : (u0 ⊗s ν) ds
∣∣∣

σ ∈ Cdiv(Ω,En
s ) and ∀x ∈ Ω, σ(x) ∈ K(x)

}

= sup
{ �

Ω

[σ : (ε(u)a)− j∗(x,σ)] dx+
�

Ω

[σ : (d(ε(u)s)/d|ε(u)s|)

− j∗∞(x,σ)] d|ε(u)s| −
�

Γ1

(σ · ν) · γIB(u) ds−
�

Γ1

I{σ·ν |σ·ν=λg}(σ · ν) ds

+
�

Γ0

[σ : ((u0 − γIB(u))⊗s ν)− j∗∞(x,σ)] ds
∣∣∣ σ ∈ Cdiv(Ω,En

s )
}

for every ε(u)|Ω ∈ Y1(Ω), which is (4.8) (cf. (3.4)). In the above calculations
we use the equality j∗∞(x,σ) = IK(x)(σ), which holds for every σ ∈ En

s and
x ∈ Ω. Moreover, by (3.2) and (3.3), σ(x) ∈ K(x) for every x ∈ Ω. Since
βB(σ0) = λg on Γ1, we have �

Γ1
λg · γIB(u) ds = �

Γ1
σ0 : (γIB(u) ⊗s ν) ds.

By Assumptions 5 and 3 we get (B̃jλ)∗(σ0) <∞.

Lemma 8. For every u ∈ BD(Ω1) such that u|Ω ∈ LD(Ω), u|Ω1−Ω
= 0 and γIB(u)|Γ0 = u0, we have (Bjλ)∗∗(ε(u)|Ω) = (B̃jλ)∗∗(ε(u)|Ω) =

Bjλ(ε(u)|Ω).

Proof. By Lemma 6, we have (B̃jλ)∗∗(M) ≤ (Bjλ)∗∗(M) ≤ Bjλ(M) for
every M ∈ Y1(Ω) (see [18, pp. 16–18]). Therefore, by (4.8), we get the
assertion.
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Lemma 9. For every σ ∈ Cdiv(Ω,En
s ) and every σs ∈ Cdiv(Ω,En

s ) such
that divσs = 0, we have (Bjλ)∗(σ) = (Bjλ)∗(σ + σs).

Proof. By definition (4.1) and by Green’s formula (2.11) we get

(Bjλ)∗(σ) = sup
{
−

�

Ω

(divσ) · u dx− Bjλ(ε(u)|Ω)
∣∣∣(4.11)

u|Ω ∈ LD(Ω) and u|Ω1−Ω = 0
}

= sup
{
−

�

Ω

[div(σ + σs)] · u dx− Bjλ(ε(u)|Ω)
∣∣∣

u|Ω ∈ LD(Ω) and u|Ω1−Ω = 0
}

= (Bjλ)∗(σ + σs).

We say that a net {σk}k∈K ⊂ Cdiv(Ω,En
s ) converges to σ̂ ∈ Cdiv(Ω,En

s )
in the topology

(4.12) σ(Cdiv(Ω,En
s ), L1(Ω,En

s )× {ϕ ∈ Y1(Ω)|FrΩ | ϕ|Γ0 = 0})
if

(4.13)
�

Ω

(σk − σ̂) : w dx+
�

Γ1

(σk − σ̂) : (p⊗s ν) ds→ 0

for every w ∈ L1(Ω,En
s ) and p ∈ L1(Γ1,Rn).

Lemma 10. Let f̂ : Cdiv(Ω,En
s )→ R be a linear functional , continuous

in the topology (4.12), such that f̂(σs) = 0 for every σs ∈ Cdiv(Ω,En
s )

with divσs = 0 in Ω. Then there exists ũ ∈ LD(Ω) such that for every
σ ∈ Cdiv(Ω,En

s ),

(4.14) f̂(σ) =
�

Ω

σ : ε(ũ) dx−
�

FrΩ

σ : (γB(ũ)⊗s ν) ds,

and γB(ũ) = 0 on Γ0.

Proof. Since f̂ is continuous in the topology (4.12), by Theorem V.3.9 of
[17] there exist m ∈ L1(Ω,En

s ) and û ∈ BD(Ω) such that γB(û) = 0 on Γ0,
and f̂(σ) = � Ω σ : m dx− � FrΩ σ : (γB(û)⊗s ν) ds for all σ ∈ Cdiv(Ω,En

s ).
For every σ1 ∈ Wn(Ω1,div) with divσ1 = 0 in Ω1 and σ1|Ω ∈ C(Ω,En

s ),
we have

(4.15) f̂(σ1|Ω) =
�

Ω

σ1 : m dx−
�

FrΩ

σ1 : (γB(û)⊗s ν) ds = 0.

Then by Proposition 1.1 and Theorem 1.3 of [27, Chapter II] there exists
ũ ∈ LD(Ω) such that equality (4.14) holds.

Indeed, for all σ2 ∈ C1
c (Ω1,En

s ) such that divσ2 = 0 in Ω1, we have
� Ω σ2 : m dx− � FrΩ σ2 : (γB(û)⊗sν) ds = 0. Then, by Proposition 1.1 of [27,
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Chapter II], there exists ũ ∈ D′(Ω1,Rn) such that for every σ ∈ C1
c (Ω1,En

s ),

(4.16)
�

Ω1

σ : ε(ũ) =
�

Ω

σ : m dx−
�

FrΩ

σ : (γB(û)⊗s ν) ds = f̂(σ|Ω),

and

(4.17) ε(ũ) =





m dx in Ω,

−(γB(û)⊗s ν) ds on FrΩ,

0 in Ω1 −Ω
(see [24]). For every σ3 ∈ C1

c (Ω1,En
s ) such that σ3 = 0 in Ω, we have

(4.18)
�

Ω1

σ3 : ε(ũ) =
�

Ω

σ3 : m dx−
�

FrΩ

σ3 : (γB(û)⊗s ν) ds = 0,

therefore we can assume that ũ|Ω1−Ω = 0. Moreover, by Theorem 1.3 of [27,
Chapter II], ũ|Ω ∈ LD(Ω), because m ∈ L1(Ω,En

s ).

Let Q : Cdiv(Ω,En
s )→ R ∪ {∞} be defined by

(4.19) Q(σ) = inf{(B̃jλ)∗(σ + σs) | σs ∈ C(Ω,En
s ) and divσs = 0}.

Proposition 11. Let u0 = 0 on Γ0. For every σ ∈ Cdiv(Ω,En
s ) we have

(4.20) (Bjλ)∗(σ) = cl(4.12) Q(σ),

where cl(4.12) Q denotes the largest minorant which is less than Q and l.s.c. in
the topology (4.12) (i.e. cl(4.12) Q is the l.s.c. regularization of Q in (4.12)).

Proof. Step 1. Suppose there exist σ1 ∈ Cdiv(Ω,En
s ) and a constant

δ0 > 0 such that

(4.21) (Bjλ)∗(σ1) + δ0 < cl(4.12) Q(σ1).

On account of Lemmas 6 and 9, to prove the proposition, it suffices to show
that this assumption leads to a contradiction.

The linear space

(4.22) M0 ≡ {σs ∈ Cdiv(Ω,En
s ) | divσs = 0}

is a closed subspace of Cdiv(Ω,En
s ) endowed with the topology (4.12). In-

deed, by the Green formula (2.11),

(4.23) M0 =
⋂

u∈LD(Ω), γB(u)=0 onΓ0

{
σ ∈ Cdiv(Ω,En

s )
∣∣∣

�

Ω

σ : ε(u) dx−
�

FrΩ

βB(σ) · γB(u) ds = 0 =
�

Ω

(divσ) · u dx
}
.

Step 2. Let

(4.24) Φ : [Cdiv(Ω,En
s ), topology (4.12)]→ Cdiv(Ω,En

s )/M0
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be a linear function (canonical homomorphism) such that M0 = kerΦ
≡ {σ ∈ Cdiv(Ω,En

s ) | Φ(σ) = 0}. Moreover, let Cdiv(Ω,En
s )/M0 be en-

dowed with the strongest topology for which Φ is continuous. Since M0 is
closed in (4.12), Cdiv(Ω,En

s )/M0 is a Hausdorff topological space (cf. [13,
Chapter I]). Therefore the point (Φ(σ1), (Bjλ)∗(σ1) + δ0) is a closed sub-
space of [Cdiv(Ω,En

s )/M0]× R. The epigraph of σ 7→ cl(4.12) Q(σ), defined
by epi cl(4.12) Q = {(σ, a) ∈ Cdiv(Ω,En

s )× R | cl(4.12) Q(σ) ≤ a}, is convex.
Then the set

(4.25) Â ≡ {(σ̃, a) ∈ [Cdiv(Ω,En
s )/M0]× R |

∃σ ∈ Cdiv(Ω,En
s ), cl(4.12) Q(σ) ≤ a and Φ(σ) = σ̃}

is convex (cf. [13, Chapter I]). Moreover Â is closed in [Cdiv(Ω,En
s )/M0]×R,

since cl(4.12) Q(σ) = cl(4.12) Q(σ+σb) for all σ ∈ Cdiv(Ω,En
s ) and σb ∈M0.

By the Hahn–Banach theorem, there exists a closed affine hyperplane H
which strictly separates Â and (Φ(σ1), (Bjλ)∗(σ1) + δ0). Let

(4.26) H = {(σ̃, a) ∈ [Cdiv(Ω,En
s )/M0]× R | f2(σ̃) + ba+ c2 = 0},

where b, c2 ∈ R and f2 : [Cdiv(Ω,En
s )/M0] → R is a continuous linear

functional such that for every (σ̃, a) ∈ Â,

(4.27) f2(σ̃) + ba+ c2 > 0, f2(Φ(σ1)) + b((Bjλ)∗(σ1) + δ0) + c2 < 0.

Step 3. Now we consider the case when b = 0. From (4.9) and Assump-
tion 4, we deduce that inf{(B̃jλ)∗(σ)− �

Ω
ε(ue) : σ dx | σ ∈ Cdiv(Ω,En

s )} is
finite, since u0 = 0. Moreover, by the Green formula we obtain

inf
{ �

Ω

ε(ue) : (σs − σ) dx
∣∣∣ divσs = 0

}
= −

�

Ω

ε(ue) : σ dx,

(see Assumption 4). Let

(4.28) h ≡ |f2(Φ(σ1)) + c2| > 0,

(4.29) d̂ ≡ max
[
1; (Bjλ)∗(σ1) + δ0 −

�

Ω

ε(ue) : σ1 dx

− inf
{

(B̃jλ)∗(σ)−
�

Ω

ε(ue) : σ dx
∣∣∣ σ ∈ Cdiv(Ω,En

s )
}]

and d ≡ h/(2d̂). Then the functional

(4.30) [Cdiv(Ω,En
s )/M0]× R 3 (σ̃, a)

7→ f2(σ̃) + d
(
a+ d̂− (Bjλ)∗(σ1)− δ0 +

�

Ω

ε(ue) : σ1 dx
)

+ c2
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strictly separates {(σ̃, a) ∈ [Cdiv(Ω,En
s )/M0] × R | ∃σ ∈ Cdiv(Ω,En

s ),
cl(4.12) Q(σ) − � Ω ε(ue) : σ dx ≤ a and Φ(σ) = σ̃} and the point (Φ(σ1),
(Bjλ)∗(σ1) + δ0 − � Ω ε(ue) : σ1 dx) (cf. (4.25)).

Step 4. By (4.27) and (4.30) there exists a continuous linear functional
f3 : [Cdiv(Ω,En

s )/M0]→ R and c3 ∈ R such that

(4.31) f3(Φ(σ1)) + c3 > (Bjλ)∗(σ1) + δ0 and f3(σ̃) + c3 < a

for every (σ̃, a) ∈ Â. Therefore the functional σ 7→ f4(σ) + c3, defined by

(4.32) Cdiv(Ω,En
s ) 3 σ 7→ f4(σ) + c3 = f3(Φ(σ)) + c3,

strictly separates epi cl(4.12) Q and

(4.33) {(σ, a) ∈ Cdiv(Ω,En
s )× R | σ ∈ M0 + {σ1}, a = (Bjλ)∗(σ1) + δ0}.

Moreover M0 ⊂ ker f4. Since Φ is continuous in the topology (4.12) and f3

is continuous on Cdiv(Ω,En
s )/M0, it follows that f4 = f3 ◦ Φ is continuous

in the topology (4.12) over the space Cdiv(Ω,En
s ).

Step 5. By Lemma 10, there exists ũ ∈ LD(Ω) such that γB(ũ) = 0 on
Γ0 and

(4.34) f4(σ) =
�

Ω

σ : ε(ũ) dx−
�

FrΩ

σ : (γB(ũ)⊗s ν) ds

for every σ ∈ Cdiv(Ω,En
s ), because M0 ⊂ ker f4.

Step 6. We say that a net {σk}k∈K ⊂ Cdiv(Ω,En
s ) converges to σ̂ ∈

Cdiv(Ω,En
s ) in the topology

(4.35) σ(Cdiv(Ω,En
s ), {ϕ ∈ Y1(Ω) | ∃u ∈ BD(Ω1),

ε(u) = ϕ, u|Ω ∈ LD(Ω), u|Ω1−Ω = 0, γIB(u) = 0 on Γ0})
if

(4.36)
�

Ω

(σk − σ̂) : ε(u) dx−
�

FrΩ

(σk − σ̂) : (γB(u)⊗s ν) ds→ 0

for every u ∈ LD(Ω) such that γB(u) = 0 on Γ0. The l.s.c. regularization
of (B̃jλ)∗ in the topology (4.35) (denoted by cl(4.35)(B̃jλ)∗) is given by

(4.37) cl(4.35) (B̃jλ)∗(σ) = sup
{ �

Ω

σ : ε(u)|Ω dx−
�

FrΩ

σ : (γIB(u)⊗s ν) ds

− (B̃jλ)∗∗(ε(u)|Ω)
∣∣∣ u ∈ BD(Ω1), u|Ω ∈ LD(Ω), u|Ω1−Ω = 0,

γIB(u) = 0 on Γ0

}

= sup
{ �

Ω

σ : ε(u)|Ω dx−
�

FrΩ

σ : (γIB(u)⊗s ν) ds
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− Bjλ(ε(u)|Ω)
∣∣∣ u ∈ BD(Ω1), u|Ω ∈ LD(Ω),

u|Ω1−Ω = 0, γIB(u) = 0 on Γ0

}
= (Bjλ)∗(σ)

for σ ∈ Cdiv(Ω,En
s ) (cf. Lemma 8 and [18, p. 15]). From (4.31), (4.32),

(4.34) and (4.37) we obtain a contradiction.

Lemma 12. For every r̂ > 0, the topology (4.12) is stronger than
σ(Cdiv(Ω,En

s ),Y1(Ω)) over the set {σ ∈ Cdiv(Ω,En
s ) | ‖divσ‖Ln ≤ r̂}.

Proof. Let {στ}τ∈T ⊂ {σ ∈ Cdiv(Ω,En
s ) | ‖divσ‖Ln(Ω,Rn) ≤ r̂} be a

net convergent to σ̂ in the topology (4.12). Then for every u ∈ LD(Ω) with
γB(u) = 0 on Γ0,

�

Ω

(στ − σ̂) : ε(u) dx+
�

FrΩ

(στ − σ̂) : (−γB(u)⊗s ν) ds→ 0.

By the Green formula (2.11) we obtain �
Ω

div(στ − σ̂) · u dx→ 0 for every
u ∈ LD(Ω) such that γB(u) = 0 on Γ0. The set {u ∈ LD(Ω) | γB(u)|Γ0

= 0} is dense in [Ln/(n−1)(Ω,Rn), ‖ · ‖Ln/(n−1) ], since C1
c (Ω,Rn) is dense

in Ln/(n−1)(Ω,Rn) (see [1, Theorems 2.19 and 3.18], [27, Chapter II, Theo-
rem 1.2]). Then, by [17, Theorem II.1.18],

(4.38)
�

Ω

div(στ − σ̂) ·w dx→ 0 ∀w ∈ Ln/(n−1)(Ω,Rn),

since {στ − σ̂}τ∈T ⊂ {σ ∈ Cdiv(Ω,En
s ) | ‖divσ‖Ln(Ω,Rn) ≤ r̂+ ‖div σ̂‖Ln}.

Therefore, �
Ω

div(στ−σ̂)·u dx→ 0 for every u ∈ BD(Ω), becauseBD(Ω) ⊂
Ln/(n−1)(Ω,Rn) (cf. [27, Chapter II, Theorem 2.2]). By (2.11) the net
{στ}τ∈T converges to σ̂ in σ(Cdiv(Ω,En

s ),Y1(Ω)).

Proposition 13. Let u0 = 0 on Γ0 and let Ak ≡ {σ ∈ Cdiv(Ω,En
s ) |

‖divσ‖Ln ≤ k}. For every σ̂ ∈ Cdiv(Ω,En
s ) and every k > ‖div σ̂‖Ln ,

(4.39) (Bjλ)∗(σ̂) = clAk Q(σ̂),

where clAk Q(·) is the l.s.c. regularization of the function σ 7→ Q(σ)+IAk(σ)
in the topology (4.12) and IAk(·) is the indicator function of Ak.

Proof. Step 1. Suppose there exist σ1 ∈ Cdiv(Ω,En
s ) and constants δ0,

k > 0 such that k > ‖divσ1‖Ln and (Bjλ)∗(σ1) + δ0 < clAk Q(σ1). On
account of Lemmas 6 and 9, it suffices to show that this assumption leads
to a contradiction.

For every ε(u)|Ω ∈ Y1(Ω) let

(B̃jλ)∗k(ε(u)|Ω) ≡ sup{〈ε(u)|Ω ,σ〉Y1×C − (B̃jλ)∗(σ) | σ ∈ Ak},(4.40)

(B̃jλ)∗‖Ak(σ) ≡ (B̃jλ)∗(σ) + IAk(σ) ∀σ ∈ Cdiv(Ω,En
s ).(4.41)
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For every σ ∈ Cdiv(Ω,En
s ) let

(4.42) cl(4.35)(B̃jλ)∗‖Ak(σ) = sup{〈ε(u)|Ω,σ〉Y1×C − (B̃jλ)∗k(ε(u)|Ω) |
u ∈ BD(Ω1), u|Ω ∈ LD(Ω), u|Ω1−Ω = 0, γIB(u) = 0 on Γ0}.

Then for every k̂ > 0 such that ‖divσ1‖Ln < k̂ we have

(4.43) cl(4.35)(B̃jλ)∗‖A
k̂
(σ1) = (Bjλ)∗(σ1)

(cf. (4.37)). Indeed,

(4.44) sup{〈ε(u)|Ω,σ1〉Y1×C − (B̃jλ)∗k(ε(u)|Ω) | u ∈ BD(Ω1),

u|Ω ∈ LD(Ω), u|Ω1−Ω = 0, γIB(u) = 0 on Γ0}
= sup{〈ε(u)|Ω ,σ1〉Y1×C − (B̃jλ)∗∗(ε(u)|Ω) | u ∈ BD(Ω1),

u|Ω ∈ LD(Ω), u|Ω1−Ω = 0, γIB(u) = 0 on Γ0}

if k > ‖divσ1‖Ln , since (B̃jλ)∗k is the supremum over all affine mappings
Y1(Ω) 3 ε(u)|Ω 7→ 〈ε(u)|Ω ,σ〉Y1×C + const which are less than (B̃jλ), and
σ ∈ Ak.

Step 2. Similarly to the proof of Proposition 11, for every k > 0, there
exists a linear functional fk : Cdiv(Ω,En

s )→ R given by

(4.45) fk(σ) =
�

Ω

σ : ε(uk) dx−
�

FrΩ

σ : (γB(uk)⊗s ν) ds,

where uk ∈ LD(Ω) and γB(uk) = 0 on Γ0 for every k > 0. Moreover, for
all k > 0 there exists ck ∈ R such that

(4.46) (Bjλ)∗(σ1) + δ0 < fk(σ1) + ck and fk(σ̃) + ck < clAk Q(σ̃)

for every σ̃ ∈ Cdiv(Ω,En
s ). From (4.42), (4.43), (4.45) and (4.46) we obtain

a contradiction.

Theorem 14. Let u0 =0 on Γ0. For every ϕ∈Y1(Ω) we have (B̃jλ)∗∗(ϕ)
= (Bjλ)∗∗(ϕ).

Proof. Suppose that there exist u1 ∈ BD(Ω1) with u1|Ω1−Ω = 0 and
δ1 > 0 such that

(4.47) (Bjλ)∗∗(ε(u1)|Ω) > (B̃jλ)∗∗(ε(u1)|Ω) + 4δ1.

On account of Lemma 6, it suffices to show that this assumption leads to a
contradiction. There exists σ2 ∈ Cdiv(Ω,En

s ) such that

(4.48) (Bjλ)∗∗(ε(u1)|Ω) < {〈ε(u1)|Ω,σ2〉Y1×C − (Bjλ)∗(σ2)}+ δ1
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(cf. (3.19), (3.20), (4.2)). Therefore, by Proposition 11, Lemma 12, Propo-
sition 13, Green’s formula (2.11) and (4.48) there exists k0 > 0 such that

(4.49) (Bjλ)∗∗(ε(u1)|Ω) <
{
−

�

Ω

(divσ2) · u1 dx− clAk0
Q(σ2)

}
+ δ1

≤ sup
σ

{
−

�

Ω

(divσ) · u1 dx− clAk0
Q(σ)

∣∣∣ σ ∈ Cdiv(Ω,En
s )
}

+ δ1

= sup
σ

{
−

�

Ω

(divσ) · u1 dx−Q(σ)
∣∣∣ σ ∈ Ak0 , cf. Lemma 12

}
+ δ1

≤ sup
σ

{
−

�

Ω

(divσ) · u1 dx− inf{(B̃jλ)∗(σ + σs) |

σs ∈ C(Ω,En
s ) and divσs = 0 in Ω}

∣∣∣ σ ∈ Cdiv(Ω,En
s )
}

+ δ1

= sup
σ

sup
σs

{
−

�

Ω

(div(σ + σs)) · u1 dx− (B̃jλ)∗(σ + σs)
∣∣∣

σ,σs ∈ Cdiv(Ω,En
s ), divσs = 0

}
+ δ1

= (B̃jλ)∗∗(ε(u1)|Ω) + δ1.

By (4.47) we have a contradiction.

Remark 3. The space

(4.50) {ϕ ∈ Y1(Ω) | ∃u ∈ BD(Ω1), ε(u)|Ω = ϕ,

u|Ω ∈ LD(Ω), u|Ω1−Ω = 0}
(included in L1(Ω,En

s )× L1(FrΩ,En
s )) is not PCU-stable.

Proof. If the space (4.50) were PCU-stable, then (Bjλ)∗ = (B̃jλ)∗. Hence
we get a contradiction, since there exists σs ∈ C(Ω,En

s ) with divσs = 0
in Ω and ‖σs‖L∞ > 0 (cf. [21, formula (2.7)]).

5. Basic conclusions. Now we pass to the mechanical conclusions. The
displacement formulation of the equilibrium problem (studied in [8]) for the
elastic-perfectly plastic body made of a Hencky material reads:

(5.1) (Pλ,j) Find inf{λF (u) +Gj(ε(u)) | u ∈ LD(Ω)},
where the functionals F and Gj are defined by (3.9)–(3.11).

Moreover, in [8] the bidual relaxed problem

(5.2) (RP ∗∗λ,j) Find inf{(λFR)∗∗(u) +G∗∗j (ε(u)) | u ∈ BD(Ω)}
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is studied, where for every u ∈ BD(Ω),

(5.3) (λFR)∗∗(u) ≡ −λL(u) +
�

Γ0

j∞(x, ((u0 − γB(u))⊗s ν)) ds

(see (3.9)) and

(5.4) G∗∗j (ε(u)) =
�

Ω

j(x, ε(u)a) dx+
�

Ω

j∞(x, dε(u)s/d|ε(u)s|) d|ε(u)s|.

Lemma 15. If f ∈ Ln+δ(Ω,Rn), where δ ≥ 0, then the functional
BD(Ω) 3 u 7→ �

Ω
f · u dx ∈ R is continuous in the weak∗ BD(Ω) and

in σ(Y1(Ω), Cdiv(Ω,En
s )) topologies on bounded subsets of BD(Ω).

Proof. Indeed, by Proposition 8, the set [cl‖·‖BD (BBD(0, r)),weak∗

BD(Ω)] is homeomorphic to cl‖·‖BD (BBD(0, r)) endowed with the topol-
ogy σ(Y1(Ω), Cdiv(Ω,En

s )), for every r > 0. Moreover, by Proposition 2,
the injection of [BD(Ω),weak∗ topology] into [Lq(Ω,Rn), weak topology]
is continuous on bounded subsets of BD(Ω), where q = n+δ

n+δ−1 (q = ∞ if
n+ δ = 1).

Assumption 7. There exist kb > 0 and r1 > 0 such that j∗(x,w∗) ≤ kb
for every w∗ ∈ BEns (0, r1) and dx-a.e. x ∈ Ω.

Suppose the function (3.8) is coercive over BD(Ω), i.e.

(5.5) if ‖um‖BD →∞ then λF (um) +Gj(ε(um))→∞
for every sequence {um}m∈N ⊂ BD(Ω). Moreover, let 0 ≤ λ1 < λ. Then the
function (3.8) (where we replace λ by λ1) is coercive on BD(Ω). Similarly,
if the function

(5.6) BD(Ω) 3 u 7→ dRP ∗∗λ,je(u) = (λFR)∗∗(u) +G∗∗j (ε(u)) ∈ R ∪ {∞}
is coercive and 0 ≤ λ1 < λ, then dRP ∗∗λ1,j

e is coercive over BD(Ω). Moreover,
we obtain

(5.7) λF (u) +Gj(ε(u)) ≥ dRP ∗∗λ,je(u) ∀u ∈ BD(Ω).

Lemma 16. Let ũ ∈ BD(Ω) and let {up}p∈P ⊂ BD(Ω) be a net con-
vergent to ũ in the topology σ(Y1(Ω), Cdiv(Ω,En

s )) (cf. [8, Propositions 4.24
and 4.25]). Moreover , for every p ∈ P, let up = u1

p+u2
p, where u2

p ∈ R0 and
the net {u1

p}p∈P is bounded in ‖ · ‖BD. Then the net {up}p∈P is bounded in
‖ · ‖BD and up is convergent to ũ in the weak∗ BD topology.

Proof. For every Ψ ∈ [BD(Ω), σ(Y1(Ω), Cdiv(Ω,En
s ))]∗ (see Proposi-

tion 6), Ψ(up − ũ) = Ψ(u2
p) + Ψ(u1

p − ũ) converges to 0. Therefore the set
{Ψ(u2

p) | p ∈ P} is bounded. Indeed, the set {Ψ(u1
p) | p ∈ P} is bounded,

because {u1
p}p∈P is bounded in ‖ · ‖BD and Ψ ∈ [BD(Ω), ‖ · ‖BD]∗.

The space R0 of rigid motions is finite-dimensional, so {u2
p}p∈P is

bounded in ‖ · ‖Y1 , because for every Ψ ∈ [BD(Ω), σ(Y1(Ω), Cdiv(Ω,En
s ))]∗



196 J. L. Bojarski

the set {Ψ(u2
p) | p ∈ P} is bounded. Thus {up}p∈P is bounded in ‖ · ‖BD.

Therefore {up}p∈P ⇀ ũ in the weak∗ BD topology.

Lemma 17. Let ũ ∈ BD(Ω) and let {up}p∈P ⊂ BD(Ω) be a net con-
vergent to ũ in the weak∗ BD(Ω) topology. Moreover , for every p ∈ P , let
up = u1

p + u2
p, where u2

p ∈ R0 and the net {u1
p}p∈P is bounded in ‖ · ‖BD.

Then the net {up}p∈P is bounded in ‖ · ‖BD and up is convergent to ũ in
the topology σ(Y1(Ω), Cdiv(Ω,En

s )).

Proof. The proof is similar to that of Lemma 16, with σ(Y1(Ω),
Cdiv(Ω,En

s )) replaced by the weak∗ BD topology.

The main conclusion of this section is the following.

Theorem 18. Let u0 = 0 on Γ0, ds(Γ0) 6= 0 and f ∈ Ln+δ(Ω,Rn),
where δ ≥ 0. If the function (3.8) is coercive over BD(Ω), then the l.s.c.
regularization of (3.8) in the weak∗ BD(Ω) topology is the functional

(5.8) BD(Ω) 3 u 7→ dRP ∗∗λ,je(u) = (λFR)∗∗(u) +G∗∗j (ε(u)),

where (λFR)∗∗ and G∗∗j are defined by (5.3) and (5.4).

Proof. Step 1. Let ũ ∈ BD(Ω) and {up}p∈P be a net such that up ⇀ ũ
in the weak∗ BD(Ω) topology. Suppose the set

(5.9) {λF (up) +Gj(ε(up)) | p ∈ P}
is bounded. Then, by coercivity of (3.8) (or by Assumption 7 and Lemma 17),
the net {up}p∈P is bounded in ‖ · ‖BD(Ω). Therefore by Theorem 14 and
Lemma 15, lim infp∈P (λF (up) +Gj(ε(up))) ≥ dRP ∗∗λ,je(ũ).

Step 2. Let up ⇀ ũ in the weak∗ BD(Ω) topology, and suppose the set
(5.9) is not bounded. Then either there exists a finer net {up}p∈P1 (P1 ⊂ P )
such that the set {λF (up) + Gj(ε(up)) | p ∈ P1} is bounded, or, for every
finer net {up}p∈P2 (P2 ⊂ P ), the set {λF (up) + Gj(ε(up)) | p ∈ P2} is
unbounded. The first case has been considered in Step 1. In the second case,
by Assumption 7 and coercivity of (3.8), we get

(5.10) lim inf(λF (up) +Gj(ε(up))) =∞ ≥ dRP ∗∗λ,je(ũ) for p ∈ P2.

Step 3. Let (B̃jλ)∗∗(ε(ũ)|Ω) <∞. By Theorem 14 there is a net {ut}t∈Σ
⊂ BD(Ω) such that ut ⇀ ũ in σ(Y1(Ω), Cdiv(Ω,En

s )) and

(5.11) lim
t∈Σ

(
λF (ut) +Gj(ε(ut)) + λ

�

Ω

f · ut dx
)

= (B̃jλ)∗∗(ε(ũ)|Ω).

The assertion of Theorem 14 holds in the special case when g = 0 on Γ1.
Then
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(5.12) lim
t∈Σ

[
λF (ut) +Gj(ε(ut)) + λ

( �

Ω

f · ut dx+
�

Γ1

g · γB(ut) ds
)]

= (B̃jλ)∗∗(ε(ũ)|Ω) + λ
�

Γ1

g · γB(ũ) ds ∈ R,

because |λ � Γ1
g · γB(ũ) ds| < ∞. By Assumption 7, Lemma 16 and (5.12),

the net {ut}t∈Σ is bounded in ‖ · ‖BD(Ω) and ut ⇀ ũ in the weak∗ BD(Ω)
topology. Therefore, by Theorem 14 and Lemma 15, we conclude that
limt∈Σ(λF (ut) +Gj(ε(ut))) = dRP ∗∗λ,je(ũ).

Step 4. Let (B̃jλ)∗∗(ε(ũ)|Ω) =∞. Then dRP ∗∗λ,je(ũ) =∞, as λ � Ω f · ũ dx
is finite. If there exists a net {ûp}p∈P3 such that ûp ⇀ ũ in the weak∗ BD(Ω)
topology and lim infp∈P3(λF (ûp)+Gj(ε(ûp))) <∞, then we have a contra-
diction with Steps 1 and 2 of this proof. Therefore, for every net {up}p∈P
such that up ⇀ ũ in the weak∗ BD(Ω) topology, we have lim infp∈P (λF (up)
+Gj(ε(up))) =∞ = dRP ∗∗λ,je(ũ).

Step 5. For every ũ ∈ BD(Ω) we get

(5.13) inf{lim inf(λF (up) +Gj(ε(up))) | {up}p∈P converges to ũ

in the weak∗ BD(Ω) topology} = dRP ∗∗λ,je(ũ).

By [18, Chapter 1, Corollary 2.1] the proof is complete.

In Theorem 6.1 of [27, Chapter 2] and in Theorem 6.1 of [27, Chapter 1]
only the equality of the infima of the relaxed and original problems has been
shown. But it has not been proved that for every solution û of (RP ∗∗λ,j), there
exists a net {um}m∈N which minimizes Pλ,j and um ⇀ û weak∗ BD(Ω).

Corollary 19. The function (3.8) is coercive over BD(Ω) if and only
if dRP ∗∗λ,je is coercive.

Proof. Suppose (3.8) is coercive. Then, by Theorem 18, so is dRP ∗∗λ,je.
Indeed, we have

(5.14) ‖u‖BD(Ω) = sup
g,h

{ �

Ω

g·u dx+
�

Ω

h : ε(u)
∣∣∣g∈C(Ω,Rn), h∈C(Ω,En

s ),

‖gk‖C(Ω,R) ≤ 1, ‖hij‖C(Ω,R) ≤ 1, ∀i, j, k = 1, . . . , n
}

for every u ∈ BD(Ω) (cf. (2.3) and (2.4)–(2.6)). Then, for every r > 0,
cl‖·‖BD BBD(0, r) is the intersection of closed subsets in the weak∗ BD
topology. Since (3.8) is coercive, for every ks there exists rs such that
λF (u) + Gj(ε(u)) > ks for every u ∈ LD(Ω) − BLD(0, rs). By (5.7) the
proof is complete.

If ds(Γ0) = 0 and L(û) = 0 for every û ∈ R0, then the conclusions of
Theorem 18 and Corollary 19 hold, where the functionals (3.8) and dRP ∗∗λ,je
are defined over BD(Ω)/R0.
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(1976).

[25] R. T. Rockafellar, Integral functionals, normal integrands and measurable selections,
in: Nonlinear Operators and the Calculus of Variations, Lecture Notes in Math. 543,
Springer, Berlin, 1975, 157–207.

[26] P. M. Suquet, Discontinuities and plasticity , in: Non-smooth Mechanics and Ap-
plications, J. J. Moreau and P. D. Panagiotopoulos (eds.), Springer, Wien, 1988,
278–340.

[27] R. Temam, Mathematical Problems in Plasticity , Gauthier-Villars, Paris, 1985.
[28] R. Temam and G. Strang, Functions of bounded deformation, Arch. Rat. Mech.

Anal. 75 (1980), 7–21.
[29] F. Tomarelli, Signorini problem in Hencky plasticity , Ann. Univ. Ferrara-Sez. VII

36 (1990), 73–84.

Institute of Fundamental Technological Research
Polish Academy of Sciences
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